安徽省合肥市数学小学奥数系列3-1-3多次相遇和追及问题

合集下载

安徽省合肥市小学数学小学奥数系列3-1-3多次相遇和追及问题

安徽省合肥市小学数学小学奥数系列3-1-3多次相遇和追及问题

安徽省合肥市小学数学小学奥数系列3-1-3多次相遇和追及问题姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共36题;共150分)1. (5分) (2019六下·竞赛) 李华步行以每小时4千米的速度从学校出发到20.4千米处的冬令营报到。

半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。

又过了1.5小时,张明从学校骑车去营地报到。

结果三人同时在途中某地相遇。

问骑车人每小时行驶多少千米?2. (5分) (2019六下·竞赛) 幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?3. (5分) (2019六下·竞赛) 已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同。

而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发。

问当它们出发后第一次相遇时各跑了多少路程?4. (5分) (2019六下·竞赛) 如图所示,大圈是400米跑道,由到的跑道长是200米,直线距离是50米。

父子俩同时从点出发逆时针方向沿跑道进行长跑锻炼,儿子跑大圈,父亲每跑到点便沿直线跑。

父亲每100米用20秒,儿子每100米用19秒。

如果他们按这样的速度跑,儿子在跑第几圈时,第一次与父亲相遇?5. (5分) (2019六下·竞赛) 甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.6. (5分) (2019六下·竞赛) 甲从A地出发前往B地,1小时后,乙也从A地出发前往B地,又过1小时,丙从B地出发前往A地,结果甲和丙相遇在C地,乙和丙相遇在D地.已知乙和丙的速度相同,丙的速度是甲的2倍,C、D两地之间的距离是50千米.求乙出发1小时后距B地多少千米。

(小学奥数)多人相遇和追及问题

(小学奥数)多人相遇和追及问题

1. 能夠將學過的簡單相遇和追及問題進行綜合運用2. 根據題意能夠畫出多人相遇和追及的示意圖3. 能將複雜的多人相遇問題轉化多個簡單相遇和追及環節進行解題。

二是多人相遇追及問題,即在同一直線上,3個或3個以上的對象之間的相遇追及問題。

所有行程問題都是圍繞“=⨯路程速度时间”這一條基本關係式展開的,比如我們遇到的兩大典型行程題相遇問題和追及問題的本質也是這三個量之間的關係轉化.由此還可以得到如下兩條關係式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇與追及問題雖然較複雜,但只要抓住這兩條公式,逐步表徵題目中所涉及的數量,問題即可迎刃而解.板塊一、多人從兩端出發——相遇、追及【例 1】 有甲、乙、丙3人,甲每分鐘走100米,乙每分鐘走80米,丙每分鐘走75米.現在甲從東村,乙、丙兩人從西村同時出發相向而行,在途中甲與乙相遇6分鐘後,甲又與丙相遇. 那麼,東、西兩村之間的距離是多少米?【巩固】 一條環形跑道長400米,甲騎自行車每分鐘騎450米,乙跑步每分例題精講 知識精講 教學目標多人相遇和追及問題鐘250米,兩人同時從同地同向出發,經過多少分鐘兩人相遇?【例 2】在公路上,汽車A、B、C分別以80km/h,70km/h,50km/h的速度勻速行駛,若汽車A從甲站開往乙站的同時,汽車B、C從乙站開往甲站,並且在途中,汽車A在與汽車B相遇後的兩小時又與汽車C相遇,求甲、乙兩站相距多少千米?【巩固】甲、乙、丙三人每分分別行60米、50米和40米,甲從B地、乙和丙從A地同時出發相向而行,途中甲遇到乙後15分又遇到丙.求A,B 兩地的距離.【巩固】小轎車、麵包車和大客車的速度分別為60千米/時、48千米/時和42千米/時,小轎車和大客車從甲地、麵包車從乙地同時相向出發,麵包車遇到小轎車後30分又遇到大客車。

問:甲、乙兩地相距多遠?【巩固】甲、乙、丙三人行路,甲每分鐘走60米,乙每分鐘走67.5米,丙每分鐘走75米,甲乙從東鎮去西鎮,丙從西鎮去東鎮,三人同時出發,丙與乙相遇後,又經過2分鐘與甲相遇,求東西兩鎮間的路程有多少米?【巩固】小王的步行速度是4.8千米/小時,小張的步行速度是5.4千米/小時,他們兩人從甲地到乙地去.小李騎自行車的速度是10.8千米/小時,從乙地到甲地去.他們3人同時出發,在小張與小李相遇後5分鐘,小王又與小李相遇.問:小李騎車從乙地到甲地需要多少時間?【巩固】甲、乙、丙三人行路,甲每分鐘走60米,乙每分鐘走65米,丙每分鐘走70米,甲乙從東鎮去西鎮,丙從西鎮去東鎮,三人同時出發,丙與乙相遇後,又經過1分鐘與甲相遇,求東西兩鎮間的路程有多少米?【巩固】甲、乙、丙三人行路,甲每分鐘走50米,乙每分鐘走60米,丙每分鐘走70米,甲乙從東鎮去西鎮,丙從西鎮去東鎮,三人同時出發,丙與乙相遇後,又經過2分鐘與甲相遇,求東西兩鎮間的路程有多少米?【巩固】甲、乙、丙三人行路,甲每分鐘走80米,乙每分鐘走90米,丙每分鐘走100米,甲乙從東鎮去西鎮,丙從西鎮去東鎮,三人同時出發,丙與乙相遇後,又經過5分鐘與甲相遇,求東西兩鎮間的路程有多少米?【巩固】小王的步行速度是5千米/小時,小張的步行速度是6千米/小時,他們兩人從甲地到乙地去.小李騎自行車的速度是10千米/小時,從乙地到甲地去.他們3人同時出發,在小張與小李相遇後30分鐘,小王又與小李相遇.問:小李騎車從乙地到甲地需要多少時間?【巩固】甲、乙、丙三人,他們的步行速度分別為每分鐘480、540、720米,甲、乙、丙3人同時動身,甲、乙二人從A地出發,向B地行時,丙從B地出發向A地行進,丙首先在途中與乙相遇,3分鐘後又與甲相遇,求甲、乙、丙3人行完全程各用多長時間?【巩固】甲乙丙三人沿環形林蔭道行走,同時從同一地點出發,甲、乙按順時針方向行走,丙按逆時針方向行走。

小学奥数系列3-1-2相遇与追及问题(一)D卷

小学奥数系列3-1-2相遇与追及问题(一)D卷

小学奥数系列3-1-2相遇与追及问题(一)D卷姓名:________ 班级:________ 成绩:________亲爱的小朋友,经过一段时间的学习,你们掌握了多少知识呢?今天就让我们来检测一下吧!一定要仔细哦!一、小学奥数系列3-1-2相遇与追及问题(一) (共32题;共156分)1. (5分) (2020四上·新城期末) 甲、乙两车分别从A、B两地同时出发,甲车每小时行50千米,乙车每小时行65千米,5小时后两车相遇.(1)在线段上标出大致相遇点.(2) A、B两地相距多少千米?2. (5分) (2018五上·通州月考) 两辆汽车同时从两地开出,一辆车的速度是86千米/时,另一辆车的速度是74千米/时,出发后4.2小时相遇.两地之间公路长多少千米?3. (5分)客货两车从两地相对开出,客车每小时行60千米,客车速度的相当于货车的速度,两车开出后小时相遇,求两地相距多少千米?4. (5分)甲车和乙车同时分别从A、B两地相对开出,8小时后相遇,甲车每小时行80千米,乙车的速度是甲车的1.02倍,A、B两地相距多少千米?5. (5分)两车从两地同时开出相向而行,4.5小时后两车在距中点9千米处相遇,快车每小时行42千米,甲乙两地相距多少千米?6. (5分)(2018·贺州模拟) 甲、乙两车分别从A、B两地同时相对开出,速度保持不变,行驶3小时后两车相距320千米,如果再行驶2小时,则两车相遇。

A、B两地相距多少千米?7. (5分)(2020·西充) 一辆客车和货车分别从甲、乙两地同时出发,相向而行。

相遇时客车与货车所行路程比是5:4。

已知客车从甲地行到乙地需要8小时,货车每小时行驶60千米。

甲、乙两地相距多少千米?8. (5分)(2018·浙江模拟) 小红和妈妈同时分别从学校和家出发,骑行速度如图所示。

已知学校与家之间的路程是6千米,那么经过多少时间母女俩相遇?9. (5分) (2019六下·沾益期中) 在比例尺是1:5000000的地图上,量得A、B两地的距离是16厘米,甲乙两列火车同时从A、B两地同时出发,相向而行。

小学数学小学奥数系列3-1-2相遇与追及问题(二)

小学数学小学奥数系列3-1-2相遇与追及问题(二)

小学数学小学奥数系列3-1-2相遇与追及问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共41题;共193分)1. (5分) (2019六下·竞赛) 在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人跑一圈各需要几分钟?2. (5分)小狗在路边发现一只小兔,立刻去追,同时小兔也发现了小狗,转身逃跑。

小狗每分钟跑400米,小兔每分钟跑320米,5分钟后,小狗追上了小兔。

小狗发现小兔时,它们相距多远?3. (5分) (2019四上·上城期中) 上午7时30分,强强从家出发去上学,每分钟走80米,10分钟后,妈妈发现强强没有带铅笔盒,赶紧骑车去追强强,5分钟后追上了强强。

妈妈骑车的速度是多少?4. (5分) (2019六下·竞赛) 小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?5. (5分)甲、乙两地相距 240 千米,一列慢车从甲地出发,每小时行 60千米.同时一列快车从乙地出发,每小时行 90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)6. (5分)小明和小军同时在一个长400米的环形跑道上从同一点,同时反向而行,小明每分行45米,小军每分行35米,多少分后两人第一次相遇?若同时同向而行,多少分两人第一次相遇?7. (5分)(2020·鹤岗) 在400米的环形跑道上,A、B两点相距100米.甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米.那么,甲追上乙需要的时间是多少秒?8. (5分) (2019六下·竞赛) 在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?9. (5分) (2019六下·竞赛) 猎狗发现前方150米处有一只兔子正在逃跑,拔腿就追。

小学奥数专题——第3讲:多人多次相遇追及问题(老师版)

小学奥数专题——第3讲:多人多次相遇追及问题(老师版)

第3讲:多人多次相遇追及问题在之前的课程中,我们已经学过了如何处理两个对象之间的相遇追及问题.本讲我们进一步学习过程更为复杂的三个对象之间的行程问题.本讲中画线段图非常重要,你还记得画行程图要注意什么吗?【例1】有甲、乙、丙三个人,甲每分钟走40米,乙每分钟走60米,丙每分钟走50米.A、B两地相距2700米甲从A地,乙、丙从B 地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?【分析】全程已知,三个人的速度也都已知,那么甲乙的相遇时间、甲丙的相遇时间都是可以计算出来的.【答案】3分钟详解:甲和乙相遇时的路程和是2700米,速度和是100米/分,所以相遇时间是2700÷100=27分钟.甲和丙相遇时的路程和也是2700米,速度和是90米/分,所以相遇时间是2700÷90=30分钟,所以又过了3分钟甲和丙才相遇.【例2】叮叮、咚咚两人各自开车从A地出发,销销则从B地同时出发,相向而行.叮叮的速度为每小时70千米,销销的速度为每小时50千米.出发3小时后,叮叮与销销相遇又过了1小时,咚咚也与销销相遇请问:咚咚的车速是多少?【分析】请在图中把过程补全,并标出相应的数据,例如速度、时间、路程等.然后注意分析,看看哪个过程是可以计算的?【答案】40千米/时详解:首先画出线段图(如下图),有两次相遇,其中还隐藏了一次追及问题.AB全程:(70+50)×3=360千米咚咚和销销相遇时间是4小时,他们速度和是:360÷4=90千米/时,那么咚咚的速度是90-50=40千米/时.1、有冰冰、雪雪、霜霜三个人,冰冰每分钟走4米,雪雪每分钟走5米,霜霜每分钟走6米.A、B两地相距990米雪雪从A地,霜霜、冰冰从B地同时出发相向而行.请问,雪雪与霜霜相遇之后多少分钟又与冰冰相遇?【答案】20分钟简答:雪雪和霜霜相遇时的路程和是990米,速度和是11米/分,所以相遇时间是990÷11=90分钟.雪雪和冰冰相遇时的路程和也是990米,速度和是9米/分,所以相遇时间是990÷9=110分钟,又过了20分钟雪雪和冰冰才相遇.2、小春、小秋两人从A地出发,小夏则从B地同时出发,相向而行小春的速度为每小时60千米,小夏的速度为每小时40千米.出发3小时后,小春与小夏相遇.又过了1小时,小秋也与小夏相遇请问:小秋的速度是多少?【答案】35千米/时简答:有两次相遇,其中还隐藏了一次追及问题.AB全程:(60+40)×3=300千米小秋和小夏相遇时间是4小时,他们速度和是:300÷4=75千米/时,那么小秋的速度是75-40=35千米/时.【例3】甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车。

小升初典型奥数:多次相遇问题+(讲义)-2023-2024学年六年级下册数学

小升初典型奥数:多次相遇问题+(讲义)-2023-2024学年六年级下册数学

多次相遇问题【知识精讲+典型例题+高频真题】第一部分知识精讲知识清单方法技巧第二部分典型例题例题1:甲、乙两车同时从东城出发,开往相距750千米的西城,甲车每小时行68千米,乙车每小时行57千米,甲车到达西城后立刻返回.两车从出发到相遇一共经过多长时间?【答案】12小时【分析】甲车到达西城后返回与乙车相遇时,两车一共走了2个全程.【详解】750×2÷(68+57)=1500÷125=12(小时)答:两车从出发到相遇一共经过12小时.例题2:小新、正南、妮妮三人同时从学校出发到公园去。

小新、正南两人的速度分别是每分钟20米和每分钟16米。

在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度。

【答案】13米/分钟【分析】当小新和风间相遇时,正南落后小新6×(20-16)=24(米)。

依题意知正南和风间走这24米需要7-6=1(分钟),正南和风间的速度和为24÷1=24(米/分),风间的速度为:24-16=8(米/分),风间和小新相遇后又过了8-6=2分钟,才与妮妮相遇,所以在8分钟中妮妮的行程为20×6-8×2=104(米),根据速度=路程÷时间,即可解答。

【详解】风间的速度:(20-16)×6÷(7-6)-16=4×6÷1-16=24÷1-16=24-16=8(米/分)妮妮的速度:(20×6-8×2)÷8=(120-16)÷8=104÷8=13(米/分)答:妮妮的速度是13米/分。

【点睛】这是一个多重相遇和追及的问题,考查学生分析与理解能力。

例题3:甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【答案】100【详解】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000×=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3.5300014003.54×=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100−=米才能回到出发点.例题4:快、慢两车同时从甲、乙两车站迎面开来,快车每小时行驶100km,慢车每小时行驶65km.两车到达车站后立即往回开,第二次相遇时快车比慢车多行驶了210km.求甲、乙两车站间的距离.【答案】330km【详解】快车慢车总共花的时间是一样的.快车每小时比慢车多走35千米,多行驶了210千米,说明一共行驶了210÷35=6小时.第二次相遇两辆车一共行驶了3个车站的距离.(100+65)×(210÷35÷3)=330(km)例题5:甲乙两人同时从A、B两地出发相向而行,两人在离A地90米处第一次相遇,相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距B地70米处第二次相遇.两人从第一次相遇到第二次相遇恰好经过了5分钟,甲、乙两人的速度是多少?【答案】甲的速度为每分钟36米,乙的速度为每分钟44米【详解】解:A、B间距离:90×3-70=270-70=200(米)甲的速度:90÷(5÷2)=90÷2.5=36(米)乙的速度:(200-70+90)÷5=220÷5=44(米)答:甲的速度为每分钟36米,乙的速度为每分钟44米.【点睛】两人第一次相遇时,合行的路程是A、B之间的距离.两人从出发到第二次相遇时,合行的路程是三个A、B之间的距离,即从第一次相遇到第二次相遇所行的路程应是从出发到第一次相遇的两倍.因此甲从第一次相遇到第二次相遇所行的时间也是从出发到第一次相遇时间的两倍,所以甲行90米用了5分钟的一半时间.第三部分高频真题1.甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断往返行驶.甲、乙两车的速度比为3:7,并且甲、乙两车第1996次相遇的地点和第1997次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇).那么,A、B两地之间的距离是多少千米?2.甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.3.甲、乙二人分别从A、B两地同时出发,往返跑步.甲每秒跑3米,乙每秒跑7米.如果他们的第四次相遇点与第五次相遇点的距离是150米,求A、B两点间的距离为多少米?4.如图,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?5.每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?6.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?7.有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?8.张华和李冰分别从A、B两地同时出发相向而行,张华的速度是李冰的56,两人分别到达B地与A地后,立即返回各自的出发地。

小学奥数训练专题 多次相遇和追及问题.学生版【推荐】.doc

小学奥数训练专题 多次相遇和追及问题.学生版【推荐】.doc

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题【例 3】 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?知识精讲教学目标3-1-4多次相遇和追及问题|初一·数学·基础-提高-精英·学生版| 第1讲 第页2【例 4】 甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?【例 5】 如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】 A 、B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有75米,D 离B 有55米,求这个圆的周长是多少米?【巩固】 如右图,A ,B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇。

(小学奥数)多次相遇和追及问题

(小学奥数)多次相遇和追及问题

1. 學會畫圖解行程題2. 能夠利用柳卡圖解決多次相遇和追及問題3. 能夠利用比例解多人相遇和追及問題板塊一、由簡單行程問題拓展出的多次相遇問題所有行程問題都是圍繞“=⨯路程速度时间”這一條基本關係式展開的,多人相遇與追及問題雖然較複雜,但只要抓住這個公式,逐步表徵題目中所涉及的數量,問題即可迎刃而解.【例 1】 甲、乙兩名同學在周長為300米圓形跑道上從同一地點同時背向練習跑步,甲每秒鐘跑3.5米,乙每秒鐘跑4米,問:他們第十次相遇時,甲還需跑多少米才能回到出發點?【巩固】 甲乙兩人在相距90米的直路上來回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他們同時分別從直路兩端出發,10分鐘內共相遇幾次?知識精講 教學目標3-1-4多次相遇和追及問題【巩固】甲、乙兩人從400米的環形跑道上一點A背向同時出發,8分鐘後兩人第五次相遇,已知每秒鐘甲比乙多走0.1米,那麼兩人第五次相遇的地點與點A沿跑道上的最短路程是多少米?【例 2】甲、乙二人從相距60千米的兩地同時相向而行,6時後相遇。

如果二人的速度各增加1千米/時,那麼相遇地點距前一次相遇地點1千米。

問:甲、乙二人的速度各是多少?板塊二、運用倍比關係解多次相遇問題【例 3】上午8點8分,小明騎自行車從家裏出發,8分鐘後,爸爸騎摩托車去追他,在離家4千米的地方追上了他.然後爸爸立即回家,到家後又立刻回頭去追小明,再追上小明的時候,離家恰好是8千米,這時是幾點幾分?【例 4】甲、乙兩車同時從A地出發,不停的往返行駛於A,B兩地之間。

已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都在途中C地。

問:甲車的速度是乙車的多少倍?【例 5】如圖,甲和乙兩人分別從一圓形場地的直徑兩端點同時開始以勻速按相反的方向繞此圓形路線運動,當乙走了100米以後,他們第一次相遇,在甲走完一周前60米處又第二次相遇.求此圓形場地的周長.【巩固】A、B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇.已知C離A有75米,D離B有55米,求這個圓的周長是多少米?【巩固】如右圖,A,B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省合肥市数学小学奥数系列3-1-3多次相遇和追及问题姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共36题;共150分)1. (5分) (2019六下·竞赛) 甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.2. (5分) (2019六下·竞赛) 甲、乙、丙三人行路,甲每分钟走80米,乙每分钟走90米,丙每分钟走100米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过5分钟与甲相遇,求东西两镇间的路程有多少米?3. (5分) (2019六下·竞赛) 如图,两个圆环形跑道,大圆环的周长为600米,小圆环的周长为400米。

甲的速度为每秒6米,乙的速度为每秒4米。

甲、乙二人同时由点起跑,方向如图所示,甲沿大圆环跑一圈,就跑上小圆环,方向不变,沿小圆环跑一圈,又跑上大圆环,方向也不变;而乙只沿小圆环跑。

问:甲、乙可能相遇的位置距离点的路程是多少?(路程按甲跑的计算)4. (5分) (2019六下·竞赛) 有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?5. (5分) (2019六下·竞赛) 甲、乙两车的速度分别为 52 千米/时和 40 千米/时,它们同时从 A 地出发到 B 地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

6. (5分) (2019六下·竞赛) 有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?7. (5分) (2019六下·竞赛) 甲、乙、丙三人,他们的步行速度分别为每分钟480、540、720米,甲、乙、丙3人同时动身,甲、乙二人从A地出发,向B地行时,丙从B地出发向A地行进,丙首先在途中与乙相遇,3分钟后又与甲相遇,求甲、乙、丙3人行完全程各用多长时间?8. (5分) (2019六下·竞赛) 甲、乙、丙三人沿湖边一固定点出发,甲按顺时针方向走,乙与丙按逆时针方向走.甲第一次遇到乙后又走了1分15秒遇到丙,再过3分45秒第二次遇到乙.已知甲、乙的速度比是,湖的周长是600米,求丙的速度.9. (5分) (2019六下·竞赛) 在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?10. (5分) (2019六下·竞赛) 甲从A地出发前往B地,1小时后,乙、丙两人同时从B地出发前往A地,结果甲和丙相遇在C地,甲和乙相遇在D地.已知甲和乙的速度相同,丙的速度是乙的1.5倍,A、B两地之间的距离是220千米,C、D两地之间的距离是20千米.求丙的速度.11. (5分) (2019六下·竞赛) 甲从A地出发前往B地,1小时后,乙也从A地出发前往B地,又过1小时,丙从B地出发前往A地,结果甲和丙相遇在C地,乙和丙相遇在D地.已知乙和丙的速度相同,丙的速度是甲的2倍,C、D两地之间的距离是50千米.求乙出发1小时后距B地多少千米。

12. (5分)小明和小华分别从一座桥的两端同时出发,往返于桥的两端之间。

小明的速度是65米/分,小华的速度是75米/分,经过15分钟两人第二次相遇。

这座桥长多少米?13. (5分) (2019六下·竞赛) 甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时5.4千米,乙速度是每小时4.2千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过5分钟,乙与丙相遇。

那么绕湖一周的行程是多少?14. (5分)李军和王亮沿着田岗水库四周的道路跑步,他们从同一地点同时出发,反向而行,李军的速度是235米/分,王亮的速度是265米/分,经过16分钟两人还相距70米.水库四周的道路长多少米?15. (5分) (2019六下·竞赛) 甲、乙二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。

问第十五次击掌时,甲走多长时间、乙走多少路程?16. (5分) (2019六下·竞赛) 有两列同方向行驶的火车,快车每秒行30米,慢车每秒行22米。

两车头对齐开始, 24秒快车超过慢车,两车尾对齐开始,28秒后快车超过慢车。

快车长多少米,满车长多少米?17. (1分) (2019六下·竞赛) 一条路上有东、西两镇.一天,甲、乙、丙三人同时出发,甲、乙从东镇向西而行,丙从西镇向东而行,当甲与丙相遇时,乙距他们20千米,当乙与丙相遇时,甲距他们30千米.当甲到达西镇时,丙距东镇还有20千米,那么当丙到达东镇时,乙距西镇________千米.18. (1分)(2018·浙江模拟) 已知甲、乙两人在一个200米的环形跑道上练习跑步,现在把跑道分为相等的4段,即两条直跑道和两条弯道的长度相等。

甲平均每秒跑4米,乙平均每秒跑6米。

若甲、乙两人分别从A、C 处同时出发(如右图),则他们第100次相遇时,在跑道________上。

(填“AB”或“BC”或“DA”或“CD”)。

19. (5分) (2019六下·竞赛) 已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同。

而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发。

问当它们出发后第一次相遇时各跑了多少路程?20. (5分) (2019六下·竞赛) 有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长400厘米,短跑道长300厘米,且有200厘米的公用跑道(如下图)。

机器人甲按逆时针方向以每秒6厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒4厘米的速度在短跑道上跑动。

如果甲、乙两个机器人同时从点出发,那么当两个机器人在跑道上第3次迎面相遇时,机器人甲距离出发点点多少厘米?21. (5分) (2019六下·竞赛) 甲、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?22. (5分)小明和小贝两人同时从相距2千米的两地相向而行,小明每分钟行45米,小贝每分钟行55米,如果一只狗与小明同时同向而行,每分钟行120米,狗遇到小贝后立即返回向小明跑去,遇到小明再返回向小贝跑去。

这样不断往返,直到小明和小贝相遇为止,问这只狗一共跑了多少米?23. (5分) (2019六下·竞赛) 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?24. (1分) (2019六下·竞赛) 小明计划上午 7时 50分到 8时10分之间从码头出发划船顺流而下.已知河水流速为1.4 千米/小时,船在静水中的划行速度为 3千米/小时.规定除第一次划行可不超过 30分钟外,其余每次划行均为 30分钟,任意两次划行之间都要休息15分钟,中途不能改变方向,只能在某次休息后往回划.如果要求小明必须在11时15分准时返回码头,为了使他划行到下游尽可能远处,他应该在________ 时________ 分开始划,划到的最远处距码头________ 千米.25. (5分)甲、乙两人在长为50米的水池里沿直线来回游泳,甲的速度是40米/分,乙的速度是35米/分,他们同时从水池的两端出发,如果不计转向的时间,他们出发多少分钟后第二次相遇?26. (5分)(2020·成都模拟) 甲乙两车同时从A、B两地出发,相向而行,6小时后在C点相遇。

若甲车的速度不变,乙车每小时多行5千米,且两车仍从A、B两地同时出发,相向而行,则相遇点距离C地12千米;若乙车速度不变,甲车每小时多行5千米,则相遇点距离C地16千米,甲车原来每小时行驶多少千米?27. (5分)(2020·广州) 甲、乙两车同时从A、B两地相向而行,在距B地68千米处相遇,两车各自到达对方车站后,立即返回原地,途中又在距地52千米处相遇,求两次相遇地点之间的距离。

28. (5分)(2018·广东模拟) 一辆汽车和一辆摩托车同时从甲、乙两地相向开出,相遇后两车继续行驶,当摩托车到达甲城。

汽车到达乙城后,立即返回,第二次相遇时汽车距甲城160千米,汽车与摩托车的速度比是2:3,则甲、乙两城相距多少千米?29. (5分) (2019五下·惠山期末) 甲、乙两人沿400米环形跑道跑步,他们同时从同一地点出发,同向而行。

甲的速度是320米/分,乙的速度是280米/分,经过几分钟甲第二次追上乙?30. (2分) (2019六下·竞赛) 一辆汽车和一辆摩托车同时从甲乙两地相对开出,摩托车每小时行千米.汽车每小时行千米.两车相遇后又以原来的速度继续前进,摩托车到乙地立即返回.汽车到甲地立即返回.两车在距离中点千米的地方再次相遇,那么甲乙两地的路程是多少千米?31. (2分) (2020四下·兴化期末) 平平和涛涛分别从一座桥的两端同时出发,往返于桥的两端之间。

平平行走的速度是70米/分,涛涛行走的速度是74米/分,经过3分钟两人第一次相遇,这座桥全长________米。

当两人第二次相遇时,两人一共行走了________米。

32. (2分) (2019六下·竞赛) 甲、乙、丙三车同时从A地沿同一公路开往B地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人。

已知甲车每分钟行1000米,丙车每分钟行800米,求乙速车的速度是多少?33. (2分)(2020·金华) 甲、乙两地相距100千米,一台拖拉机从甲地去乙地,出发10千米后,一辆汽车也从甲地去乙地,当汽车到达乙地时,拖拉机离乙地还有10千米,问:汽车追上拖拉机时,汽车离乙地还有多少千米?34. (2分) (2019六下·竞赛) 、两地相距米,甲、乙、丙的速度分别是米/分、米/分、米/分。

相关文档
最新文档