山东省济南市商河县2020-2021学年八年级上学期期末数学试题

合集下载

山东省青岛市市南区2020-2021学年八年级(上)期末数学试卷及答案解析

山东省青岛市市南区2020-2021学年八年级(上)期末数学试卷及答案解析

2020-2021学年山东省青岛市市南区八年级(上)期末数学试卷一.选择题(每题3分,共24分)1.(3分)下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3B.7,24,25C.6,8,10D.9,12,15 2.(3分)下列说法不正确的是()A.的平方根是B.=±5C.的算术平方根是D.=﹣33.(3分)若样本x1,x2,x3,…x n的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…x n+2,下列结论正确的是()A.平均数为20,方差为2B.平均数为20,方差为4C.平均数为18,方差为2D.平均数为18,方差为44.(3分)小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.y=x B.y=x C.y=x+5D.y=x+5 5.(3分)如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA 的延长线于F,连接AD、CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A.32°B.64°C.77°D.87°6.(3分)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能7.(3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)8.(3分)如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个二.填空题(每题3分,共18分)9.(3分)如图所示的网格是正方形网格,∠APB=°.10.(3分)某衬衣定价为100元时,每月可卖出2000件,受成本影响,该衬衣需涨价,已知价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式为.11.(3分)如果三个数a、b、c满足其中一个数的两倍等于另外两个数的和,我们称这三个数a、b、c是“等差数”若正比例函数y=2x的图象上有三点A(m﹣1,y1)、B(m,y2)、C(2m+1,y3),且这三点的纵坐标y1、y2、y3是“等差数”,则m=.12.(3分)魏县鸭梨是我省的特产,经过加工后出售,单价可能提高20%,但重量会减少10%.现有未加工的鸭梨30千克,加工后可以比不加工多卖12元,设加工前每千克卖x 元,加工后每千克卖y元,根据题意,可列方程组.13.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.14.(3分)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.三、作图题(共8分)15.(8分)如图1,图2,图3是每个小正方形的边长为1正方形网格,借用网格就能计算出一些三角形的面积的面积.(1)请你利用正方形网格,计算出如图1所示的△ABC的面积为.(2)请你利用正方形网格,在图2中比较+1与的大小.(3)已知x是正数,请利用正方形网格,在图3中求出+的最小值.(4)若△ABC三边的长分别为,,(其中m>0,n >0且m≠n),请运用构图法,求出这个三角形的面积.四、解答题(共70分)16.(10分)计算:(1)××.(2)﹣14﹣.(3)用含药30%和75%的两种防腐药水,配制含药50%的防腐药水36千克,两种药水各需多少千克?(4)甲,乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为,乙把字母b看错了得到方程组的解为.求a,b的正确值及求原方程组的解.17.(6分)如图,已知∠1+∠2=180°,∠B=∠E,试猜想AB与CE之间有怎样的位置关系?并说明理由.18.(6分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.19.(4分)某工厂用如图①所示的长方形和正方形纸板,做成如图②所示的竖式与横式两种长方形形状的无盖纸盒.现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒各多少个?20.(8分)已知,如图,在△ABC中,∠B<∠C,AD,AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,试确定∠DAE的度数;(2)试写出∠DAE,∠B,∠C的数量关系,并证明你的结论.21.(6分)小明从家去李宁体育馆游泳,同时,妈妈从李宁体育馆以50米/分的速度回家,小明到体育馆后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D、F四点在一条直线上)(1)求点C坐标是、BC的函数表达式是.(2)求线段OB、AF函数表达式及点D的坐标;(3)当x为时,小明与妈妈相距1500米.22.(8分)已知某酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十•一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元,求租住了三人间、双人间客房各多少间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式,并写出自变量的取值范围.(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满,并使住宿费用最低,请写出设计方案,并求出最低的费用.23.(12分)【模型定义】它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.他们得知这种模型称为“手拉手模型”如果把小等腰三角形的腰长看作是小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手.【模型探究】(1)如图1,若△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE,则∠AEB的度数为;线段BE与AD之间的数量关系是.【模型应用】(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,P为等边△ABC内一点,且PA:PB:PC=3:4:5,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连接CM,求∠APB的度数是.【拓展提高】(4)如图4,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC 中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数.(用含有m的式子表示)(5)如图5,两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请证明BD和CE的数量关系和位置关系.(6)如图6,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,求BD的长.【深化模型】(7)如图7,C为线段AE上一动点(不与A、E重合),在AE同侧分别作等边△ABC 和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有.24.(10分)如图,在平面直角坐标系中,四边形OABC是矩形,点O(0,0),点A(3,0),点C(0,4);D为AB边上的动点.(Ⅰ)如图1,将△ABC对折,使得点B的对应点B落在对角线AC上,折痕为CD,求此刻点D的坐标:(Ⅱ)如图2,将△ABC对折,使得点A与点C重合,折痕交AB于点D,交AC于点E,求直线CD的解析式;(Ⅲ)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2020-2021学年山东省青岛市市南区八年级(上)期末数学试卷参考答案与试题解析一.选择题(每题3分,共24分)1.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.【分析】根据平方根与立方根进行判断即可.【解答】解:A、的平方根是,正确;B、,错误;C、=2的算术平方根是,正确;D、,正确;故选:B.【点评】此题主要考查了平方根与立方根,正确把握相关定义是解题关键.3.【分析】根据平均数、方差随数据的变化规律进行判断,将一组数的每个数据都增加n,所得到的新一组数据的平均数就增加n,而方差不变.【解答】解:样本x1+2,x2+2,x3+2,…x n+2,对于样本x1,x2,x3,…x n来说,每个数据均在原来的基础上增加了2,根据平均数、方差的变化规律得:平均数较前增加2,而方差不变,即:平均数为18+2=20,方差为2,故选:A.【点评】考查平均数、方差的意义以及受数据变化的影响,掌握规律,理解意义是解决问题的关键.4.【分析】根据若小涵购买咖啡豆250公克且自备容器,需支付295元,可得咖啡豆每公克的价钱为(295+5)÷250=(元),据此即可y与x的关系式.【解答】解:根据题意可得咖啡豆每公克的价钱为:(295+5)÷250=(元),∴y与x的关系式为:.故选:B.【点评】本题主要考查了一次函数的应用,根据题意得出咖啡豆每公克的单价是解答本题的关键.5.【分析】如图,取CF的中点T,连接DT,AT.想办法证明AC=AF,推出∠CFA=45°即可解决问题.【解答】解:如图,取CF的中点T,连接DT,AT.∵∠BAC=90°,FD⊥BC,∴∠CAF=∠CDF=90°,∴AT=DT=CF,∴TD=TC=TA,∴∠TDA=∠TAD,∠TDC=∠TCD,∵∠ADB=45°,∴∠ADT+∠TDC=135°,∴∠ATC=360°﹣2×135°=90°,∴AT⊥CF,∵CT=TF,∴AC=AF,∴∠AFC=45°,∴∠BFD=45°﹣32°=13°,∵∠BDF=90°,∴∠B=90°﹣∠BFD=77°,故选:C.【点评】本题考查直角三角形斜边中线的性质,三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题,属于中考常考题型.6.【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.【点评】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.7.【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.8.【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键二.填空题(每题3分,共18分)9.【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=12+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据等腰三角形的性质和三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=12+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=45°,∴∠APB=135°.故答案为:135.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确作出辅助线是解题的关键.10.【分析】根据某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件,即可得到月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式.【解答】解:由题意可得,y=2000﹣×50=﹣5x+2500,故答案为:y=﹣5x+2500.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.11.【分析】将点A,点B,点C坐标代入解析式,可求y1、y2、y3,根据“等差数”的定义可求m的值.【解答】解:∵正比例函数y=2x的图象上有三点A(m﹣1,y1)、B(m,y2)、C(2m+1,y3),∴y1=m﹣2,y2=2m,y3=4m+2,∵y1、y2、y3是“等差数”,∴2(m﹣2)=2m+4m+2,或4m=m﹣2+4m+2,或8m+4=m﹣2+2m,∴m=﹣或0或﹣故答案为:﹣或0或﹣【点评】本题考查了一次函数图象上点的坐标特征,熟知函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.【分析】根据题意可得等量关系:加工后的单价=加工前的单价×(1+20%);鸭梨30千克加工后所卖总价钱﹣加工前所卖总价钱=12元,根据等量关系列出方程组即可.【解答】解:设加工前每千克卖x元,加工后每千克卖y元,根据题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.13.【分析】图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,解法二:设小矩形的长为a,宽为b,依题意得由②×2﹣①,得a﹣3b=,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2)2=44﹣16,故答案为:44﹣16.【点评】本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.14.【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=3,纵坐标为120﹣60×=75,(故③正确);④设快递车从乙地返回时的速度为y千米/时,则(y+60)(4﹣3)=75,y=90,(故④正确).故答案为:①③④.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.三、作图题(共8分)15.【分析】(1)根据三角形的面积公式计算;(2)根据勾股定理求出DF、DE,根据三角形的三边关系解答即可;(3)根据勾股定理、轴对称—最短路径解答;(4)根据三角形的面积公式、勾股定理解答即可.=4×3﹣×4×1﹣×2×1﹣×3×3=,【解答】解:(1)S△ABC故答案为:;(2)如图2,由勾股定理得:DF==,DE==,在△DEF中,DE+EF>DF,∴+1>;(3)如图3,设点M的坐标为(0,3),点N的坐标为(5,1),点P的坐标为(x,0),则PM=,PN=,作点M关于x轴的对称点M′,连接NM′,交x轴于P,此时PM+PN的值最小,最小值==,∴+的最小值为;(4)如图4,设小长方形的长为m,宽为n,则AB=,BC=,AC=,=4m×3n﹣×2m×n﹣×4m×2n﹣×2m×3n=4mn.则S△ABC【点评】本题考查的是三角形的面积、勾股定理等,解题的关键是灵活运用数形结合思想解决问题,学会用转化的思想解决问题.四、解答题(共70分)16.【分析】(1)原式利用二次根式的乘除法则计算即可得到结果;(2)原式利用二次根式性质,以及立方根性质计算即可得到结果;(3)根据题意列出算式,计算即可得到结果;(4)将错就错,求出正确a与b的值,进而求出原方程组的解即可.【解答】解:(1)原式==;(2)原式=﹣14×﹣(﹣2)=﹣2+2=2﹣;(3)设两种药水分别需要x千克,y千克,根据题意得:,即,①×5﹣②得:3x=60,解得:x=20,把x=20代入①得:20+y=36,解得:y=16,则两种药水分别需要20千克,16千克;(4)把代入2x﹣by=﹣1得:8﹣3b=﹣1,解得:b=3,把代入ax+3y=4得:﹣2a+6=4,解得:a=1,把a=1,b=3代入方程组得:,①+②得:3x=3,解得:x=1,把x=1代入①得:1+3y=4,解得:y=1,则方程组的解为.【点评】此题考查了实数的运算,由实际问题抽象出二元一次方程组,熟练掌握运算法则是解本题的关键.17.【分析】由∠1+∠2=180°可证得DE∥BC,得∠ADF=∠B,已知∠B=∠E,等量代换后可得∠ADF=∠E,由此可证得AB与CE平行.【解答】解:AB∥CE,∵∠1+∠2=180°(已知),∴DE∥BC(同旁内角互补,两直线平行),∴∠ADF=∠B(两直线平行,同位角相等),∵∠B=∠E(已知),∴∠ADF=∠E(等量代换),∴AB∥CE(内错角相等,两直线平行).【点评】此题主要考查平行线的判定和性质.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.18.【分析】(Ⅰ)根据家庭中拥有1台移动设备的人数及所占百分比可得调查的学生人数,将拥有4台移动设备的人数除以总人数可得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为:=50(人),图①中m的值为×100=32,故答案为:50、32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,∴这组数据的中位数是3;由条形统计图可得==3.2,∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【分析】设制作竖式纸盒x个,生产横式纸盒y个.根据生产竖式纸盒用的正方形纸板+生产横式纸盒用的正方形纸板=150张;生产竖式纸盒用的长方形纸板+生产横式纸盒用的长方形纸板=300张.列方程组即可得到结论.【解答】解:设制作竖式纸盒x个,生产横式纸盒y个.由题意得,解得:.答:可制作横式纸盒60个、竖式纸盒30个.【点评】本题考查二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出等量关系式即可求解.20.【分析】(1)在三角形ABC中,由∠B与∠C的度数求出∠BAC的度数,根据AE为角平分线求出∠BAE的度数,由∠BAD﹣∠B即可求出∠DAE的度数;(2)仿照(1)得出∠DAE与、∠B、∠C的数量关系即可.【解答】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=100°,又∵AE是△ABC的角平分线,∴∠BAE=∠BAC=50°,∵AD是△ABC的高,∴∠BAD=90°﹣∠B=90°﹣30°=60°,则∠DAE=∠BAD﹣∠BAE=10°,(2)∠DAE=(∠C﹣∠B),理由如下:∵AD是△ABC的高,∴∠ADC=90°,∴∠DAC=180°﹣∠ADC﹣∠C=90°﹣∠C,∵AE是△ABC的角平分线,∴∠EAC=∠BAC,∵∠BAC=180°﹣∠B﹣∠C∴∠DAE=∠EAC﹣∠DAC,=∠BAC﹣(90°﹣∠C),=(180°﹣∠B﹣∠C)﹣90°+∠C,=90°﹣∠B﹣∠C﹣90°+∠C,=(∠C﹣∠B).【点评】此题考查了三角形内角和定理,以及三角形的外角性质,三角形的高线,角平分线定义,熟练掌握内角和定理是解本题的关键.21.【分析】(1)根据路程=速度×时间结合体育场离家3000米即可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出线段BC的表达式;(2)根据点O和点B的坐标可以求得线段OB对应的函数解析式,再根据妈妈的速度和路程可以求得点F的坐标,从而可以求得线段AF对应的函数表达式;根据小明的速度可以求得点E的坐标,从而可以写出线段DF的函数表达式,再根据线段AF的函数表达式,即可求得点D的坐标;(3)根据线段AF、线段OB、线段BC的函数表达式可以求得当x为多少时,小明与妈妈相距1500米;【解答】解:(1)∵45×50=2250(米),3000﹣2250=750(米),∴点C的坐标为(45,750);设线段BC的函数表达式为y=k2x+b2,把(30,3000)、(45,750)代入y=kx+b,,得,即线段BC的函数表达式是y=﹣150x+7500(30≤x≤45);(2)设OB的函数表达式为y=kx,30k=3000,得k=100,即线段OB的函数表达式为y=100x(0≤x≤30);点F的横坐标为:3000÷50=60,则点F的坐标为(60,0),设直线AF的函数表达式为:y=k1x+b1,,得,即直线AF的函数表达式为y=﹣50x+3000;∵750÷250=3(分钟),45+3=48,∴点E的坐标为(48,0)∴直线ED的函数表达式y=250(x﹣48)=250x﹣12000,∵AF对应的函数解析式为y=﹣50x+3000,∴,得,∴点D的坐标为(50,500);(3)当小明与妈妈相距1500米时,﹣50x+3000﹣100x=1500或100x﹣(﹣50x+3000)=1500或(﹣150x+7500)﹣(﹣50x+3000)=1500,解得:x=10或x=30,∴当x为10或30时,小明与妈妈相距1500米.故答案为:(45,750);y=﹣150x+7500(30≤x≤45);10或30.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.【分析】(1)设三人间有a间,双人间有b间.注意凡团体入住一律五折优惠,根据①客房人数=50;②住宿费6300列方程组求解;(2)根据题意,三人间住了x人,则双人间住了(50﹣x)人.住宿费=100×三人间的人数+150×双人间的人数;(3)根据x的取值范围及实际情况,运用函数的性质解答.【解答】解:(1)设三人间有a间,双人间有b间,根据题意得:,解得:,答:租住了三人间8间,双人间13间;(2)根据题意得:y=100x+150(50﹣x)=﹣50x+7500(0≤x≤50),(3)因为﹣50<0,所以y随x的增大而减小,故当x满足、为整数,且最大时,即x=48时,住宿费用最低,此时y=﹣50×48+7500=5100<6300,答:一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元.所以住宿费用最低的设计方案为:48人住3人间,2人住2人间.【点评】本题考查二元一次方程组的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的思想解答.23.【分析】(1)由条件易证△ACD≌△BCE,从而得到:BE=AD,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题.(3)以BP为边构造等边△BPM,连接CM,由△ABC与△BPM都是等边三角形,得出AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,易证∠ABP=∠CBM,由SAS证得△ABP≌△CBM,得出AP=CM,∠APB=∠CMB,则CM:PM:PC=3:4:5,推出PC2=CM2+PM2,得出△CMP是直角三角形,得出∠PMC=90°,则∠CMB=∠BMP+∠PMC=150°,即可得出结果.(4)如图4中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.(5)先判断出△DAB≌△EAC,得出BD=CE,∠DBA=∠ECA,进而判断出∠DBC+∠ECB,即可得出结论.(6)根据已知可得△ABC是等腰直角三角形,所以将△ADB绕点A顺时针旋转90°,得到△ACE,则BD=CE,证明△DCE是直角三角形,再利用勾股定理可求CE值.(7)①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.④没有条件证出BO=OE,得出④错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【解答】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.BE=AD,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°,BE=AD.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150°;(4)解:如图4中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴BE=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=∠3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.(5)BD=CE且BD⊥CE;理由如下:∵∠DAE=∠BAC=90°,∴∠DAE+∠BAE=∠BAC+∠BAE.∴∠DAB=∠EAC.在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),∴BD=CE,∠DBA=∠ECA,∵∠ECA+∠ECB+∠ABC=90°,∴∠DBA+∠ECB+∠ABC=90°,即∠DBC+∠ECB=90°,∴∠BPC=180°﹣(∠DBC+∠ECB)=90°,∴BD⊥CE,综上所述:BD=CE且BD⊥CE;(6)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(6)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE=,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.(7)解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°﹣60°﹣60°=60°,。

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。

2020--2021学年上学期人教版 八年级数学试题

2020--2021学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.在预防新冠疫情期间,到公共场所都要佩戴口罩,据了解口罩的规格有两种:儿童款(长14cm)和成人款(长17cm),其中超过标准长度的数量记为正数,不足的数量记为负数.质量监督局检查了四个药店的儿童口罩,结果如下,从长度的角度看,最接近标准的儿童口罩是()A.+0.09B.﹣0.21C.+0.15D.﹣0.062.若|a|=a,则a表示()A.正数B.负数C.非正数D.非负数3.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣34.x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则=D.若=,则x=y5.点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A.(﹣2,3)或(﹣2,﹣3)B.(﹣2,3)C.(﹣3,2)或(﹣3,﹣2)D.(﹣3,2)6.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,0)B.(0,1)C.(﹣1,1)D.(﹣1,﹣2)7.下列属于圆柱体的是()A.B.C.D.8.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.9.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.下列说法:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7;②两边和一角对应相等的两个三角形全等;③如果两个三角形关于某直线成轴对称,那么它们是全等三角形;④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.其中正确的有()A.1个B.2个C.3D.4个11.某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况12.把25枚棋子放入右图的三角形内,那么一定有一个小三角形中至少放入()枚.A.6B.7C.8D.9二.填空题(共6小题)13.如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作千米.14.若x=﹣1为方程x2﹣m=0的一个根,则m的值为.15.点M(﹣2,3)到x轴和y轴的距离之和是.16.个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是.(填序号)三.解答题(共9小题)19.在抗洪抢险过程中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:(单位:千米)15,﹣7,18,9,﹣3,6,﹣8(1)通过计算说明B地在A地的什么位置;(2)已知冲锋舟每千米耗油0.5升,油箱容量为40升,若冲锋舟在救援前将油箱加满,请问该冲锋舟在救援过程中是否还需要补充油?20.把下列各数填在相应的括号内:﹣,0,﹣30,,+20,﹣2.6,π,0.,0.3030030003…(每两个3之间逐次增加一个0).正有理数集合:{…};负数集合:{…};整数集合:{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.23.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.26.甲、乙两种水稻试验品种连续5年的平均单位面积产量(单位:t/hm2)如表,试根据这组数据估计哪一种水稻品种好.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8 27.若从1,2,3,…,n中任取5个两两互素的不同的整数a1,a2,a3,a4,a5,其中总有一个整数是素数,求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据题意可知绝对值最小的即为最接近标准的儿童口罩,即可得出答案.【解答】解:根据题意得:|﹣0.06|<|+0.09|<|+0.15|<|﹣0.21|,故选:D.2.【分析】根据绝对值的意义解答即可.【解答】解:∵|a|=a,∴a为非负数,故选:D.3.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.4.【分析】根据等式的性质一一判断即可.【解答】解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,原变形正确,故此选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,原变形正确,故此选项不符合题意;C、由x=y得出=必须c≠0,当c=0时不成立,故本选项符合题意;D、根据等式的性质2可得出,若=,则x=y,原变形正确,故此选项不符合题意;故选:C.5.【分析】根据题意,判断出点P所在的象限,再根据点到y轴的距离是点的横坐标的绝对值,到x轴的距离是点的纵坐标的绝对值,判断即可.【解答】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(﹣2,3)或(﹣2,﹣3),故选:A.6.【分析】由点A,B,C,D的坐标可得出四边形ABCD为矩形及AB,AD的长,由矩形的周长公式可求出矩形ABCD的周长,结合2019=202×10﹣1可得出细线的另一端在线段AD上且距A点1个单位长度,结合点A的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,四边形ABCD为矩形,∴C矩形ABCD=(3+2)×2=10.∵2019=202×10﹣1,∴细线的另一端在线段AD上,且距A点1个单位长度,∴细线的另一端所在位置的点的坐标是(1,1﹣1),即(1,0).故选:A.7.【分析】根据圆柱体的形状解答即可.【解答】解:A、图形是正方体,不符合题意;B、图形是梯形,不符合题意;C、图形属于圆柱体,符合题意;D、图形是圆,不符合题意;故选:C.8.【分析】根据“面动成体”可知,将长方形沿着长边所在的直线旋转一周,形成的几何体是圆柱,得出判断即可.【解答】解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.9.【分析】利用轴对称画出图形即可.【解答】解:如图所示:,该球最后落入的球袋是4号袋,故选:D.10.【分析】根据三角形的三边关系,全等三角形的判定,等边三角形的判定,轴对称的性质一一判断即可.【解答】解:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7,错误,应该是中线AD的取值范围是1<AD<7.②两边和一角对应相等的两个三角形全等,错误,SSA不一定全等.③如果两个三角形关于某直线成轴对称,那么它们是全等三角形,正确.④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形,正确.故选:B.11.【分析】根据样本抽样的原则要求,逐项进行判断即可.【解答】解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.12.【分析】把4个小三角形看作4个抽屉,把25枚棋子看作25个元素,那么每个抽屉需要放25÷4=6…1,所以每个抽屉需要放6枚,剩余的1枚无论怎么放,总有一个抽屉里至少有6+1=7,所以,至少有一个小三角形内至少要放7枚棋子,即可得出结论.【解答】解:25÷4=6……1,6+1=7(枚),故选:B.二.填空题(共6小题)13.【分析】根据正数和负数表示相反意义的量,向东行驶记为正,可得向西行驶的表示方法.【解答】解:如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作﹣20千米.故答案为:﹣20.14.【分析】把x=﹣1代入方程得1﹣m=0,然后解一元一次方程即可.【解答】解:把x=﹣1代入方程得1﹣m=0,解得m=1.故答案为1.15.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.16.【分析】根据圆柱的体积是同底同高的圆锥的体积的三倍解答即可.【解答】解:因为圆柱的体积是同底同高的圆锥的体积的三倍,所以3个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.故答案为:3.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据题意可得“①在线听课,②在线讨论,⑤在线阅读”合理.【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.三.解答题(共9小题)19.【分析】(1)求出所有正负数之和,可以判断B点位置;(2)求所有正负数的绝对值之和,即为行程总和,在确定所需油量即可求解.【解答】解:(1)15﹣7+18+9﹣3+6﹣8=30(千米),答:B地在A地东面30千米;(2)15+7+18+9+3+6+8=66(千米),66×0.5=33<40,答:不需补充.20.【分析】按照有理数的分类填写即可.【解答】解:正有理数集合:{,+20,0.…}负数集合:{,﹣30,﹣2.6…}整数集合:{0,﹣30,+20…}故答案为:,+20,0.;,﹣30,﹣2.6;0,﹣30,+20.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】(1)先分别解关于x的一次方程得到x=m+1和x=2﹣m,再利用相反数的定义得到m+1+2﹣m=0,然后解关于m的方程即可;(2)把m的值分别代入x=m+1和x=2﹣m中得到两方程的解.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.23.【分析】(1)根据A、B点坐标,代入(m﹣1,)中,求出m和n的值,然后代入2m=8+n检验等号是否成立即可;(2)直接利用“开心点”的定义得出a的值进而得出答案.【解答】解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)结论:AC=CD.想办法证明,AC=CP,CD=CP即可.(2)结论不变,证明方法类似(1).【解答】解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.26.【分析】首先求得平均产量,然后求得方差,进行比较即可.【解答】解:根据表格中的数据求得甲的平均数=(9.8+9.9+10.1+10+10.2)÷5=10;乙的平均数=(9.4+10.3+10.8+9.7+9.8)÷5=10,甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲.因为甲、乙两种水稻单位面积产量的平均数相等,甲种方差小于乙种方差,所以甲种水稻品种好.27.【分析】只有1和它本身两个因数的数,就是质数(或素数).除了1和它本身以外,还有别的因数的数,就是合数.因为5个整数两两互素,它们的约数只能取2、3、5、7、11,又因为是合数,只能是约数的平方.所以可求解.【解答】解:若n≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有一个整数是素数,∴n≤48,在1,2,3,……,48中任取5个两两互素的不同的整数,若都不是素数,则其中至少有四个数是合数,不妨假设,a1,a2,a3,a4为合数,设其中最小的素因数分别为p1,p2,p3,p4,由于两两互素,∴p1,p2,p3,p4两两不同,设p是p1,p2,p3,p4中的最大数,则p≥7,因为a1,a2,a3,a4为合数,所以其中一定存在一个,aj≥p2≥72=49,与n≤48矛盾,于是其中一定有一个是素数,综上所述,正整数n的最大值为48.。

第十二章 全等三角形(基础卷)(解析版)-人教版八年级数学试题

第十二章 全等三角形(基础卷)(解析版)-人教版八年级数学试题

2020-2021学年人教版八年级上册期末真题单元冲关测卷(基础卷)第十二章全等三角形一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2020春•邵阳县期末)如图,OD平分∠AOB,DE⊥AO于点E,DE=4,点F是射线OB上的任意一点,则DF的长度不可能是()A.3B.4C.5D.6【解答】解:过D点作DH⊥OB于H,如图,∵OD平分∠AOB,DE⊥AO,DH⊥OB于H,∴DH=DE=4,∴DF≥4.故选:A.2.(2分)(2020春•扶风县期末)如图,△AOB≌△COD,A和C,B和D是对应顶点,若BO=6,AO=3,AB=5,则CD的长为()A.5B.8C.10D.不能确定【解答】解:∵△AOB≌△COD,∴CD=AB=5,故选:A.3.(2分)(2020春•沙坪坝区校级期末)下列说法正确的是()A.相等的两个角是对顶角B.两条直线被第三条直线所截,同旁内角互补C.若两个三角形全等,则它们的面积也相等D.过一点有且只有一条直线与已知直线平行【解答】解:A、对顶角相等,故原题说法错误,故此选项不合题意;B、两条平行线被第三条直线所截,同旁内角互补,故原题说法错误,故此选项不合题意;C、若两个三角形全等,则它们的面积也相等,故原题说法正确,故此选项符合题意;D、过直线外一点有且只有一条直线与已知直线平行,故原题说法错误,故此选项不合题意;故选:C.4.(2分)(2020春•舞钢市期末)如图,∠ABD=∠EBC,BC=BD,再添加一个条件,使得△ABC≌△EBD,所添加的条件不正确的是()A.∠A=∠E B.BA=BE C.∠C=∠D D.AC=DE【解答】解:∵∠ABC=∠EBD,BC=BD,∴当添加BA=BE时,可根据“SAS”判断△ABC≌△EBD;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△EBD;当添加∠A=∠E时,可根据“AAS”判断△ABC≌△EBD.故选:D.5.(2分)(2020春•抚州期末)下列各图中a、b、c为△ABC的边长,根据图中标注数据,判断甲、乙、丙、丁四个三角形和如图△ABC不一定全等的是()A.B.C.D.【解答】解:∵∠B=70°,∠C=50°,∴∠A=180°﹣70°﹣50°=60°,根据“SAS”判断图乙中的三角形与△ABC全等;根据“AAS”判断图丙中的三角形与△ABC全等;根据“SSS”判断图丙中的三角形与△ABC全等.根据“SSA”无法判断图甲中的三角形与△ABC全等.故选:A.6.(2分)(2020春•商河县期末)如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=6,OB=2,则OC的长为()A.2B.3C.4D.6【解答】解:∵∠AOC=∠BOD,∴∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD=2,∵AD=6cm,∴OA =AB ﹣OD =6﹣2=4,∴OC =OA =4.故选:C .7.(2分)(2019秋•曹县期末)如图,△AOB 的外角∠CAB ,∠DBA 的平分线AP ,BP 相交于点P ,PE ⊥OC 于E ,PF ⊥OD 于F ,下列结论:(1)PE =PF ;(2)点P 在∠COD 的平分线上;(3)∠APB =90°﹣∠O ,其中正确的有( )A .0个B .1个C .2个D .3个 【解答】解:(1)证明:作PH ⊥AB 于H ,∵AP 是∠CAB 的平分线,∴∠P AE =∠P AH ,在△PEA 和△PHA 中,{∠PPP =∠PPP =90°PPPP =PPPP PP =PP,∴△PEA ≌△PHA (AAS ),∴PE =PH ,∵BP 平分∠ABD ,且PH ⊥BA ,PF ⊥BD ,∴PF =PH ,∴PE =PF ,∴(1)正确;(2)与(1)可知:PE =PF ,又∵PE ⊥OC 于E ,PF ⊥OD 于F ,∴点P 在∠COD 的平分线上,∴(2)正确;(3)∵∠O +∠OEP +∠EPF +∠OFP =360°,又∵∠OEP+∠OFP=90°+90°=180°,∴∠O+∠EPF=180°,即∠O+∠EP A+∠HP A+∠HPB+∠FPB=180°,由(1)知:△PEA≌△PHA,∴∠EP A=∠HP A,同理:∠FPB=∠HPB,∴∠O+2(∠HP A+∠HPB)=180°,即∠O+2∠APB=180°,,∴∠APB=90°−PP2∴(3)错误;故选:C.8.(2分)(2020春•青岛期末)如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD=6,则图中阴影部分的面积为()A.12B.20C.24D.48【解答】解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,∵BC=8,∴BD=4,∵AB=AC,BD=DC,∴AD⊥BC,∴EB=EC,FB=FC,∵EF=EF,∴△BEF≌△CEF(SSS)∴S△BEF=S△CEF,∵AD=6,∴S阴影=S△ADB=12PP⋅PP=12×4×6=12.故选:A.9.(2分)(2020春•锦州期末)如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB 互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A.8B.6C.5D.4【解答】解:∵BE和CE分别平分∠ABC和∠BCD,∴∠EBC=12PABC,∠ECB=12PDCB,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠EBC+∠ECB=12×180°=90°,∴∠BEC=180°﹣(∠EBC+∠ECB)=90°,要使PE取最小值,只要BC最小即可,此时BC⊥AB,BC⊥CD,∠PBE=∠PCE=45°,∴BE=CE,即△CEB是等腰直角三角形,当PE⊥BC时,PE最短,∴P为BC的中点,∵∠BEC=90°,BC,∴PE=12当BC⊥CD时,BC最小,此时BC=AD=8,×8=4,∴PE最小值是12故选:D.10.(2分)(2020春•涪城区期末)如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'【解答】解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',可得:CD=C'D',A、下滑过程中,CC'与DD'不一定相等,说法错误;B、下滑过程中,当△OCD与△OD'C'全等时,CC'=DD',说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC'=DD',说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD'C'全等时,一定存在某个位置使得CC'=DD',说法正确;故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019秋•宿松县校级期末)已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件AC=BD(答案不唯一)就可以判断△ABC≌△BAD.【解答】解:添加AC=BD(答案不唯一).,理由:∵∠C=∠D=90°,∴△ACB和△BDA都是直角三角形,在Rt△ABC和Rt△BAD中{PP=PP PP=PP,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD(答案不唯一).12.(2分)(2020春•翼城县期末)如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE 的长是7cm.【解答】解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.13.(2分)(2020春•河南期末)如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为100°.【解答】解:∵△ABC ≌△ADE ,∴∠D =∠B =40°,∴∠BED =∠A +∠D =60°+40°=100°,故答案为:100°.14.(2分)(2020春•抚州期末)如图,在△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =2,AB =9,则△ABD 的面积为 9 .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD 平分∠ABC ,又∵DE ⊥AB ,DC ⊥BC ,∴DE =DC =2,∴△ABD 的面积=12•AB •DE =12×9×2=9.故答案为:9.15.(2分)(2020春•漳州期末)如图,在△ABC 中,∠B =45°,∠C =30°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E .若BD =√2,则CD 的长为 2 .【解答】解:过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE =DF ,在Rt △BED 中,∠B =45°,∴2DE 2=BD 2=(√2)2=2,∴DE 2=1,∴DF =DE =1,在Rt △CDF 中,∠C =30°,∴CD =2DF =2,故答案为:2.16.(2分)(2020春•天桥区期末)如图,AD 、BC 表示两根长度相同的木条,若O 是AD 、BC 的中点,经测量AB =9cm ,则容器的内径CD 为 9 cm .【解答】解:由题意知:OA =OD ,∠AOB =∠DOC ,OB =OC ,在△AOB 和△DOC 中,{PP =PP PPPP =PPPP PP =PP,∴△AOB ≌△DOC (SAS ),∴CD =AB =9cm .故答案为:9.17.(2分)(2020春•崇川区校级期末)在△ABC 中,AB =AC ,∠ABC =∠ACB ,CE 是高,且∠ECA =36°,平面内有一异于点A ,B ,C ,E 的点D ,若△ABC ≌△CDA ,则∠DAE 的度数为 117°、27°、9°和81° .【解答】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.18.(2分)(2019秋•汾阳市期末)如图,在△ABC中,点E、F分别是AB、AC边上的点,EF∥BC,点D在BC边上,连接DE、DF,请你添加一个条件BD=EF(或∠BED=∠EDF或DF∥AB或∠B=∠EFD),使△BED≌△FDE.【解答】解:由题意:DE=ED,∠DEF=∠EDB,∴根据SAS可以添加DB=EF,根据AAS,ASA可以添加∠BED=∠EDF或DF∥AB或∠B=∠EFD,故答案为BD=EF(或∠BED=∠EDF或DF∥AB或∠B=∠EFD)19.(2分)(2019秋•肥东县期末)如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=10或20时,以点A,P,Q为顶点的三角形与△ABC全等.【解答】解:∵AX⊥AC,∴∠P AQ=90°,∴∠C=∠P AQ=90°,分两种情况:①当AP=BC=10时,在Rt△ABC和Rt△QP A中,{PP=PP,PP=PP∴Rt△ABC≌Rt△QP A(HL);①当AP=CA=20时,在△ABC和△PQA中,{PP=PP,PP=PP∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时,△ABC与△APQ全等;故答案为:10或20.20.(2分)(2019秋•永州期末)如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为4.【解答】解:延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,{PP=PPPPPP=PPPP PP=PP,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,{PP=PPPPPP=PPPP PP=PP,∴△MDN≌△EDN(SAS),∴MN =EN =CN +CE ,∴△AMN 的周长=AM +MN +AN =AM +CN +CE +AN =AM +AN +CN +BM =AB +AC =4;故答案为:4.三.解答题(共9小题,满分60分)21.(6分)(2020春•龙泉驿区期末)已知:如图,点E ,D ,B ,F 在同一条直线上,AD ∥CB ,∠E =∠F ,DE =BF .求证:AE =CF .(每一行都要写依据)【解答】证明:∵AD ∥CB (已知),∴∠ADB =∠CBD (两直线平行,内错角相等),∴∠ADE =∠CBF (等角的补角相等).在△ADE 和△CBF 中,{∠PPP =∠PPP PP =PPPP =PP,∴△ADE ≌△CBF (ASA ),∴AE =CF (全等三角形的对应边相等).22.(6分)(2019秋•裕安区期末)如图,△ACF ≌△ADE ,AD =12,AE =5,求DF 的长.【解答】解:∵△ACF ≌△ADE ,AD =12,AE =5,∴AC =AD =12,AE =AF =5,∴DF =12﹣5=7.23.(6分)(2019秋•孝义市期末)已知:如图,△ABC ≌△DEF ,AM 、DN 分别是△ABC 、△DEF 的对应边上的高.求证:AM =DN .【解答】方法一:证明:∵△ABC ≌△DEF ,∴AB =DE ,∠B =∠E ,∵AM ,DN 分别是△ABC ,△DEF 的对应边上的高,即AM ⊥BC ,DN ⊥EF ,∴∠AMB =∠DNE =90°,在△ABM 和△DEN 中{∠PPP =∠PPP PP =PP PP =PP,∴△ABM ≌△DEN (AAS ),∴AM =DN .方法二:∵△ABC ≌△DEF ,∴BC =EF ,∵AM 、DN 分别是△ABC 、△DEF 的对应边上的高,∴BC •AM =EF •DN ,∴AM=DN.24.(6分)(2020春•邵阳县期末)如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.(1)求证:BE=FD;(2)若AC=10,AD=8,求四边形ABCF的面积.【解答】(1)证明:∵AC平分∠BAD,CE⊥AB,CD⊥AD,∴CD=CE,在Rt△CBE和Rt△CFD中,{PP=PP,PP=PP∴Rt△CBE≌Rt△CFD(HL),∴BE=FD;(2)解:在Rt△ACD中,∵AC=10,AD=8,∴CD=√102−82=6,∵AC=AC,CD=CE,∴Rt△ACD≌Rt△ACE(HL),∴S△ACD=S△ACE,∵Rt△CBE≌Rt△CFD,∴S△CBE=S△CFD,×6×8=48.∴四边形ABCF的面积=S四边形AECD=2S△ACD=2×1225.(6分)(2020春•舞钢市期末)如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足AB=CD,AE=DF,CE=BF,连接AF;(1)∠B与∠C相等吗?请说明理由.(2)若∠B=40°,∠DFC=20°,若AF平分∠BAE时,求∠BAF的度数.【解答】解:(1)∠B =∠C ,理由如下:∵CE =BF ,∴BE =CF ,在△AEB 和△DFC 中,{PP =PP PP =PP PP =PP,∴△AEB ≌△DFC (SSS ),∴∠B =∠C ;(2)∵△AEB ≌△DFC ,∴∠AEB =∠DFC =20°,∴∠EAB =180°﹣∠B ﹣∠AEB =120°,∵AF 平分∠BAE ,∴∠BAF =12∠BAE =60°. 26.(6分)(2020春•太平区期末)如图,AB =AC ,AD =AE ,∠BAC =∠DAE =50°,点D 在BC 的延长线上,连接EC .(1)①求证:BD =CE ;①求∠ECD 的度数;(2)当∠BAC =∠DAE =α时,请直接写出∠ECD 的度数.【解答】证明:(1)①∵AB =AC ,AD =AE ,∠BAC =∠DAE =50°,∴∠ABC =∠ACB =65°,∠ADE =∠AED =65°,∠BAD =∠CAE ,在△BAD 和△CAE 中,{PP =PP PPPP =PPPP PP =PP,∴△BAD ≌△CAE (SAS ),∴BD =CE ;①∵△BAD ≌△CAE ,∴∠ACE =∠ABC =65°,∴∠ECD =180°﹣∠ACB ﹣∠ACE =50°,(2)∵∠BAC =∠DAE =α,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{PP =PP PPPP =PPPP PP =PP,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD ,∵∠BAC =α,AB =AC ,∴∠ABC =∠ACB =180°−P 2, ∴∠ACE =180°−P 2,∴∠ECD =180°﹣∠ACB ﹣∠ACE =α.27.(8分)(2020春•竞秀区期末)已知OM 是∠AOB 的平分线,点P 是射线OM 上一点,点C 、D 分别在射线OA 、OB 上,连接PC 、PD .(1)如图①,当PC ⊥OA ,PD ⊥OB 时,则PC 与PD 的数量关系是 PC =PD .(2)如图①,点C 、D 在射线OA 、OB 上滑动,且∠AOB =90°,当PC ⊥PD 时,PC 与PD 在(1)中的数量关系还成立吗?说明理由.【解答】解:(1)PC =PD ,理由:∵OM 是∠AOB 的平分线,∴PC =PD (角平分线上点到角两边的距离相等),故答案为:PC =PD ;(2)证明:过点P 点作PE ⊥OA 于E ,PF ⊥OB 于F ,如图,∴∠PEC =∠PFD =90°,∵OM 是∠AOB 的平分线,∴PE =PF ,∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°﹣90°﹣90°=180°,而∠PDO +∠PDF =180°,∴∠PCE =∠PDF ,在△PCE 和△PDF 中{∠PPP =∠PPPPPPP =PPPP PP =PP,∴△PCE ≌△PDF (AAS ),∴PC =PD .28.(8分)(2019秋•道外区期末)如图,△ABC 中,AB =AC ,点D 在AB 边上,点E 在AC 的延长线上,且CE =BD ,连接DE 交BC 于点F .(1)求证:EF =DF ;(2)过点D 作DG ⊥BC ,垂足为G ,求证:BC =2FG .【解答】证明:(1)过点D 作DH ∥AC ,DH 交BC 于H ,如图1所示: 则∠DHB =∠ACB ,∠DHF =∠ECF ,∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠DHB ,∴BD =HD ,∵CE =BD ,∴HD =CE ,在△DHF 和△ECF 中,{∠PPP =∠PPPPPPP =PPPP PP =PP,∴△DHF ≌△ECF (AAS ),∴EF =DF ;(2)如图2,由(1)知:BD =HD ,∵DG ⊥BC ,∴BG =GH ,由(1)得:△DHF ≌△ECF ,∴HF =CF ,∴GH +HF =12BH +12CH =12BC , ∴BC =2FG .29.(8分)(2020春•南岸区期末)如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD =∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.【解答】解:(1)∵∠B=70°,AB=AD,∴∠ADB=∠B=70°,∵∠B+∠BAD+∠ADB=180°,∴∠BAD=40°,∵∠CAE=∠BAD,∴∠CAE=40°,∵AE∥BC,∴∠C=∠CAE=40°;(2)AD平分∠BDE,理由是:∵∠BAD =∠CAE ,∴∠BAD +∠CAD =∠CAE +∠CAD , 即∠BAC =∠DAE ,在△BAC 和△DAE 中,{PP =PP PPPP =PPPP PP =PP,∴△BAC ≌△DAE (SAS ) ∴∠B =∠ADE ,∵∠B =∠ADB ,∴∠ADE =∠ADB ,即AD 平分∠BDE .。

2020-2021学年山东省济南市高新区八年级(上)期中数学试卷(附答案详解)

2020-2021学年山东省济南市高新区八年级(上)期中数学试卷(附答案详解)

2020-2021学年山东省济南市高新区八年级(上)期中数学试卷1. 16的算术平方根是( )A. −4B. ±4C. 4D. 2562. 若电影院中“5排8号”的位置,记作(5,8),丽丽的电影票是“3排1号”.则下列有序数对表示丽丽在电影院位置正确的是( )A. (3,1)B. (1,3)C. (13,31)D. (31,13)3. 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是( )A. 物体B. 速度C. 时间D. 空气4. 下列各组数中是方程x +2y =17的解的是( )A. {x =1y =7B. {x =6y =5C. {x =−3y =10D. {x =36y =−10 5. 下列各式中,是最简二次根式的是( )A. √12B. √18C. √5D. √0.46. 如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(−1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是( )A. (3,1)B. (−3,−1)C. (1,−3)D. (3,−1)7. 方程组{2x +y =◼x +y =3的解为{x =2y =◼,则被遮盖的前后两个数分别为( ) A. 1、2 B. 1、5 C. 5、1 D. 2、48. 已知点(m,n)在第二象限,则直线y =nx +m 图象大致是下列的( )A. B. C. D.9.点A在数轴上表示的数为−√15,点B在数轴上表示的数为√7,则A、B之间表示整数的点有()A. 5个B. 6个C. 7个D. 8个10.正比例函数y=kx,当x每增加3时,y就减小2,则k的值为()A. 32B. −32C. 23D. −2311.A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(ℎ)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有()A. 1个B. 2个C. 3个D. 4个12.已知,如图点A(1,1),B(2,−3),点P为x轴上一点,当|PA−PB|最大时,点P的坐标为()A. (12,0) B. (54,0) C. (−12,0) D. (1,0)13.将一点A(1,2)向右平移2个单位得到一个对应点A′,则点A′的坐标是______.14.化简:√18×√12=______.15.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶,在行使过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0123y(升)100928476由表格中y与t的关系可知,当汽车行驶______小时,油箱的余油量为40升.16.若|a+b−1|+(a−b+3)2=0,则a2−b2=______.17.如图,一次函数y=kx+b的图象经过A(1,2),B(0,1)两点,与x轴交于点C,则△AOC的面积为______.18. 如图,直线L :y =−12x +1分别与x 、y 轴交于M 、N 两点,若在x 轴上存在一点P ,使△PMN 是以MN 为底的等腰三角形,则点P 的坐标是______ .19. 计算:2√12−√27+√8+√12.20. 计算:(√3+√2)(√3−√2)+(√3+√2)2.21. 解方程组:{2x +y =33x −5y =11.22.同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,下面让我们在几个具体的图形中认识一下无理数.(1)如图1,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(开始滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是______ ,它是一个无理数.(2)如图2,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=______ .(3)你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为√10的格点线段吗?(4)请你在数轴上找到表示−√5的点.23.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,形如√a±2√b,如果你能找到两个数m、n,使m2+n2=a,且mn=√b,则√a±2√b可变形为√m2+n2±2mn=√(m±n)2=|m±n|,从而达到化去一层根号的目的.例如:√3−2√2=√1+2−2√2=√12+(√2)2−2×1×√2=√(1−√2)2= |1−√2|=√2−1仿照上例完成下面各题:①填上适当的数:√13−2√42=√6+7−2×√6×√7=√()2=|______ |=______ ;②试将√8+2√15化简.24.如图,已知直线1经过点A(0,−1)与点P(2,3).(1)求直线1的表达式;(2)若在y轴上有一点B,使△APB的面积为5,求点B的坐标.25.某边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.(1)求l1、l2的函数解析式;(2)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?若能,请求出此时B离海岸的距离:若不能,请说明理由.26.【定义】若线段AB上所有的点到x轴的距离最大值为W,W就叫线段AB的界值,记作W AB.【理解】如图1,线段AB上所有的点到x轴的最大距离是3,则线段AB的界值W AB= 3.【应用】(1)如图2,A(−1,−3),B(2,−1),C(−1,1),①w AB=______ .②平移线段AB,使点A与点C重合,平移后线段的界值w为______ ;【拓展】(2)如图3,A(−3,−7),B(1,−3),将线段AB向上平移m(m>0)个单位长度到线段CD.①当5≤m≤6时,则W CD的取值范围为______ ;②当m>5时,用含m的式子表示W CD;③当3≤W CD≤4时,求m的取值范围.27.平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于点B、A.(1)点C与点A关于x轴对称,求点C坐标和直线BC的解析式;(2)在(1)的条件下,如图1,直线BC与直线y=−x交于E点,点P为y轴上一点,PE=PB,求P点坐标;(3)在(1)的条件下,如图2,点P为y轴上一点,∠OEB=∠PEA,直线EP与直线AB交于点M,求M点的坐标.答案和解析1.【答案】C【解析】解:16的算术平方根是:√16=4.故选:C.16的算术平方根是√16,据此求解即可.此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.2.【答案】A【解析】解:∵“5排8号”的位置,记作(5,8),∴丽丽的电影票是“3排1号”,记作(3,1).故选:A.由题意可得:第一个数字表示“排”,第二个数字表示“号”,据此即可解答问题.此题考查了坐标确定位置,正确理解数对代表的意义是解题关键.3.【答案】C【解析】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选:C.根据函数的定义解答.函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.4.【答案】C【解析】解:A、代入方程,得左边=1+14=15≠右边,不是方程的解;B、代入方程,得左边=6+10=16≠右边,不是方程的解;C、代入方程,得左边=−3+20=17=右边,是方程的解;D、代入方程,得左边=36−20=16≠右边,不是方程的解.故选:C.本题较简单,只要用代入法把x,y的值一一代入,根据解的定义判断即可.考查了二元一次方程的解,解题关键是把四对数值分别代入原方程,验证等号左右两边的值是否相等,使方程左右两边相等的x和y的值就是符合方程的解.5.【答案】C【解析】解:A、√12=√22,被开方数含分母,不是最简二次根式;B、√18=√9×2=3√2,被开方数中含能开得尽方的因数,不是最简二次根式;C、√5是最简二次根式;D、√0.4=√25=√105,被开方数含分母,不是最简二次根式;故选:C.根据最简二次根式的概念判断即可.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.6.【答案】A【解析】【分析】本题考查了坐标与图形变化−对称,关于y轴对称的点的坐标:横坐标互为相反数,纵坐标相等.根据A点坐标,可得C点坐标,根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:由A点坐标,得C(−3,1).由翻折,得C′与C关于y轴对称,C′(3,1).故选:A.7.【答案】C【解析】【分析】本题考查了解二元一次方程组,利用方程组的解满足每个方程即可.根据方程组的解满足方程组中的每个方程,代入求值可求出被遮盖的前后两个数.【解答】解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1,故选C.8.【答案】A【解析】解:∵点(m,n)在第二象限,∴m<0,n>0,∴直线y=nx+m在一、三、四象限.故选A.根据点在第二象限可得出m<0、n>0,结合一次函数图象与系数的关系可得出直线y=nx+m在一、三、四象限,此题得解.本题考查了一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.9.【答案】B【解析】解:因为√9<√15<√16,所以3<√15<4,所以−4<−√15<−3,又因为2<√7<3,所以A、B之间的整数有−3,−2,−1,0,1,2,故选:B.估算−√15和√7的大小,即可得出答案.本题考查数轴表示数以及无理数的估算,理解数轴表示数的意义以及无理数的估算是解决问题的前提.10.【答案】D【解析】【分析】本题考查了待定系数法求正比例函数的解析式,由于自变量增加3,函数值相应地减少2,则y−2=k(x+3),然后展开整理即可得到k的值.【解答】解:根据题意得y−2=k(x+3),y−2=kx+3k,而y=kx,.所以3k=−2,解得k=−23故选:D.11.【答案】B【解析】解:由图象可得,甲始终是匀速行进,乙的行进不是匀速的,故①正确;乙用了5−0.5=4.5个小时到达目的地,故②错误;乙比甲迟出发0.5小时,故③正确;甲在出发不到5小时后被乙追上,故④错误;故选:B.根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,本题得以解决.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.12.【答案】A【解析】【分析】此题考查了轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.解题的关键是找到P点,注意数形结合思想与方程思想的应用.作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC 的解析式,继而求得点P 的坐标.【解答】解:作A 关于x 轴对称点C ,连接BC 并延长交x 轴于点P ,∵A(1,1),∴C 的坐标为(1,−1),连接BC ,设直线BC 的解析式为:y =kx +b ,∴{k +b =−12k +b =−3, 解得:{k =−2b =1, ∴直线BC 的解析式为:y =−2x +1,当y =0时,x =12,∴点P 的坐标为:(12,0),∵当B ,C ,P 不共线时,根据三角形三边的关系可得:|PA −PB|=|PC −PB|<BC , ∴此时|PA −PB|=|PC −PB|=BC 取得最大值.故选A . 13.【答案】(3,2)【解析】解:将一点A(1,2)向右平移2个单位得到一个对应点A′,则点A′的坐标是(1+2,2)即(3,2),故答案为:(3,2).根据点的平移方法可得答案.此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.14.【答案】3【解析】【分析】此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.直接利用二次根式的性质计算得出答案.【解答】解:原式=√18×12=√9=3.故答案为3. 15.【答案】7.5【解析】解:由题意可得:y =100−8t ,当y =40时,40=100−8t解得:t =7.5.故答案为:7.5.表格可知,开始油箱中的油为100L ,每行驶1小时,油量减少8L ,据此可得y 与t 的关系式.本题考查了函数关系式.注意贮满100L 汽油的汽车,最多行驶的时间就是油箱中剩余油量为28升时的t 的值.16.【答案】−3【解析】解:由题意可知:{a +b −1=0a −b +3=0, 解得:{a =−1b =2, ∴a 2−b 2=(−1)2−22=−3.故答案为:−3.根据非负数的性质以及方程组的解法即可求出答案.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.【答案】1【解析】解:将A(1,2),B(0,1)代入y =kx +b ,得:{k +b =2b =1, 解得:{k =1b =1, ∴直线AB 的解析式为y =x +1.当y =0时,x +1=0,解得:x =−1,∴点C 的坐标为(−1,0),OC =1,∴S △AOC =12OC ⋅y A =12×1×2=1. 故答案为:1.根据点A ,B 的坐标,利用待定系数法可求出直线AB 的解析式,代入y =0求出与之对应的x 值,进而可得出点C 的坐标及OC 的长,再利用三角形的面积公式即可求出△AOC 的面积.本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,根据点A ,B 的坐标,利用待定系数法求出直线AB 的解析式是解题的关键.18.【答案】(34,0)【解析】解:∵直线L :y =−12x +1分别与x 、y 轴交于M 、N两点,∴令y =0,求得x =2,令x =0,求得y =1,∴M(2,0),N(0,1),∴MN =√22+12=√5,作MN 的垂直平分线PQ ,交x 轴于P ,交MN 于Q ,则△PMN 是以MN 为底的等腰三角形,∴QM =√52, ∵∠OMN =∠QMP ,∠MON =∠PQM =90°,∴△PQM∽△NOM ,∴PM MN =QM OM ,即√5=√522, ∴PM =54, ∴OP =2−54=34,∴P(34,0), 故答案为(34,0).作MN 的垂直平分线PQ ,交x 轴于P ,交MN 于Q ,根据垂直平分线的性质即可证得△PMN 是以MN 为底的等腰三角形,通过证得△PQM∽△NOM ,求得PM ,进而求得OP ,即可得到P 的坐标.本题考查了一次函数图象上点的坐标特征,等腰三角形的判定,通过三角形相似求得PM 的长是解题的关键.19.【答案】解:原式=√2−3√3+2√2+2√3=3√2−√3.【解析】首先化简每一个二次根式,然后再合并同类二次根式即可.此题主要考查了二次根式的加减法,关键是二次根式加减法计算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.20.【答案】解:原式=3−2+3+2√6+2=6+2√6.【解析】利用平方差公式和完全平方公式计算.本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21.【答案】解:原方程组为{2x +y =3①3x −5y =11②, ①×5+②,得13x =26,∴x =2. 将x =2代入①,得y =−1.∴原方程组的解为{x =2y =−1.【解析】解二元一次方程组时的基本方法:代入消元法,加减消元法,此题可用代入法,也可用消元法.本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法之前要对二元一次方程进行整理,让它们其中的一个系数相同,或互为相反数.22.【答案】π √5 【解析】解:(1)OO′=π⋅1=π,故答案为:π.(2)∵∠C =90°,AC =2,BC =1,∴AB =√AC 2+BC 2=√22+12=√5.故答案为:√5.(3)如图,线段AB 就是要画一条长为√10的线段.②如图,点A 即为所求.(1)由(1)结论我们可以得到数轴上点O′代表的实数就是无理数π;(2)直接运用勾股定理求出AB 即可;(3)根据√10=√12+32,结合勾股定理解决问题即可.(4)在数轴上做一个两直角边分别为2,1的直角三角形;以原点为圆心,所画直角边的斜边为半径画弧,交数轴的负半轴于一点A ,这点就是所求的表示−√5的点.本题属于圆综合题,考查的知识点是实数与数轴,关键运用勾股定理求出所表示的无理数,无理数也可以在数轴上表示出来,一般应把它整理为直角边长为有理数的斜边的长.23.【答案】√7−√6 √7−√6【解析】解:①√13−2√42=√6+7−2×√6×√7=√(√7−√6)2=|√7−√6| =√7−√6; 故答案为:√7−√6;√7−√6;②原式=√(√5+√3)2 =√5+√3.直接利用完全平方公式将原式变形得出答案.此题主要考查了二次根式的性质与化简,正确运用乘法公式是解题关键.24.【答案】解:(1)设直线l 表达式为y =kx +b(k,b 为常数且k ≠0),把A(0,−1),P(2,3)代入得:{b =−12k +b =3, 解得:{k =2b =−1, 则直线l 表达式为y =2x −1;(2)设B 坐标为(0,m),则AB =|1+m|,∵△APB 的面积为5,∴12AB ⋅x P 横坐标=5,即12|1+m|×2=5, 整理得:|1+m|=5,即1+m =5或1+m =−5,解得:m =4或m =−6,则B 坐标为(0,4)或(0,−6).【解析】(1)利用待定系数法求出直线l 的表达式即可;(2)设B(0,m),把出AB 的长,由P 的横坐标乘以AB 的一半表示出三角形APB 面积,由已知面积求出m 的值,即可确定出B 坐标.此题考查了待定系数法求一次函数解析式,以及三角形的面积,熟练掌握待定系数法是解本题的关键.25.【答案】解:(1)设l 1的函数解析式是s =kt ,10k =5,得k =0.5,即l 1的函数解析式是s =0.5t ,设l 2的函数解析式时s =at +b ,{b =510a +b =7,得{a =0.2b =5, 即l 2的函数解析式是s =0.2t +5;(2){s =0.5t s =0.2t +5,得{t =503s =253, ∵253<12,∴B 能追上A ,答:B 能在A 逃入公海前将其拦截,此时B 离海岸的距离是253海里.【解析】(1)根据函数图形中的数据,可以分别求得l 1、l 2的函数解析式;(2)根据(1)中的函数解析式,可以得到B 能否在A 逃入公海前将其拦截,并说明理由. 本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 26.【答案】3 3 2≤W CD ≤3【解析】解:【应用】(1)①如图2,∵A(−1,−3),B(2,−1),C(−1,1),而3>1,∴w AB =3.故答案为:3;②∵平移线段AB ,使点A(−1,−3)与点C(−1,1)重合,∴平移规律是:向上平移4个单位长度,∴B(2,−1)的对应点为(2,3),∴平移后线段的界值w 为3.故答案为:3;【拓展】(2)如图3,A(−3,−7),B(1,−3),将线段AB 向上平移m(m >0)个单位长度到线段CD .假设点A 与点C 重合,点B 与点D 重合,则C(−3,−7+m),D(1,−3+m). ①∵5≤m ≤6,∴−2≤−7+m ≤−1,2≤−3+m ≤3,∴W CD 的取值范围为2≤W CD ≤3.故答案为:2≤W CD ≤3;②∵m >5,∴−7+m >−2,−3+m >2,∴W CD =−3+m ;③当3≤W CD ≤4时,如图,m 的取值范围是3≤m ≤4或6≤m ≤7.【应用】(1)①根据线段AB 的界值的定义即可求解;②由平移后点A(−1,−3)的对应点为C(−1,1),得出平移规律,根据规律得到B(2,−1)的对应点坐标,进而求出平移后线段的界值;【拓展】(2)将线段AB 向上平移m(m >0)个单位长度到线段CD.假设点A 与点C 重合,点B 与点D 重合,根据平移规律求出C(−3,−7+m),D(1,−3+m).①当5≤m ≤6时,利用不等式的性质得出−2≤−7+m ≤−1,2≤−3+m ≤3,再根据线段的界值的定义即可求出W CD 的取值范围;②当m >5时,利用不等式的性质得出−7+m >−2,−3+m >2,再根据线段的界值的定义即可求出W CD ;③根据线段的界值的定义画出3≤W CD ≤4时CD 的位置,即可求出m 的取值范围. 本题考查了坐标与图形变化−平移,一次函数图象与几何变换,新定义,理解线段AB 的界值的定义以及利用数形结合思想是解题的关键.27.【答案】解:(1)∵直线y =2x +4①与x 轴、y 轴分别交于点B 、A .∴A(0,4),B(−2,0),∵直线AB 与直线BC 关于x 轴对称,∴C(0,−4),设直线BC 的解析式为y =kx +b ,则{−2k +b =0b =−4,解得{k =−2b =−4,∴直线BC 的解析式为y =−2x −4②;(2)将②与y =−x 联立并解得{x =−4y =4, ∴E(−4,4),∴AE ⊥AO ,设OP =a ,AP =4−a ,在Rt △BOP 和Rt △EAP 中,BP 2=4+a 2,PE 2=16+(4−a)2,∵PE =PB ,∴4+a 2=16+(4−a)2,解得a =3.5.∴P(0,3.5);(3)①如图,当点P 在点A 的下方,∵∠OEB =∠PEA ,∠AEO =45°,∴∠PEB =45°,过点B 作BN ⊥BE 交直线EP 于点N ,过点N 作NQ ⊥OB 于Q ,过点E 作EH ⊥OB 于点H ,∴△EBN 为等腰直角三角形,∴EB =BN ,∵∠BEH +∠EBH =90°,∠EBH +∠NBQ =90°,∴∠BEH =∠NBQ ,又∵∠EHB =∠BQN =90°,∴△EHB≌△BQN(AAS),∴NQ =BH =2,BQ =EH =4,∴N(2,2),由点E 、N 的坐标得,直线EN 的表达式为y =−13x +83③,联立①③并解得{x =−47y =207, 即M(−47,207); ②P 点在A 点的上方,由①知,直线EN 的表达式为y =−13x +83,令x =0,则y =83,故OP =83,则AP =43,∴OP =163,则点P(0,163), 由点E 、P 的坐标得,直线EP 的解析式为y =13x +163④,联立①④并解得{x =0.8y =5.6, ∴M(0.8,5.6).综合以上可得点M 的坐标为(−47,207)或(0.8,5.6).【解析】(1)由轴对称的性质得出点C 的坐标,再由待定系数法即可求BC 的函数表达式;(2)求出点E 的坐标为(−4,4),设OP =a ,AP =4−a ,由勾股定理得出4+a 2=16+(4−a)2,解得a =3.5.则可得出答案;(3)分两种情况:当点P 在点A 的下方或P 点在A 点的上方,求出直线EP 的解析式,解方程组可求出答案.本题为一次函数的综合应用,考查了轴对称的性质,函数图象与坐标轴的交点,待定系数法,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,熟练掌握待定系数法是解题的关键.。

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。

山东省济宁市邹城市2020-2021学年度八年级第一学期期末检测数学试题

山东省济宁市邹城市2020-2021学年度八年级第一学期期末检测数学试题

2020—2021学年度第一学期期末检测八年级数学试题第I 卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分。

)1.下列图形中,不是轴对称图形的是( )2.下列运算中,正确的是( )A.2a+3b=5abB.3x 2÷2x=xC.(x 2)3=x 6D.(x+y 2)2=x 2+y 43. 人体中枢神经系统中约含有一千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052 米。

将0.000052用科学记数法表示为( )A.5.2×10-6B.5.2×10-5C.52×10-6D.52×10-54.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm, 4cm , 8cmB.8cm, 7cm ,15cmC.13cm, 12cm , 20cmD.5cm, 5cm ,11cm5.下列各式中从左到右的变形中,是因式分解的是( )A. (a+3)(a-3)=a 2-9B. a 2-4a-5= a(a-4)-5C. a 2-b 2=(a+b)(a-b)D. a 2-4a-5=a(a-4-a 5) 6.如果分式33+-x x 的值为0,那么x 的值是( ) A. x=3 B. x=3± C. 3≠x D.x=-37.如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙8. 把分式22yx x y -中的x ,y 都扩大到原来的2倍,则分式的值( ) A.不变 B.扩大到原来的2倍C.扩大到原来的4倍D.缩小到原来的219.如图,AB=BC=CD=DE=EF,如果∠DEF=60°,则∠A 的度数为( )A.20°B.15°C.12°D.10°10.疫情期间,我市某学校用4200元钱到商场去购买“84”消毒液,经过协商议价,每瓶便宜1元,结果比用原价多买了140瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为( ) A.140142004200=--x x B.140420014200=--x x C.114042004200=--x x D.142001404200=--xx第Ⅱ卷(非选择题 共70分)二、填空题(本大题共8个小题,每小题3分,共24分)11.六边形的内角和等于______________。

2020--2021 学年上学期人教版 八年级数学试卷

2020--2021 学年上学期人教版 八年级数学试卷

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.已知(m2﹣9)x2﹣(m﹣3)x+6=0是以x为未知数的一元一次方程,如果|a|≤|m|,那么|a+m|+|a﹣m|的值为()A.2B.4C.6D.84.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人5.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→……,则2018分钟时粒子所在点的横坐标为()A.886B.903C.946D.9906.规定[x]表示不大于x的最大整数,例如[2.3]=2,[3]=3,[﹣2.5]=﹣3.那么函数y=x ﹣[x]的图象为()A.B.C.D.7.一个长为19cm,宽为18cm的长方形,如果把这个长方形分成若干个正方形要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数()A.5个B.6个C.7个D.8个8.下图中各图形经过折叠后可以围成一个棱柱的是()A.B.C.D.9.如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P,一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线()A.1次B.2次C.3次D.4次10.如图,在△ABC中,AB=BC,∠ABC=90°,点D、E、F分别在边AC、BC、AB上.且△CDE与△FDE关于直线DE对称.若AF=2BF,AD=7,则CD=()A.3B.5C.3D.511.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组植树14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可12.打字员小金连续打字14分钟,打了2 098个字符,测得她第一分钟打了112个字符,最后一分钟打了97个字符.如果测算她每一分钟所打字符的个数,则那个不成立()A.必有连续2分钟打了至少315个字符B.必有连续3分钟打了至少473个字符C.必有连续4分钟打了至少630个字符D.必有连续6分钟打了至少946个字符二.填空题(共6小题)13.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c﹣b|﹣|b﹣a|﹣|a ﹣c|=.14.20个质量分别为1,2,3,…,19,20克的砝码放在天平两边,正好达到平衡.(1)试将砝码①,②,…,⑳(①,②,…分别代表1克,2克,…的砝码)分别放在天平两边,使之达到平衡,且可从每边各取下同样多的偶数个砝码,仍能使天平保持平衡;(2)试将砝码①,②,…,⑳(①,②,…分别代表1克,2克,…的砝码)分别放在天平两边,使之达到平衡,且从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.15.如图1,平面上两条直线l1,l2相交于点O,对于平面上任意一点M,若点M到直线l1的距离为p,到直线l2的距离为q,则称有序实数对(p,q)为点M的“距离坐标”,例如,图1中点O的“距离坐标”为(0,0),点N的“距离坐标”为(3.6,4.2).(1)如图2,点A的“距离坐标”为,点B的“距离坐标”为;(2)如图3,点C,D分别在直线l1,l2上,则C,D两个点中,“距离坐标”为(3,0)的点是;(3)平面上“距离坐标”为(0,5)的点有个,“距离坐标”为(5,5)的点有个.16.如图,在长方体ABCD─EFGH中,与棱AB相交的棱有.17.如图,在平行四边形ABCD中,AC⊥AB,AB=2,AC=2.P、Q分别为边AD、DC 上的动点,D1是点D关于PQ的对称点,过点D1作D1F∥BC分别交AC、AB于点E、的最大值为.F,且满足D1E:D1F=1:3,则D1F组别(cm)145.5~152.5152.5~159.5159.5~166.5166.5~173.5频数(人)919148频率是0.28的这一小组的组中值是.三.解答题(共9小题)19.“十一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.4(单位:万人)(1)若9月30日外出旅游人数为5万人,求10月2日外出旅游的人数;(2)在(1)的条件下请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?(3)如果这七天中最多一天出游人数为8万人,问9月30日出去旅游的人数有多少?20.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.21.小明课后利用方程的知识探索发现,所有纯循环小数都可以化为分数,例如,化为分数,解决方法是:设x=,即x=0.333…,将方程两边都×10,得10x=3.333…,即10x=3+0.333…,又因为x=0.333…,所以10x=3+x,所以9x=3,即x=,所以=.尝试解决下列各题:(1)把化成分数为.(2)请利用小明的方法,把纯循环小数化成分数.22.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使P A+PB=BC?求出点P对应的数;若不存在,说明理由.23.如图.已知A(2,0),B(5,0),点P为圆A上一动点,圆A半径为2,以PB为边作等边△PMB,求线段AM的取值范围.24.将一个正方体的表面涂上颜色.如图把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.(1)如果把正方体的棱4等分,所得小正方体表面涂色情况如何呢?把正方体的棱n等分呢?(请填写下表):棱等分数4等分n等分3面涂色的正方体个个2面涂色的正方体个个1面涂色的正方体个个个个各个面都无涂色的正方体(2)请直接写出将棱7等分时只有一个面涂色的小正方体的个数.25.如图,在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA.(1)求证:∠BAD=∠EDC;(2)作出点E关于直线BC的对称点M,连接DM、AM,猜想DM与AM的数量关系,并说明理由.26.李明为了了解本班同学的身高情况,随机抽取了一部分同学进行身高测量,获得如下数据(单位:cm):139,118,137,129,135,156,148,137,112,149,139,135,138,117,116,160.(1)根据以上数据填表:身高h(单位:cm)画记人数占调查人数的百分比(%)h≤120120<h≤140h>140(2)以上这种调查方式称为调查(填“全面”或“抽样”);(3)要直观地反映各身高段人数的多少,应画统计图比较合适;要直观地反映各身高段人数占被调查人数的百分比,应画统计图比较合适.27.从1、2、3、4、…、2014这2014个数中,抽取n个数,放入集合A中,从A中任意取3个数后,总有一个数能够整除另一个,试求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】有条件:分母为22的既约真分数(分子与分母无公约数的真分数,用列举法逐个尝试即可得出答案.【解答】解:这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.2.【分析】三个顶角分别是4,5,6,4与5之间是3,6和5之间是1,4和6之间是2,这样每边的和才能相等.【解答】解:由图可知S=3+4+5=12.故选:C.3.【分析】根据一元一次方程的定义,则x2系数为0,且x系数≠0,得出m=﹣3;由|a|≤|m|,得a﹣m≥0,a+m≤0,∴|a+m|+|a﹣m|=﹣a﹣m+a﹣m=﹣2m=6.【解答】解:∵一元一次方程则x2系数为0,且x系数≠0∴m2﹣9=0,m2=9,m=±3,﹣(m﹣3)≠0,m≠3,∴m=﹣3,|a|≤|﹣3|=3,∴﹣3≤a≤3,∴m≤a≤﹣m,∴a﹣m≥0,|a﹣m|=a﹣m,a+m≤0,|a+m|=﹣a﹣m,∴原式=﹣a﹣m+a﹣m=﹣2m=6.故选:C.4.【分析】设A组所检验的每个车间原有成品a件,每个车间1天生产b件,可得A组前两天检验的总件数和后三天检验的总件数为.根据检验员的检验速度相同,可列式等式得到a和b的关系,即可得A组一名检验员每天检验的成品数.再根据B组检验员的人数=五个车间的所有成品÷A组一名检验员每天检验的成品数,列式即可得解.【解答】解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.5.【分析】根据点的坐标变化寻找规律即可.【解答】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=,有(n+1)个点,共2n个点;2+4+6+8+10+…+2n≤2018≤2018且n为正整数,得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=44时,x=(44×45)=990,∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:D.6.【分析】[x]还可理解为取小,分当x≥0、x<0,代入相应的点依次求解即可.【解答】解:[x]还可理解为取小,1、x﹣[x]≥0,所以y≥0;2、当x为整数时,x﹣[x]=0,此时y=0;3、y=x﹣[x]的图象为y=x(0≤x≤1)的图象向左或向右平移[x]个单位(根据[x]的±,左加右减);基于以上结论,可得:(1)当x≥0时,当x=0时,y=0﹣0=0,x=1时,y=1﹣1=0,当x=1.2时,y=1.2﹣1=0.2;x=1.5时,y=1.5﹣1=0.5,即x在两个整数之间时,y为一次函数;当x=2时,y=2﹣2=0,符合条件的为A、B;(2)当x<0时,当x=﹣1时,y=﹣1+1=0,x=﹣1.2时,y=﹣1.2+2=0.8,x=﹣2时,y=﹣2+2=0,在A、B中符合条件的为A,故选:A.7.【分析】根据正方形的边长为正整数的特点,可知长为19cm,宽为18cm的长方形,分成若干个正方形,上面两个正方形从左至右为11和8,8下面从左至右是3和5,最下面一排从左至右是7,7,5时正方形的个数最少.【解答】解:7个正方形边长分别11,8,7,7,5,5,3.另外,不可能分成5个或6个正方形,这个证明很麻烦,大概过程是通过编程列出所有可能的组合(如所有满足5个或6个数平方之和等于18×19且最大两个和不超过19的整数组合),然后对每个组合逐一否定其可行性,所以不用担心有更少正方形的组合.故选:C.8.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A缺少两个底面,不能围成棱柱;选项C中折叠后没有上底面,不能折成棱柱,选项D不能组成棱柱,是因为上下两底面四个边的长不能与侧面的边等长、重合.,只有B能围成三棱柱.故选:B.9.【分析】根据光线的反射,即可确定.【解答】解:有4条:分别是:由S发出的线SP;由S发出,经过AD反射直接通过P的光线;由S发出,经过CD反射直接通过P的光线;由S发出,经过CD反射再经过AD反射通过P的光线.故选:D.10.【分析】如图,过点F作FT⊥CF交AC于T,过点T作TH⊥AB于H,设CD=x.用两种方法求出AB的长,由此构建方程求解即可.【解答】解:如图,过点F作FT⊥CF交AC于T,过点T作TH⊥AB于H,设CD=x.∵BA=BC,∠B=90°,AC=7+x,∴AB=BC=7+x,∵△CDE与△FDE关于直线DE对称,∴DC=DF,∴∠DFC=∠FCD,∵∠DFT+∠DFC=90°,∠FCD+∠CTF=90°,∴∠DFT=∠DTF,∴DF=DT=DC=x,∴AT=7﹣x,∵∠A=45°,∠AHT=90°,∴∠A=∠ATH=45°,∴AH=HT=7﹣x,∵∠AFT+∠CFB=90°,∠CFB+∠BCF=90°,∴∠AFT=∠BCF,∵AF=2BF,∴BC=AB=3BF,∴tan∠AFT=tan∠BCF==,∴FH=3HT=21﹣3x,AF=28﹣4x,∴BF=AF=14﹣2x,∵AF+BD=AB,∴28﹣4x+14﹣2x=7+x,∴x=5,∴CD=5,故选:D.11.【分析】根据题意,要表示这个班的植树情况结合三种统计图的特点,折线图体现变化情况,扇形图体现各部分的数值、比例关系,条形图体现各部分的数值大小,分析可得答案.【解答】解:根据题意,要求把这个班的植树情况清楚地反映出来,即体现数字间的关系,使用条形统计图、扇形统计图均可,故选:D.12.【分析】首先根据小金第一分钟打了112个字符,最后一分钟打了97个字符,算出中间12分钟打的字符数.再根据12分钟可以分成6段(6×2)、4段(4×3)、3段(3×4).计算出每段打的字符数,与选项比较.【解答】解:小金中间的12分钟打了2098一112﹣97=1889个字符.把这12分钟分别平均分成6段、4段、3段,每段分别是2分钟、3分钟、4分钟,∵1889÷6≈314.8,1889÷4≈472.3,1889÷3≈629.7,∴应用抽屉原理知A、B、C均成立.但1889÷2=944.5,因此如果小金每分钟所打字符个数依次是112,158,157,158,157,158,157,158,157,158,157,157,157,97,则她连续6分钟最多打了3×(158+157)=945个字符,结论D不成立.故选:D.二.填空题(共6小题)13.【分析】根据图示,可知有理数a,b,c的取值范围b>1>a>0>c>﹣1,然后根据它们的取值范围去绝对值并求|c﹣b|﹣|b﹣a|﹣|a﹣c|的值.【解答】解:根据图示知:b>1>a>0>c>﹣1,∴|c﹣b|﹣|b﹣a|﹣|a﹣c|=﹣c+b﹣b+a﹣a+c=0故答案是0.14.【分析】(1)将砝码①,③,…,⑳放在天平一边,砝码②,④,…,19克放在天平另一边,根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立,两边每次取质量和为21克的偶数个砝码即可;(2)将砝码①,②,…,14克放在天平一边,砝码15克,16克,17克,18克,19克,⑳放在天平另一边,根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立,从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.【解答】解:(1)天平一边是砝码①,③,…,⑳,天平另一边是砝码②,④,…,19克,两边每次取质量和为21克的偶数个砝码;(2)天平一边是砝码①,③,…,14克,天平另一边是砝码15克,16克,17克,18克,19克,⑳,从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.15.【分析】首先要了解,距离坐标的有序数对的构成方法,在此基础上要知道当点在某条直线上时,其对应直线上的距离坐标实际为0;同时,要通过画图,分析出到一条直线距离为定值的点在与已知直线平行的两条直线上.此时,答案就比较容易得出.【解答】解:(1)图形点A到直线l1、l2的距离分别是1.6和2.5,点B到直线l1、l2的距离分别是2.2和1.5.故答案是(1.6,2.5),(2.2,1.5)(2)“距离坐标”的两个有序数对的第一个数和第二个数分别表示点到直线l1、l2的距离,所以,到直线l1、l2的距离分别是3,0.结合已知图形,可知满足条件的为点D.故答案是:D(3)(0,5)代表点到直线l1、l2的距离分别是0和5,则所求点在直线l1上,且到l2的距离为5,这样的点在l2两侧各有一个.如图,直线AB∥CD∥l2且相邻两条直线距离为5,直线AD∥BC∥l1,且相邻两条直线距离为5,A、B、C、D四点的“距离坐标”为(5,5).故答案是:2,416.【分析】在长方体中,棱与棱之间有平行,相交(垂直),和异面等关系.【解答】解:观察图形可知,与棱AB相交的棱有AD,AE,BC,BF.故答案为AD,AE,BC,BF.17.【分析】如图,连接AD1.设AF=a,首先证明四边形AED1M是平行四边形,推出∠DMD1=30°,由题意,点D1的运动轨迹是以P为圆心,PD为半径是圆上,当点P与A重合时,D1F的值最大,过点D1作D1H⊥D于H.利用勾股定理构建方程求解即可.【解答】解:如图,连接AD1.设AF=a在AD上取一点M,使得AM=AF=a,连接MD′,在Rt△ABC中,∵∠BAC=90°,AB=2,AC=2,∴tan∠ACB==,∴∠ACB=30°,∵EF∥BC,∴∠AEF=∠ACB=30°,∴EF=2AF=2a,∵D1E=3D1F,∴ED1=a=AM,∵四边形ABCD是平行四边形,∴AD∥BCAD=BC=2AB=4,∴∠CAD=∠ACB=30°,∵AM=ED1,AM∥ED1,∴四边形AMD1E是平行四边形,∴MD1=AE=a,AE∥MD1,∴∠DMD1=∠CAD=30°,∵由题意,点D1的运动轨迹是以P为圆心,PD为半径是圆上,∴当点P与A重合时,D1F的值最大,过点D1作D1H⊥D于H.则有HD1=MD1=a,MH=a,∴AH=a,在Rt△AHD1中,则有42=(a)2+(a)2,解得a=(负根已经舍弃),∴D1F的最大值=3a=,故答案为.18.【分析】频率是0.28的人数为总人数×该组对应的频率,即频率是0.28的人数=50×0.28=14人,所以是159.5到166.5这组;根据组中值的概念可知,组中值=,则159.5到166.5段的组中值为=163.【解答】解:频率是0.28的一组的频数=50×0.28=14人,∴这一组是159.5﹣166.5组,∴组中值为=163.故本题答案为:163.三.解答题(共9小题)19.【分析】(1)根据若9月30日外出旅游人数为5万人,正数表示比前一天多的人数,负数表示比前一天少的人数,表示出10月2日外出旅游的人数,即可解决;(2)分别表示出10月1日到7日的人数,即可得出旅游人数最多的是哪天,最少的是哪天,以及它们相差多少万人;(3)设9月30日外出旅游人数记为a万人,最多一天有出游人数8万人,即:a+1.6+0.8+0.4=8,可得出a的值.【解答】解:(1)根据题意得:∵9月30日外出旅游人数为5万人,∴10月1日外出旅游人数为:5+1.6=6.6(万人),∴10月2日外出旅游人数为:6.6+0.8=7.4(万人);(2)10月3号外出旅游人数为:7.4+0.4=7.8(万人);10月4号外出旅游人数为:7.8﹣0.4=7.4(万人);10月5号外出旅游人数为:7.4﹣0.8=6.6(万人);10月6号外出旅游人数为:6.6+0.2=6.8(万人);10月7号外出旅游人数为:6.8﹣1.4=5.4(万人);10月3号外出旅游人数最多;7号最少;相差7.8﹣5.4=2.4(万人);(3)设9月30日外出旅游人数记为a万人,则a+1.6+0.8+0.4=8,解得a=5.2.故9月30日出去旅游的人数有5.2万.20.【分析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)根据已知等式,利用绝对值的代数意义判断出a,b,c中负数有2个,正数有1个,判断出abc的正负,原式利用绝对值的代数意义化简计算即可.【解答】解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则:=++=﹣1﹣1﹣1=﹣3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=++=﹣1+1+1=1.(2)∵a,b,c为三个不为0的有理数,且,∴a,b,c中负数有2个,正数有1个,∴abc>0,∴==1.21.【分析】(1)根据阅读材料设x=0.,方程两边都乘以10,转化为1+x=10x,求出其解即可;(2)根据阅读材料设x=0.,方程两边都乘以100,转化为16+x=100x,求出其解即可;【解答】解:(1)设x=0.,即x=0.1111…,将方程两边都×10,得10x=1.1111…,即10x=1+0.1111…,又因为x=0.111…,所以10x=1+x,所以9x=1,即x=.故答案为:.(2分)(2)设x=,即x=0.1616…,将方程两边都×100,得100x=16.1616…,即100x=16+0.1616…,又因为x=0.1616…,所以100x=16+x,所以99x=16,即x=,所以=.(6分)22.【分析】(1)根据|a+3|+(b﹣2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;(2)①根据2x+1=x﹣8可以求得x的值,从而可以得到点C表示的数,从而可以得到线段BC的长;②根据题意可以列出关于点P表示的数的关系式,从而可以求得点P表示的数.【解答】解:(1)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2;(2)①2x+1=x﹣8解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC的长为8;②存在点P,使P A+PB=BC,设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得,m=3.5,当﹣3<m<2时,无解,当m<﹣3时,m=﹣4.5,即点P对应的数是3.5或﹣4.5.23.【分析】要求AM的取值范围,则先确定M点运动轨迹,由等边三角形联想共顶点的双等边结构,可构造和△PBM共顶点B的等边△ABH,则△APB≌△HBM⟹HM=P A=2,所以点M运动轨迹为以H为圆心,半径为2的圆H上的点.AM过圆心时取得相应最大和最小值.因为△PBM是等边三角形,点P在圆心为A半径为2的⊙A上运动,推出点M的运动轨迹也是圆,当点P1(4,0)时,点M与E重合,当P2(0,0)时,点M与F重合,利用点与圆的位置关系即可解决问题.【解答】解:要求AM的取值范围,则先确定M点运动轨迹.如图,由等边三角形联想共顶点的双等边结构,可构造和△PBM共顶点B的等边△ABH,则△APB≌△HBM⟹HM=P A=2,所以点M运动轨迹为以H为圆心,半径为2的圆H上的点.当点P1(4,0)时,点M与E重合,当P2(0,0)时,点M与F重合,此时△BFO和△BEP1都是等边三角形,所以BF=BO=5,BE=BP1=1,所以BH=BA=AH=3,AM过圆心时取得相应最大和最小值.点M运动轨迹为以H为圆心,半径为2的圆H上的点.AM过圆心时取得相应最大和最小值.因为圆A的半径为2,圆H的半径为2,当点A和点M在一条直线上时,HA=3,那么AM的最大值为3+2=5;最小值为3﹣2=1.所以线段AM的取值范围是:1≤AM≤5.24.【分析】(1)根据长方体的分割规律可分别得到4等分时的所得小正方体表面涂色情况,由特殊推广到一般即可得到n等分时所得小正方体表面涂色情况;(2)直接把n=7代入(1)中所得的规律中即可.【解答】解:(1)三面涂色8,8;二面涂色24,12(n﹣2),一面涂色24,6(n﹣2)2各面均不涂色8,(n﹣2)3;(2)当n=7时,6(n﹣2)2=6×(7﹣2)2=150,所以一面涂色的小正方体有150个.25.【分析】(1)根据等腰三角形的性质,得出∠E=∠DAC,根据等边三角形的性质,得出∠BAD+∠DAC=∠E+∠EDC=60°,据此可得出∠BAD=∠EDC;(2)根据轴对称作图,要证明DA=AM,只需根据有一个角是60°的等腰三角形是等边三角形,证△ADM是等边三角形即可.【解答】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°.又∵∠BAD+∠DAC=∠BAC,∠EDC+∠DEC=∠ACB,∴∠BAD+∠DAC=∠EDC+∠DEC.∵DE=DA,∴∠DAC=∠DEC,∴∠BAD=∠EDC.(2)猜想:DM=AM.理由如下:∵点M、E关于直线BC对称,∴∠MDC=∠EDC,DE=DM.又由(1)知∠BAD=∠EDC,∴∠MDC=∠BAD.∵∠ADC=∠BAD+∠B,即∠ADM+∠MDC=∠BAD+∠B,∴∠ADM=∠B=60°.又∵DA=DE=DM,∴△ADM是等边三角形,∴DM=AM.26.【分析】(1)根据数据即可直接进行画记,然后求得对应的人数,根据百分比的意义求得百分比;(2)因为是抽取了部分同学进行身高测量,因而是抽样调查;(3)根据条形统计图和扇形统计图的特点即可确定.【解答】解:(1)根据以上数据填表:身高h(单位:cm)画记人数占调查人数的百分比(%)h≤120 4 25% 120<h≤140正8 50% h>140 4 25% (2)以上这种调查方式称为抽样调查.故答案是:抽样;(3)要直观地反映各身高段人数的多少,应画条形统计图比较合适;要直观地反映各身高段人数占被调查人数的百分比,应画扇形统计图比较合适.故答案是:条形、扇形.27.【分析】首先构造两个数列:{1,2,4,8,16,32,64,128,256,512,1024};{3,6,12,24,48,96,192,384,768,1512}.共21个数,这21个数中任取三个,总有一个数为另一个数的倍数.则n≤21.由抽屉原理,构造集合,从而得到n的最大值是21.【解答】解:首先构造两个数列:{1,2,4,8,16,32,64,128,256,512,1024};{3,6,12,24,48,96,192,384,768,1512}.共21个数,这21个数中任取三个,总有一个数为另一个数的倍数.因此:n≤21.如果n>21,则构造如下集合:{1},{2,3},{4,5,6,7},{8,9,10,…,15},…,{1024,1025,…,2014},共11个集合,如果n>21,至少有某个集合中被选了大于等于3个数,而这个集合中不可能存在一个数是另一个数的倍数.矛盾.故n的最大值为21.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济南市商河县2020-2021学年八年级上学期
期末数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 在下列各数3π,0,0.2,,6.010010001……,,3.14中,无理数的个数是()
A.4 B.3 C.2 D.1
2. 在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件不能判断
△ABC是直角三角形的是()
A.a=6,b=8,c=10 B.a=5,b=12,c=13
C.a=1,b=2,c=3 D.∠A:∠B:∠C=1:2:3
3. 在平面直角坐标系中,点A的坐标为(一7,3),点B的坐标为(3,3),则线段AB的位置特征为()
A.与x轴平行B.与y轴平行
C.在第一、三象限的角平分线上D.在第二、四象限的角平分线上
4. 一组数据4,4,5,5,x,6,7的平均数是5,则这组数据的众数和中位数分别是()
A.4,5 B.4,4 C.5,4 D.5,5
5. 直线y=-2x+4经过()
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
6. 二次根式在实数范围内有意义,则x的取值范围是()
A.x>-5 B.x<-5 C.x≠-5 D.x≥-5
7. 2020年是庆祝南开中学建校84周年,学校定制了校庆纪念品.已知一套纪念品由2枚纪念币和3枚定制书签组成,定制一枚纪念币需要花费15元,定制一枚书签需要花费10元,学校一共花费了5400元,纪念币和定制书签刚好配
套.若设学校定制了枚纪念币,枚书签,由题意,可列方程组为
()
A.B.
C.D.
8. 如图,CD、BD分别平分∠ACE、∠ABC,∠A=80°,则∠BDC=()
A.35°B.45°C.30°D.40°
9. 已知方程组的解为,则一次函数与
的图像的交点坐标是()
A.(-1,1)B.(1,-1)C.(2,-2)D.(-2,2)10. 如图,Rt△ABC中,∠ACB=90°,∠A=58°,将∠A折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()
A.16°B.20°C.26°D.28°
11. 在平面直角坐标系中,长方形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点,若E为x轴上的一个动点,当△CDE的周长最小时,求点E的坐标()
A.(一3,0)B.(3,0)C.(0,0)D.(1,0)
12. 如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法:①△ABE的面积=△BCE的面积;
②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中正确的是()
A.①②③④B.①②③C.②④D.①③
二、填空题
13. 0.64的算数平方根是__________;
14. 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为________.
15. 若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为
_____.
16. 如图1,△ABC中,有一块直角三角板PMN放置在△ABC上(P点在△ABC 内),使三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.若∠A=
52°,则∠1+∠2=__________;
17. 请根据以下信息写出函数的表达式;__________;
①它的图象是不经过第二象限的一条直线,且与y轴的交点P到原点O的距离
为3;
②当x为2时,函数y的值为0;
18. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原
点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是
______.
三、解答题
19. 计算下列各题:
(1)×-;
(2)(+3)(3-)-(-1)2.
20. 用适当的方法解方程组:
(1)(2)
21. 如图,在直角坐标系x0y中,已知点A(2, 0),B(4,0),C(6,4). (1)在坐标系中描出△ABC,并作出关于y轴对称的△A'B'C';
(2)计算△A'B'C′的面积.
22. 如图,将△ABC沿着平行于BC的直线DE折叠,点A落到点A′,若∠C=125°,∠A=20°,求∠BD A′的度数.
23. 中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,十一中团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩x(分) 频数(人) 频率
50?x<60 10 0.05
60?x<70 30 0.15
70?x<80 40 n
80?x<90 m0.35
90?x?100 50 0.25
(1)m =________,n =__________;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
24. 如图,△ABC中,AC=15,AB=25,CD⊥AB于点D,CD=12.
(1)求线段AD的长度;
(2)判断△ABC的形状并说明理由.
25. 为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户,若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.
(1)求医用口罩和洗手液的单价;
(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N95口罩.若需购买医用口罩和N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案,.
26. 某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票,同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.图中线段AB、OB分别表示父子俩送票、取票过程中,离体育馆的路程s(米)与所用时间t(分)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点B的坐标;
(2)求AB所在直线的函数关系式;
(3)小明能否在比赛开始前到达体育馆?
27. 如图,在平面直角坐标系中,直线分别交x轴,y轴于A,B两点,与直线交于点C.
(1)求点A,B的坐标.
(2)若点C的坐标为,求线段的长.
(3)若P是x轴上一动点,是否存在点P,使是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.。

相关文档
最新文档