几何变换之美----一类旋转图形中的动点最值问题
一道与旋转有关的动点最值问题的探究

试题研究2023年10月下半月㊀㊀㊀一道与旋转有关的动点最值问题的探究◉湖北省武汉市吴家山第二中学㊀李幽兰㊀㊀初中平面几何中,由图形运动而产生的最值问题历来是学生解题的难点,究其原因是图形一直在变化,学生无法捕捉到运动变化背后 不变 的元素,难以分析出取最值时变化元素的位置,也就无法根据具体图形分析求解[1].其中,与旋转有关的动点求最值问题,热度一直高居不下,近几年常 驻 各地中考选填题和几何综合题的压轴位置,令莘莘学子头疼畏惧.下面笔者分享一道题目的解法和变式的深入探究,希望给读者一点启发.图1题目㊀(武汉蔡甸2021 第10题)如图1,在平面直角坐标系中,Q 是直线y =-12x +2上的一个动点,将Q 绕点P (1,0)顺时针旋转90ʎ,得到点Q ᶄ,连接O Q ᶄ,则O Q ᶄ的最小值为(㊀㊀).A.455㊀㊀㊀B .5㊀㊀㊀C .523㊀㊀㊀D.655图2解法1:(坐标法)分别过点Q和Q ᶄ作x 轴的垂线,垂足分别为点M 和N ,如图2.于是øQ M P =øP N Q ᶄ=90ʎ,则øP Q ᶄN +øN P Q ᶄ=90ʎ.因为øQ P Q ᶄ=øQ P M +øN P Q ᶄ=90ʎ,则øP Q ᶄN =øQ P M .又P Q =Q ᶄP ,所以әP M Q ɸәQ ᶄN P (A A S ).故P M =Q ᶄN ,Q M =P N .设Q (a ,-12a +2).因为P (1,0),所以P M =Q ᶄN =a -1,Q M =P N =-12a +2.于是O N =O P +P N =3-12a .所以Q ᶄ(3-12a ,1-a ).所以O Q ᶄ=O N 2+Q ᶄN 2=(3-12a)2+(1-a )2=54(a -2)2+5ȡ5.故选答案:B .点评:解法1抓住平面直角坐标系中的有利条件,构造了 一线三垂直 模型证三角形全等.首先设未知数表示出动点Q 的坐标,用坐标来表示线段长度进行转化,然后由勾股定理表示两点之间的距离,用含x 的式子将O Q ᶄ表示出来,最后运用二次函数的知识求出最值.这种方法虽然很巧妙㊁简便,但是有一定的局限性,只能用于有坐标系且旋转角度特殊的题目.图3解法2:(轨迹法)如图3,将әA O B 绕点P 顺时针旋转90ʎ得到әA ᶄO ᶄB ᶄ,则Q ᶄ为直线A ᶄB ᶄ上一动点,根据垂线段最短,O Q ᶄ的最小值为点O 到直线A ᶄB ᶄ的垂线段的长度d .由直线A B 的解析式为y =-12x +2,得A (0,2),B (4,0),所以O A =2,O B =4.由题意,得O ᶄ(1,1),A ᶄ(3,1),B ᶄ(1,-3).设直线A ᶄB ᶄ的解析式为y =k x +b ,则有3k +b =1,k +b =-3,{解得k =2,b =-5.{于是直线A ᶄB ᶄ的解析式为y =2x -5,则E (52,0),F (0,-5),故O E =52,O F =5.所以E F =O E 2+O F 2=(52)2+52=552.由S әO E F =12O E O F =12E F d ,得O Q ᶄ的最小值为O E O F E F =52ˑ5552=5.点评:解法2由旋转的本质出发,直线A B 绕点P顺时针旋转90ʎ所得直线A ᶄB ᶄ即为动点Q ᶄ的轨迹,但直接求直线A ᶄB ᶄ的解析式不方便,因此旋转整个әA O B ,先求出点A ᶄ和B ᶄ的坐标,再求直线A ᶄB ᶄ的解析式,最后用面积法求出点O 到直线A ᶄB ᶄ的距离.85Copyright ©博看网. All Rights Reserved.2023年10月下半月㊀试题研究㊀㊀㊀㊀当然,在求出了直线A ᶄB ᶄ的解析式后,也可以由此设Q ᶄ的坐标,用解法1中的坐标法,运用勾股定理和二次函数来求最值.解法2适用于大部分的动点旋转求最值问题,即先确定动点轨迹.图4解法3:(逆向轨迹法)O Q ᶄ的最小值其实是定点O 到直线y =-12x +2绕点P 顺时针旋转90ʎ所得到直线的距离,问题可转化为O ᶄ(1,-1)(由点O 绕点P 逆时针旋转90ʎ得到)到直线y =-12x +2的距离d .如图4,过点O ᶄ(1,-1)作O ᶄA 垂直于x 轴交直线y =-12x +2于点A ,O ᶄB 垂直于y 轴交直线y =-12x +2于点B .于是A (1,32),B (6,-1),所以O ᶄA =52,O ᶄB =5.故A B =O ᶄA 2+O ᶄB 2=(52)2+52=552.由S әA O ᶄB =12O ᶄA O ᶄB =12A B d ,得O ᶄQ 的最小值为O ᶄA O ᶄBA B=5,即为O Q ᶄ的最小值.点评:解法3在求O ᶄQ 的最小值时同样可以用解法1的坐标法来求,在本质上它与解法2是一样的,都是将所求最值转化成定点到定直线的距离,但是解法3对解法2进行了简化,免去了求直线y =-12x +2旋转后的直线解析式,直接旋转定点O ,思路新颖巧妙.变式1㊀在R t әA O B 中,O A =2,A B =4,P 是O B 上一点,O P =1,Q 是边A B 上的一个动点,将Q 绕点P 逆时针旋转30ʎ得到点Q ᶄ,连接O Q ᶄ,则O Q ᶄ的最小值为.图5解析:点Q 在A B 上运动,即点Q 的轨迹为A B ,那么将A B 绕点P 旋转就能得到点Q ᶄ的轨迹.于是,将әA O B 绕点P 逆时针旋转30ʎ得到әA ᶄO ᶄB ᶄ,如图5,则点O 到A ᶄB ᶄ的距离即为O Q ᶄ的最小值.由旋转,得øB P B ᶄ=30ʎ.在R t әA O B 中,O A =2,A B =4,所以øB =øB ᶄ=øB P B ᶄ=30ʎ,于是A ᶄB ᶄʊO B ,则øA E B ᶄ=øA O B =90ʎ.所以点O 到A ᶄB ᶄ的距离为O E 的长度.如图5,过点B ᶄ作B ᶄF ʅO B 于点F ,则øB ᶄF P =90ʎ,于是四边形O E B ᶄF 是矩形.由O B =A B 2-O A 2=42-22=23,O P =1,得B P =B ᶄP =23-1.øB ᶄF P =90ʎ,øB P B ᶄ=30ʎ,所以B ᶄF =12B ᶄP =23-12.故O Q ᶄ的最小值为O E =23-12.变式1没有坐标系背景,显然解法1不适用,而运用解法3,将点O 绕点P 顺时针旋转30ʎ以后再求O ᶄ到A B 的距离较为麻烦,经对比发现,此题解法2是最简便的.类似地,还可以变化图形形状和旋转角度,解法一样.图6变式2㊀如图6,在等腰三角形A B C 中,øB A C =120ʎ,A B =A C ,D 是AB 上一点,A D =2,B D =4,E 是边BC 上的动点,若点E 绕点D 逆时针旋转30ʎ的对应点是F ,连C F ,则C F 的最小值是.基于以上分析,我们可以总结:解决这类绕定点旋转的最值问题有三种方法,分别为坐标法㊁轨迹法㊁逆向轨迹法,根据不同的题目来选择合适的方法,最常用的是轨迹法.若是动点所在的直线绕定点旋转,则先确定动点旋转后的轨迹,再根据垂线段最短求点到直线的距离,最后解直角三角形得到所求最值.动态问题解题的关键是在 动 中寻找 定 的量,再由这些定量探寻出动点形成的轨迹,从而根据轨迹分析出最值位置,即 由动寻定,由定定轨,由轨求最 [2].题目只是知识方法的一个素材,解题的过程能让学生理解知识的原理,提炼方法的本质,注重解法的策略,总结问题的归类,从而达到利用有限的题目实现无限的再创造.由解一道题变成会解一类题,乃至通解一种体系的题,这也是解题教学的方向[1].参考文献:[1]郭源源.旋转位似 似 成双定点定形 轨 一致[J ].教学月刊 中学版(教学参考),2020(10):11G15.[2]郭源源. 定量 构建动点轨迹 隐圆 巧解最值问题[J ].中学数学杂志,2018(10):42G44.Z95Copyright ©博看网. All Rights Reserved.。
动点问题最值

A动点问题最值最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。
一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。
方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。
1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是〔〕 A .32-B .13+C .2D .13-提示:点M 在以AC 为直径的圆上2.〔2015•XX 〕如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是②③.〔把你认为正确的说法的序号都填上〕提示:G 在以AB 为直径的圆上:正确答案是:②④3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A旋转,那么C 、F 两点之间的最小距离为ABC4、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是5、如图,等腰直角△ACB,AC=BC=5,等腰直角△CDP,且PB=2,将△CDP绕C点旋转. 〔1〕求证:AD=PB〔2〕若∠CPB=135°,求BD;〔3〕∠PBC=时,BD∠PBC=时,BD有最小值,并画图说明.分析:在△ABD中有:BD≤AB+AD,当BD=AB+AD时BD最大,此时AB与AD在一条直线上,且AD在BA的延长线上,又△ACB是等腰直角三角形,∠CAB=45°,由〔1〕知∠PBC=∠CAD=180°-45°=135°BD≥AB-AD,当BD=AB-AD时BD最小,此时,AB与AD在一条直线上,且AD在线段AB上,此时∠CAD=45°,所以∠PBC=∠CAD=45°6、如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1,,F为BE中点.〔1〕求CF的长〔2〕将△ADE绕A旋转一周,求点F运动的路径长;〔3〕△ADE绕点A旋转一周,求线段CF的X围.A BAACCAGDAGDA提示:本题根据中点构造三角形相似,△BOF∽△BAE,且12OF AE==7、如图,AB=4,O为AB中点,⊙O的半径为1,点P是⊙O上一动点,以点P为直角顶点的等腰△PBC〔点P,B,C按逆时针方向排列〕则线段AC的取值X提示:发现定等腰直角△AOC与等腰直角△OBE,从而得到相似。
几何变换之美----一类旋转图形中的动点最值问题

几何变换之美----一类旋转图形中的动点最值问题一、教材分析:几何中的最值问题变幻无穷,教学中如何引导学生在复杂条件变化中发现解决问题的路径,核心问题是训练学生在题目中寻找不变的已知元素,从这些已知的不变元素,结合“两点间线段最短”、“垂线段最短”等知识源,运用旋转的方式实现问题的转化与解决,体会到数学问题解答中的“山重水复疑无路,柳暗花明又一村”数学之美。
一、学习目标:1、通过观察操作,利用旋转的基本性质,分析图形找出定点到旋转过程中的动点的最值的计算方法。
2、体会运用旋转的方法把最值问题转化成“两点之间的距离或垂线段最短”等问题的转化思想三、教学重难点在变化的图形中把变量的最值计算转化成找出不变量的进行计算的转化或化归方法的提炼四、教学过程:(一)复习引入:(1)两点之间的距离;(两点之间,线段最短)(2)点到直线的距离;(点到直线的所有连线中,垂线段最短)(3)旋转的性质:①旋转不改变__形状和大小;②经过旋转图形上的 _所有点都绕中心沿相同方向转动了相同的角;③任意一对对应点与旋转中心的连线 _长度相等__;(二)应用一、通过观察旋转图形中的动点运动轨迹,找出到定点的最值距离例1、如图,若AB=5,BC=6,∠C=45°,点E为线段AB中点,点P是线段AC上的任意一点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,则线段EP1长度的最小值为,EP1最大值为。
CC1解题分析:(如图)(1)先在AC 上找出动点P 所在位置,即当BP ⊥AC 时,P 点到B 点距离最小; (2)P 点的运动路线是在以B 点为圆心,BP 为半径的⊙B 的圆周上运动; (3)通过观察可以发现当P 点运动AB 上,与AB 交于P 1时,EP 1的长度最小; 当P 点运动到AB 的延长线上交于P 2时,EP 的长度值最大。
解题策略:(1)观察发现,应用“垂线段最短”找出P 点位置 (2)分析总结运动变化过程中的不变元素及内在联系, (3)画图转化,根据点P 的运动轨迹找出P 到E 的最值.变式练习1:如图,在Rt △ABC 中,∠BCA =90º,BC=6,AC =12,D 为AC 上一点,AD =8,将AD 绕点A 旋转到AD ’,连接BD ’,F 为BD ’的中点,则CF 长度的最大值为 。
初中几何之旋转最值

旋转最值题型一、等量旋转例1、阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是____________例2、△ABC 中,AB=4,AC=2,以BC 为边在△ABC 外作正方形BCDE,BD、CE 交于点O,则线段AO 的最大值为___________例3、已知线段AB,点C是平面内一动点,且AB=AC,连接BC,将线段BC绕点B顺时针旋转90°得到线段BD,连接CD,AD,AD交BC于点E。
若AB=2,当AD最长时,则DE的长为____________题型二、放缩旋转例4、如图,在△ABC中,∠ABC=90°,AB=2BC,AD=2,BD=4,连接CD,则CD长的最大值是_____________例5、如图,矩形ABCD,E为线段AD上一点,以CE为边,在其右侧作矩形CEFG,且ABBC=CE CG =12,AB=5,连接BE,BF,则BE+√55BF的最小值为_____________例6、已知正方形ABCD,E为边AB上一点,AE=1,AB=4,P是平面上一点,PE=1,将线段PB绕P点逆时针旋转90°得线段PQ,则CQ的最小值为_______________课后作业1、直线l上有两个动点A. B,直线l外有一点O,连接OA,OB, OA,OB长分别为2√2、4,以线段AB为边在l的另一侧作正方形ABCD,连接OD.随着动点A. B的移动,线段OD的长也会发生变化,在变化过程中,线段OD长的最大值是___________.2、如图,已知圆O的半径为10,OA=25,P为圆上的动点,∠P=30°,∠B=90°,在P的运动过程中,则OB的最小值___________3、如图,在△ABC中,AB=AC,∠BAC=120°,点D为△ABC外一点,连接BD、AD、CD,∠ADC=60°,BD=5,DC=4,则AD=________.。
数学北师大版八年级下册几何变换之美----一类旋转图形中的动点最值问题

变式练习 3:如图,△ABC 为等腰三角形,底边 BC 的长度为 2,过 B 作 BD⊥ AC, 以 DC 为边作正方形 DEFC,连接 BF,则线段 BF 的最小值为
A
D E B F C
A
解题方法: 1、取BC的中点G,连接DG; 2、将△DCG绕点C逆时针旋转90°,得到
△FCH;
3、连接BH,利用勾股定理求出BH的值; 4、利用三角形的三边关系求出BF的最小 值
A
D'
D F
C B
解题分析:
解:如图,取AB中点P,连接PC、PF,
A
∵F为BD'的中点
∴FP=1/2AD'=1/2AD=4 又∵∠ACB=90° ∴CP=1/2AB ∵AC=12,BC=6 由勾股定理可得AB= 6 5 ∴PC= 3 5 , ∴当F点在CP的延长线上时,CFmin= 3 5 +4
全国中学数学微课大赛——窥探初中数学之美
北师大版八年级(下)图形的平移与旋转
旋转的应用(几何变换之美)
----一类旋转图形中的动点最值问题
陈双平
复习引入:
应用一、通过观察旋转图形中的动点运动轨迹, 找出到定点的最值距离
例1、如图,若AB=5,BC=6,∠C=45°,点E为线段AB中点,点P是线段AC上
M
解:如图,取AB的中点E,连接OD、OE、 DE, ∵∠MON=90°,AB=2. ∴OE=AE=
1 2
E
A
D
AB=1,
O B
C N
∵BE=1,四边形ABCD为矩形, ∴AD=BC=1, ∴ DE AD2 AE2 12 12 2 根据三角形的三边关系,OD<OE+DE, ∴当OD过点E时最大,最大值为
初中数学旋转最值解题技巧

初中数学旋转最值解题技巧
一、旋转最值解题技巧概述在初中数学中,旋转最值是一个比较常
见的问题。
它涉及到了几何图形的变换和求解极值等知识点。
对于这
类问题,我们需要掌握一些解题技巧。
二、旋转最值解题技巧详细介
绍1. 理清思路:首先要理清思路,明确所求的是什么,并且确定使用
哪种方法来求解。
2. 画图分析:通过画图可以更加直观地看出几何图
形的特征和性质,从而有助于我们找到规律和推导结论。
3. 利用对称
性质:利用几何图形的对称性质进行计算可以简化运算过程并提高效率。
4. 使用三角函数公式:在某些情况下,可以使用三角函数公式来
计算旋转后坐标点的位置以及距离等相关参数。
5. 求导法求极值:如
果需要求取某个量在旋转后取得最大或者最小值时,可以采用求导法
来进行计算。
具体步骤为将原方程表示成关于一个变量(如x)的函数,在该区间内寻找其单调递增或递减区间,并判断端点处是否存在极值
即可。
6. 规范化处理数据:有时候为了便于计算和比较大小等操作,
需要将数据规范化处理成相同单位或者相同数量级之后再进行运算。
7. 注意精度误差:由于浮点数精度限制等因素可能会引起误差累积,在
实际应用中要注意避免这种情况发生,并尽可能保证结果正确性与稳
定性。
三、总结以上就是初中数学旋转最值解题技巧的详细介绍。
通
过掌握这些技能,在实际应用中能够更加熟练地处理各种复杂问题,
并获得更好的成果。
旋转中的最值问题(最新)

旋转中的最值问题班级姓名座号【例1】如图,在Rt△ABC中,∠BAC=90°,∠B=30°,D为BC边上一个动点(不包含点B和点C),连接AD,把AD绕点A逆时针旋转90°,点D的对应点为点E,连接CE,若AC=4,在点D移动的过程中,则CE的最小值为.【变式训练】1、如图,在△ABC中,∠ACB=90°,∠B=30°,AB=7,点D是BC边上一动点,以AD为一边等边△ADE,则线段CE长度的最小值是.2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=34,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,求DG的最大值和最小值.【例2】思考:(1)如图①,若点D为等边三角形△ABC的边AC上一点,以BD为边作等边△BDE(在BD下方),连接CE.若CD=1,CE=3,则AC=.(2)如图②,点D为等边△ABC的AC边上一动点,以BD为边作等边△BDE(在BD 下方),点M是BC的中点,连接ME.若BC=5,则ME长的最小值是.问题解决:(3)如图③,等边△ABC中,BC=5,点D是BC边上的高AM所在直线上的点,以BD 为边作等边△BDE(在BD下方),连接ME,则ME的长是否存在最小值?不存在请说明理由;若存在,说明理由并求出这个最小值.【变式训练】1、如图1,△ABC,△EDC是两个等腰直角三角形,其中∠ABC=∠EDC=90°,AB=5,DE=3,连接AE,取AE中点F,连接BF,DF.(1)如图1,当B,C,D三个点共线时,请直接写出BF与DF的数量关系与位置关系;(2)如图2,将△EDC绕点C逆时针旋转,取AC与EC的中点G,H,当点G,H,F 三点不共线时,连接GF,HF,BG,DH,求证:△BGF≌△FHD;(3)在(2)的条件下,连接BD,在△EDC绕点C旋转的过程中,求△BFD面积的最小值,并说明理由.2、如图,△ABC为等边三角形,AB=12,将边AB绕点A顺时针旋转θ,得到线段AD,连接CD,CD与AB交于点G,∠BAD的平分线交CD于点E,F为CD上一点,且DF=2CF.(1)当∠EAB=30°时,求∠AEC的度数;(2)M为边AC上一点,当CM=4时,求线段BM的长;(3)在(2)的条件下,边AB绕点A旋转过程中,求线段BF长度的最小值.。
利用旋转法解几何最值问题应用举例

利用旋转法解几何最值问题应用举例一、利用旋转转化为点到直线的距离垂线段最短求最值例1、在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC的最小值为 .解析:如图,将△ABO绕点A逆时针旋转60°得△AACM,并延长MC交x轴于点N.则点C在直线MN上运动,当OC⊥MN时,OC最小,∴OC=AM=2,则OC的最小值为2.例2、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.解析:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A∠+B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=4,HM⊥AD,∴EM =2,MH =EM=2,∴线段GD长度的最小值为2,例3、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解析:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上,作CM ⊥HN ,则CM 即为CG 的最小值,作EP ⊥CM ,可知四边形HEPM 为矩形,则CM =MP +CP =HE +EC =1+=,故答案为.二、利用旋转转化为三点共线求最值例4、如图,PA =2,PB =4,将线段PA 绕P 点旋转一周,以AB 为边作正方形ABCD ,则PD 的最大值为 .解析:将△PAD 绕点A 顺时针旋转90°得到△P 'AB ,PD 的最大值即为P 'B 的最大值,∴PA =PA ',∠PAP '=90°∴PP '=PA =2 ∵△P 'PB 中,P 'B <PP '+PB ,PP ′=PA =2,PB =4,且P 、D 两点落在直线AB 的两侧,∴当P '、P 、B 三点共线时,P 'B 取得最大值,此时P 'B =PP '+PB =2+4,即P 'B 的最大值为2+4. 例5、如图,在四边形ABCD 中,AB =6,BC =4,若AC =AD ,且∠ACD =60°,则对角线BD 的长的最大值为 .解析:将AB 绕点A 顺时针旋转60°得到线段AK ,连接BK 、DK .则AK =AB =BK =6,∠KAB =60°,∴∠DAC =∠KAB ,∴∠DAK =∠CAB ,在△DAK和△CAB 中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.例6、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF 绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为( )A.3B.2C.4D.2+2解析:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在△Rt DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH=DE=1,EH =,在△Rt ECH中,EC==2,∴GB+GC≥2,∴GB+GC的最小值为2.故选:B.例7、如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为.解析:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP =2,BP=AN,∴PA=2,∵AB =6,∴线段AN 长的最大值=线段BP 长的最大值,∴当P 在线段BA 的延长线时,线段BP 取得最大值最大值=AB +AP =6+2.三、利用旋转转化为四点共线求最值例8、如图,△ABC 中,∠ABC =30°,AB =4,BC =5,P 是△ABC 内部的任意一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值为 .解析:如图,将△ABP 绕着点B 逆时针旋转60°,得到△DBE ,连接EP ,CD ,∴△ABP ≌△DBE ∴∠ABP =∠DBE ,BD =AB =4,∠PBE =60°,BE =PE ,AP =DE ,∴△BPE 是等边三角形∴EP =BP ∴AP +BP +PC =PC +EP +DE ,∴当点D ,点E ,点P ,点C 共线时,PA +PB +PC 有最小值CD∵∠ABC =30°=∠ABP ∠+PBC ,∴∠DBE ∠+PBC =30°,∴∠DBC =90°,∴CD ==, 例9、如图,矩形ABCD 中,AB =2,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是( )A .4+3B .2C .2+6D .4解:由旋转的性质可知:△PFC 是等边三角形,∴PC =PF ,∵PB =EF ,∴PA +PB +PC =PA +PF +EF ,∴当A 、P 、F 、E 共线时,PA +PB +PC 的值最小,∵四边形ABCD 是矩形,∴∠ABC =90°,∴tan ∠ACB ==, ∴∠ACB =30°,AC =2AB =4,∵∠BCE =60°,∴∠ACE =90°,∴AE ==2,故选:B.四、利用旋转转化为圆外一定点与圆上的动点的关系求最值例10、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.CA解析:如图,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE, ∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF =BC =2,∴EF =BF=×2=2,以BC为直径作⊙F ,则点D在⊙F上,连接DF ,∴DF =BC=×4=2,∴AC =DE≤DF+EF =2+2,即AC的最大值为2+2.练习1、已知x 轴上一点A (1,0),B 为y 轴上的一动点,连接AB ,以AB 为边作等边△ABC 如图所示,已知点C 随着点B 的运动形成的图形是一条直线,连接OC ,则AC +OC 的最小值是 .解析:将△ABO 绕点A 逆时针旋转60°得△ACD ,并作直线CD ,延长AD 交y 轴于点A '.∵等边△ABC 、等边△AOD ,∴AB =AC ,AO =AD ,∠BAC =∠OAD =60°∴∠BAC ﹣∠OAC =∠OAD ﹣∠OAC ,∴∠BAO =∠CAD在△BAO 和△CAD 中,∴△BAO ≌△CAD (SAS ),∴∠AOB =∠ADC ∵∠AOB =90° ∴∠ADC =90°,∴CD ⊥AD ,∴点C 随着点B 的运动形成的图形是直线CD∵∠AOA '=90°,∠OAD =∴∠60°AA 'O =30∴°OA =AA ' ∴AD =OA =AA '∴点D 是AA '的中点,∵CD ⊥AD ,∴CD 是AA '的中垂线 ∴AC =A 'C ,∴AC +OC =A 'C +OC又∵点C 在直线CD 上运动,所以点O 、C 、A '三点共线时,A 'C +OC 的值最小,最小值为OA '的长.在R △AOA '中,∠AOA '=90°,∠OAD =60°,OA =1,O A '=OA =,∴AC +OC 的最小值为.2、已知:AD =2,BD =4,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧.当∠ADB 变化时,则CD 的最大值 .解析:把△ADC 绕点A 顺时针旋转60°得到△AEB ,则AE =AD ,BE =DC ,∠EAD =60°,∴△ADE 为等边三角形,∴DE =DA =2,∠ADE =60°,当E 点在直线BD 上时,BE 最大,最大值为2+4=6,∴CD 的最大值为6.3、如图,在等腰直角△ABC 中,∠BAC =90°,点D 是△ABC 所在平面上一点,且满足DB =6,DA =10,则CD 的最小值为E解析:将△ADC 绕点A 顺时针旋转90°,得到△ABE .则CD =BE ,△ADE 是等腰直角三角形,ED =10.∵AE 、AD 、BD 都是定值,∴当E 、B 、D 三点共线时,BE 最小,即CD 最小.此时BE 最小值为DE ﹣BD =10﹣5.故选:A . 4、如图,平行四边形ABCD 中,∠B =60°,BC =6,AB =5,点E 在AD 上,且AE =2,点F 是AB 上一点,连接EF ,将线段EF 绕点E 逆时针旋转120°得到EG ,连接GD ,则线段GD 长度的最小值为 .解析:将线段AE 绕点E 逆时针旋转120°得到EH ,连接HG ,过点H 作HM ⊥AD ,∵四边形ABCD 是平行四边形,∴∠A ∠+B =180°,∴∠A =120°,∵将线段AE 绕点E 逆时针旋转120°得到EH ,将线段EF 绕点E 逆时针旋转120°得到EG ,∴EF =EG ,AE =EH ,∠AEH =∠FEG =120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS )∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线,∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =2,HM ⊥AD ,∴EM =1,MH =,∴线段GD 长度的最小值为,5、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE =2,F 为 AB 边上的一个动点,连接 EF ,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG ,则 CG 的最小值为 .F解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转45°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等腰直角三角形,点G在垂直于HE的直线HG上,作CM⊥HG,则CM即为CG的最小值,作EN⊥CM,可知四边形HENM为矩形,则CM=MN+CN=HEEC=126、如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF =60°,则GB+GC的最小值是AA解析:取AB的中点H,连接HG、HE、HG、BE、CE,则△AEF≌△HEG,∴∠GHE=∠A=60°,∴HG∥AD,可知△BHG≌△EHG,∴BG=GE,∴CE的长就是GB +GC的最小值;在△Rt EBC中,EB=3,BC=6,∴EC=3,∴GB+GC的最小值3.7、如图,平行四边形ABCD中,∠B=60°,BC=6,AB=5,点E在AD上,且AE=2,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .解:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A∠+B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG ⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=2,HM⊥AD,∴EM=1,MH=,∴线段GD长度的最小值为,8、如图,AB=8,点M为线段AB外一个动点,且AM=4,MB=MN,∠BMN=90°,则线段AN的最大值为.解析:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=4,BP=AN,∴PA=4,∵AB=8,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=8+4.9、如图,在△ABC中,∠ABC=60°,AB<AC,点P是△ABC内一点,AB=6,BC=8,则PA+PB+PC的最小值是 .解析:如图,将△PBF绕点B逆时针旋转60°得到△BFE,作EH⊥CB交CB的延长线于H.∵∠ABC=60°,∠PBF=60°,∵∠ABP=∠EBF,∴∠EBF∠+BC=60°,∴∠EBC=120°,∵PB=BF,∠PBF=60°,∴△PBF是等边三角形,∴PB=PF,∵PA=EF,∴PA+PB+PC=CP+PF+EF,根据两点之间线段最短可知,当E,F,P,C共线时,PA+PB+PC的值最小,最小值=EC的长,在△Rt EBH中,∵∠EBH=60°,EB=6,∴BH=BE•cos60°=3,EH=EB•sin60°=3,∴CH=BH+CB=3+8=11,∴EC===2.10、如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有一点P,当PA+PB+PC值最小时PB的长为.解析:将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,则当B、P、E、D四点共线时,PA+PB+PC值最小,最小值为BD.∵将△APC绕点C顺时针旋转60°,得到△DEC,∴△APC≌△DEC,∴CP=CE,∠PCE=60°, ∴△PCE是等边三角形,∴PE=CE=CP,∠EPC=∠CEP=60°.∵菱形ABCD中,∠ABP=∠CBP=∠ABC=30°,∴∠PCB=∠EPC﹣∠CBP=30°,∴∠PCB=∠CBP=30°,∴BP=CP,同理,DE=CE,∴BP=PE=ED.连接AC,交BD于点O,则AC⊥BD.在Rt△BOC中,∵∠BOC=90°,∠OBC=30°,BC=4,∴BO=BC•cos∠OBC=4×=2,∴BD=2BO=4,∴BP=BD=.即当PA+PB+PC值最小时PB的长为.11、如图,四边形ABCD中,AB=3,BC=2,AC=AD,∠ACD=60°,则对角线BD长的最大值为( )A.5 B.2 C.2 D.1解析:如图,在AB的左侧作等边三角形△ABK,连接DK.则AK=AB=BK=3,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS),∴DK=BC=2,∵DK+KB≥BD,DK=2,KB=AB=3,∴当D、K、B共线时,BD的值最大,最大值为DK+KB=5.故选:A.12、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若对角线BD⊥CD于点D,则对角线AC的最大值为.解:如图,将△ABC绕点B顺时针旋转90°得△DBM,∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM, ∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4=定值,∠BDC=90°,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2+2,∴AC的最大值为2+2.13、如图在四边形ABCD中,BC=CD,∠BCD=90°.若AB=4cm,AD=3cm,则对角线AC的最大值为 cm.解析:如图,在直线AB的右侧作等腰直角三角形△ABE,使得,EB=EA,∠AEB=90°.∵AB=4cm,∴AE=BE=2,∵∠ABE=∠DBC=45°,∴∠ABD=∠EBC,∵==,∴△ABD∽△EBC,∴=,∵AD=3cm,∴EC=cm,∵AC≤AE+EC,∴AC≤.∴AC的最大值为cm.14、如图,已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.若∠ABC=30°,∠ACD =45°,AC=2,则B、D之间距离的最大值为.解:如图,在△ACD的外部作等边三角形△ACO,以O为圆心OA为半径作⊙O.∵∠ABC=∠AOC=30°,∴点B在⊙O上运动,作OE⊥DA交DA的延长线于E. 在Rt△AOE中,OA=AC=2,∠EAO=30°,∴OE=OA=1,AE=,在Rt△ODE中,DE=AE+AD=2+,∴DO===+, 当B、O、D共线时,BD的值最大,最大值为OB+OD=2++.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何变换之美----一类旋转图形中的动点最值问题
一、教材分析:
几何中的最值问题变幻无穷,教学中如何引导学生在复杂条件变化中发现解决问题的路径,核心问题是训练学生在题目中寻找不变的已知元素,从这些已知的不变元素,结合“两点间线段最短”、“垂线段最短”等知识源,运用旋转的方式实现问题的转化与解决,体会到数学问题解答中的“山重水复疑无路,柳暗花明又一村”数学之美。
一、学习目标:
1、通过观察操作,利用旋转的基本性质,分析图形找出定点到旋转过程中的动点的最值的计算方法。
2、体会运用旋转的方法把最值问题转化成“两点之间的距离或垂线段最短”等问题的转化思想
三、教学重难点
在变化的图形中把变量的最值计算转化成找出不变量的进行计算的转化或化归方法的提炼四、教学过程:
(一)复习引入:
(1)两点之间的距离;(两点之间,线段最短)
(2)点到直线的距离;(点到直线的所有连线中,垂线段最短)
(3)旋转的性质:①旋转不改变__形状和大小;②经过旋转图形上的 _所有点都绕中心沿相同方向转动了相同的角;③任意一对对应点与旋转中心的连线 _长度相等__;
(二)应用一、通过观察旋转图形中的动点运动轨迹,找出到定点的最值距离
例1、如图,若AB=5,BC=6,∠C=45°,点E为线段AB中点,点P是线段AC上的任意一点,
在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P
1,则线段EP
1
长度的最小值
为,EP
1
最大值为。
C
C1
解题分析:(如图)
(1)先在AC 上找出动点P 所在位置,即当BP ⊥AC 时,P 点到B 点距离最小; (2)P 点的运动路线是在以B 点为圆心,BP 为半径的⊙B 的圆周上运动; (3)通过观察可以发现当P 点运动AB 上,与AB 交于P 1时,EP 1的长度最小; 当P 点运动到AB 的延长线上交于P 2时,EP 的长度值最大。
解题策略:(1)观察发现,应用“垂线段最短”找出P 点位置 (2)分析总结运动变化过程中的不变元素及内在联系, (3)画图转化,根据点P 的运动轨迹找出P 到E 的最值.
变式练习1:如图,在Rt △ABC 中,∠BCA =90º,BC
=6,AC =12,D 为AC 上一点,AD =8,将AD 绕点A 旋转到AD ’,连接BD ’,
F 为BD ’的中点,则CF 长度的最大值为 。
解题分析:如图,取AB 中点P ,连接PC 、PF,可以用中位线 定理和斜边上的中线等于斜边的一半求出PC 、PF ,再利用两 点之间线段最短的知识,得到当F 点在CP 的延长线上时, CP 的长度最大。
解题分析:取AB 的中点E ,连接OD 、OE 、DE ,根据直角三角形斜边上的中线等于斜边的一半,
可得OE=2
1
AB ,再利用勾股定理列出求出DE ;接下来然后根据三角形任意两边之和大于第三
边可得OD 过点E 时最大,并可求出最大值。
从而解答此题。
A C 1
2
解:如图,取AB 中点P ,连接PC 、PF, ∵F 为BD'的中点 ∴FP=1/2AD'=1/2AD=4 又∵∠ACB=90° ∴CP=1/2AB ∵AC=12,BC=6
由勾股定理可得AB=56
∴PC=53, ∴当F 点在CP 的延长线上时,CFmin=53 +4
(三)应用二、利用旋转转移线段,再通过构造三角形,利用三角形三边关系求出最值 例2、如图,在△PAB 中,PA =2,PB =4,以AB 为边作正方形ABCD ,使得P 、D 两点在AB 的两侧,则PD 的最大值为 ,最小值为 。
解题分析:
考虑到利用正方形的性质(AD=AB ),把△PAD 绕点A 顺时针旋转90°,得到△QAB , 从而PD=BQ ,而BQ 边又与定线段BP 、PQ 组成三角形,利用两点之间,线段最短的原理,可以得到当点Q 在BP 的延长线上时,BQ 取最大值;当点Q 在线段BP 上时,BQ 取最小值。
解题策略:
此类题中,很难通过作图找出所求线段最值,主要是把所求线段置于含定量的三角形中,利用三角形的三边关系再来解决动点到定点的最值问题。
解:将PA 绕点A 顺时针旋转90得到AQ ,并连接PQ 、BQ 在正方形ABCD 中,AD=AB ,且∠PAQ=∠BAD=90°, ∴∠QAP=∠PAD ∴△QAB ≌△PAD
A
B
C
D
P
A
B
C
D
P
Q
∴PD=BQ
在等腰直角三角形APQ 中,AP=2 ∴QP=22 又∵PB=4
∴当点Q 运动到线段BP 上时,BQ 的最小值等于BP-PQ=4-22 当点Q 运动到BP 的延长线上时,BQ 的最小值等于BP+PQ=4+22
变式练习3:如图,△ABC 为等腰三角形,底边BC 的长度为2,过B 作BD ⊥AC ,以DC 为边作
正方形DEFC ,连接BF ,则线段BF 的最小值为 解题方法:
1、取BC 的中点G ,连接DG ;
2、将△DCG 绕点C 逆时针旋转90°,得到△FCH ;
3、连接BH ,利用勾股定理求出BH 的值;
4、利用三角形的三边关系求出BF 的最小值
在学习完旋转这类几何变换方式之后,我们可以利用旋转这种变换方式转移线段,把几何动点的最值问题转化成三角形的三边关系的问题来求解;或者在旋转变换中的几何图形上的动点到定点的最值问题的解决需要把握运动过程中的不变量,把动量转化成定量来解决。
把动态的问题用几何画板展示,理解旋转过程中的最值的计算方法具有直观的认识,从而形成模型。
备注:作者--陈双平;电话---151********(成都高新实验中学)
A
B
C D
E
F。