普通物理学习题及答案(上册)
普通物理学第一册修订版第五版课后练习题含答案

普通物理学第一册修订版第五版课后练习题含答案普通物理学第一册修订版第五版是经典物理学入门教材之一,涵盖了力学、热学等基础知识。
本文将提供该教材课后练习题以及答案,供读者学习和参考。
第一章长度、时间和质量的测量选择题1.以下哪个物理量不是基本物理量?(A)A. 能量B. 质量C. 长度D. 时间2.物理量的国际制单位是(D)A. 英制单位B. 公制单位C. 自然单位D. 国际单位制3.以下哪个不属于国际制基本单位?(B)A. 米B. 千克米C. 秒D. 安培简答题1.什么是“国际单位制”(SI)?它的标准由哪些单位组成?答:国际单位制是现代公制单位制的基础,它是以米、千克、秒、安培、开尔文、摩尔和坎德拉这七个基本物理量的单位为标准而制定的。
这些单位和单位名称的标准由国际计量局发布,被称为“国际单位制”。
2.如何用千克、米和秒的单位定义力的单位牛顿?答:牛顿是力的国际单位。
它可以用千克、米和秒的单位来定义,1 N等于1千克物体在重力加速度为9.8 m/s²的情况下所受的力。
也可以用牛顿定律来定义,力是使1千克物体产生1m/s²加速度的力。
第二章运动学选择题1.下列说法正确的是?(D)A. 速度是一个矢量,速率是一个标量。
B. 物体的加速度一定和物体的速度方向一致。
C. 向右运动的物体,加速度要么向右,要么向左。
D. 两个物体相对静止,说明两个物体的相对速度为零。
简答题1.如何用向量方法解决平面运动问题?答:在平面运动中,一个物体在做匀速直线运动或匀加速直线运动时,我们可以用向量方法来解决很多问题。
首先,我们需要定义一个运动坐标系,并建立一个与坐标系相联系的矢量,通常是位置矢量。
然后通过求导或求导数,求出速度和加速度的矢量,并用它们来解决问题。
2.什么是匀速圆周运动?答:匀速圆周运动是一种做圆周运动并保持匀速的运动方式。
在匀速圆周运动中,物体可以有一个半径、一定的圆心和一个确定的速度。
物理学上册课后习题答案_马文蔚

习题11-1 质点作曲线运动,在时刻t质点的位矢为r ,速度为v ,t 至()t t +∆时间内的位移为r ∆,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆),平均速度为v ,平均速率为v。
(1)根据上述情况,则必有( B ) (A )r s r ∆=∆=∆(B )r s r ∆≠∆≠∆,当0t ∆→时有dr ds dr =≠ (C )r r s ∆≠∆≠∆,当0t ∆→时有dr dr ds =≠ (D )r s r ∆=∆≠∆,当0t ∆→时有dr dr ds ==(2)根据上述情况,则必有( C ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠=1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)drdt;(2)drdt;(3)dsdt;(4下列判断正确的是:( D )(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。
对下列表达式,即(1)dvdt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。
下述判断正确的是( D )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( C )(A )匀加速运动,0cos v vθ= (B )匀减速运动,0cos v v θ=(C )变加速运动,0cos v v θ=(D )变减速运动,0cos vv θ=(E )匀速直线运动,0vv =习题22-1 如图所示,质量为m 的物体用平行于斜面的细线连结并置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( D )(A )sin g θ (B )cos g θ (C )tan g θ (D )cot g θ2-2 用水平力N F 把一个物体压着靠在粗糙的竖直墙面上保持静止。
普通物理学第二版第三章课后习题答案

第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。
解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)012257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。
解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。
解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。
2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。
大学物理习题集(上,含解答)

大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
程守洙《普通物理学》(第6版)(上册)笔记和课后习题(含考研真题)详解(8-9章)【圣才出品】

单位为
,电流密度描述的是导体中电流的分布.
2.电源的电动势
(1)电源
1 / 166ຫໍສະໝຸດ 圣才电子书 十万种考研考证电子书、题库视频学习平台
电源是指能提供性质与静电力很不相同的“非静电力”,把正电荷从电势低的 B 移向 电势高的 A 的装置.
(2)电动势 电动势等于电源把单位正电荷从负极经电源内移动到正极所作的功,即
二、磁感应强度 1.基本磁现象 在自然界中不存在独立的 N 极和 S 极. 运动电荷或电流之间通过磁场作用的关系可以表达为:
2.磁感应强度 它是描述磁场性质的基本物理量,大小为试探电荷所受到的最大磁力与电荷的电量和运 动速度间的比值,即
磁感应强度为矢量,磁感应强度的方向定义为当试探电荷 q 沿着某方向不受力时,定 义为磁感应强度 B 的方向;单位为 T(特),在高斯单位制下,有
2.安培环路定理 在磁场中,沿任何闭合曲线 B 矢量的线积分等于真空的磁导率乘以穿过以该闭合曲线 为边界所张任意曲面的各恒定电流的代数和,即
对安培环路定理的几点说明:
(1)磁场 B 的环流
只与穿过环路的电流有关,而与未穿过环路的电流无关;
(2)环路上任一点的磁感应强度 B 是所有电流(无论是否穿过环路)所激发的场在该
3.磁感应线和磁通量 (1)磁感应线 在任何磁场中,每一条磁感应线都是和闭合电流相互套链的无头无尾的闭合线,而且磁 感应线的环绕方向和电流流向形成右手螺旋的关系. (2)磁通量 通过一曲面的总磁感应线数,即
3 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台
磁通量为标量,有正负之分,定义穿入曲面的磁通量为负,穿出为正.单位为 W. (3)磁通量密度 磁场中某处磁感应强度 B 的大小为该处的磁通量密度,磁感应强度也称磁通量密度.
程守洙版普通物理学课后习题答案01运动学习题共75页

日录
1-3 一辆汽车沿笔直的公路行驶,速度 和时间的关系如图中折线OABCDEF^示。
(1)试说明图中0九AB. BC、CD、
DE、线段各表示什么运动?
(2)根据图中的曲线与数据,求汽车在整个行驶过程中所走的路程、位移和平均速度。
H录
解:由图的总面积可得到路程为:S =^(30+10)x5 ++(20x10) = 200(m)
总位移为:△ x= (30+10)x5 - +(20x10)=0 所以平均速度也为零
EB H录
1-4,直线1与圆弧2分别表示两质点A、B
从同一地点出发,沿同一方向做直线运动的 v-t图。已知S的初速vQ=b m/s,它的速率由
&变为0所化的时间为h(1) 试求好在时刻t 的加速度;(2) 设在B停止时,A恰好追上B,求A的速 度;(3) 在什么时候,A、B的速度相同?
1-12在竖直平面内,
光滑钢丝被弯成
图示曲线。质点穿在钢丝上,可沿它滑动。
己知其切向加速度为-gsinO ,9是曲线切向
与水平方向夹角。试证:质点在各处的速率a与其位置 坐标y有如下关系: v2-vo2 = 2g [y0-y) 式中〃。与%分别为
其初速度与初位置。
日录
y
dv dt
sin^=^ds
日录
—22 m/s
解:x = 4r - 2t3(1) △x=x-0=4m4x2-2><23= _8m
△久 _8 = _ 4111/s
P= △ t = 2
v= ^ = 4-6t2 = 4-6x22= -20 m/s
dt(2 ) △ JC =义3—-X^2=(4x 3 ™2x 33)- (4x l-2x 13)
普通物理学习题及答案(上册)

普通物理学习题及答案(上)1、 质点是一个只有( 质量 )而没有( 形状 )和( 大小 )的几何点。
2、 为了描写物体的运动而被选作为参考的物体叫( 参考系 )。
3、 当你乘坐电梯上楼时,以电梯为参考系描述你的运动是( 静止 )的,而以地面为参考系描述你的运动则是( 上升 )的4、 量化后的参考系称为( 坐标系 )。
5、 决定质点位置的两个因素是( 距离 )和( 方向 )。
这两个因素确定的矢量称为( 位置矢量 )。
6、 质点在一个时间段内位置的变化我们可以用质点初时刻位置指向末时刻位置的矢量来描写,这个矢量叫( 位移矢量 )。
7、 质点的速度描述质点的运动状态,速度的大小表示质点运动的( 快慢 ),速度的方向即为质点运动的( 方向 )。
质点的速度大小或是方向发生变化,都意味着质点有( 加速度 )。
8、 在xOy 平面内的抛物运动,质点的x 分量运动方程为t v x 0=,y 分量的运动方程为23gt y =,用位矢来描述质点的运动方程为( j gt i t v r 203+= ).9、 一辆汽车沿着笔直的公路行驶,速度和时间的关系如图中折线OABCDEF 所示,则其中的BC 段汽车在做( 匀减速直线 )运动,汽车在整个过程中所走过的路程为( 200 )m ,位移为( 0 )m ,平均速度为( 0 )m/s10、 自然界的电荷分为两种类型,物体失去电子会带( 正 )电,获得额外的电子将带( 负 )电。
t/s11、 对于一个系统,如果没有净电荷出入其边界,则该系统的正、负电荷的电量的代数和将( 保持不变 )。
12、 真空中有一点电荷,带电量q=1.00×109C ,A 、B 、C 三点到点电荷的距离分别为10cm 、20cm 、30cm ,如图所示。
若选B 点的电势为零,则A 点的电势为( 45V ),C 点的电势为( -15V )。
13、 将一负电荷从无穷远处缓慢地移到一个不带电的导体附近,则导体内的电场强度( 不 变 ),导体的电势值( 减小 )(填增大、不变或减小)。
普通物理学习题及答案(上册)

普通物理学习题及答案(上)1、质点是一个只有( 质量 )而没有( 形状 )和( 大小 )的几何点。
2、为了描写物体的运动而被选作为参考的物体叫( 参考系 )。
3、当你乘坐电梯上楼时,以电梯为参考系描述你的运动是( 静止 )的,而以地面为参考系描述你的运动则是( 上升 )的4、量化后的参考系称为( 坐标系 )。
5、决定质点位置的两个因素是( 距离 )和( 方向 )。
这两个因素确定的矢量称为( 位置矢量 )。
6、质点在一个时间段内位置的变化我们可以用质点初时刻位置指向末时刻位置的矢量来描写,这个矢量叫( 位移矢量 )。
7、质点的速度描述质点的运动状态,速度的大小表示质点运动的( 快慢 ),速度的方向即为质点运动的( 方向 )。
质点的速度大小或是方向发生变化,都意味着质点有( 加速度 )。
8、在xOy 平面内的抛物运动,质点的x 分量运动方程为,y 分量的运动t v x 0=方程为,用位矢来描述质点的运动方程为( ).23gt y =j gt i t v r203+=9、一辆汽车沿着笔直的公路行驶,速度和时间的关系如图中折线OABCDEF 所示,则其中的BC 段汽车在做( 匀减速直线 )运动,汽车在整个过程中所走过的路程为( 200 )m ,位移为( 0 )m ,平均速度为( 0 )m/sqt/s105O-5-1010、自然界的电荷分为两种类型,物体失去电子会带( 正 )电,获得额外的电子将带( 负 )电。
11、对于一个系统,如果没有净电荷出入其边界,则该系统的正、负电荷的电量的代数和将( 保持不变 )。
12、真空中有一点电荷,带电量q=1.00×109C ,A 、B 、C 三点到点电荷的距离分别为10cm 、20cm 、30cm ,如图所示。
若选B 点的电势为零,则A 点的电势为( 45V ),C 点的电势为( -15V )。
13、将一负电荷从无穷远处缓慢地移到一个不带电的导体附近,则导体内的电场强度( 不 变 ),导体的电势值( 减小 )(填增大、不变或减小)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通物理学习题及答案(上)1、 质点是一个只有( 质量 )而没有( 形状 )和( 大小 )的几何点。
2、 为了描写物体的运动而被选作为参考的物体叫( 参考系 )。
3、 当你乘坐电梯上楼时,以电梯为参考系描述你的运动是( 静止 )的,而以地面为参考系描述你的运动则是( 上升 )的4、 量化后的参考系称为( 坐标系 )。
5、 决定质点位置的两个因素是( 距离 )和( 方向 )。
这两个因素确定的矢量称为( 位置矢量 )。
6、 质点在一个时间段内位置的变化我们可以用质点初时刻位置指向末时刻位置的矢量来描写,这个矢量叫( 位移矢量 )。
7、 质点的速度描述质点的运动状态,速度的大小表示质点运动的( 快慢 ),速度的方向即为质点运动的( 方向 )。
质点的速度大小或是方向发生变化,都意味着质点有( 加速度 )。
8、 在xOy 平面内的抛物运动,质点的x 分量运动方程为t v x 0=,y 分量的运动方程为23gt y =,用位矢来描述质点的运动方程为( j gt i t v r203+= ).9、 一辆汽车沿着笔直的公路行驶,速度和时间的关系如图中折线OABCDEF 所示,则其中的BC 段汽车在做( 匀减速直线 )运动,汽车在整个过程中所走过的路程为( 200 )m ,位移为( 0 )m ,平均速度为( 0 )m/s10、 自然界的电荷分为两种类型,物体失去电子会带( 正 )电,获得额外的电子将带( 负 )电。
t/s11、 对于一个系统,如果没有净电荷出入其边界,则该系统的正、负电荷的电量的代数和将( 保持不变 )。
12、 真空中有一点电荷,带电量q=1.00×109C ,A 、B 、C 三点到点电荷的距离分别为10cm 、20cm 、30cm ,如图所示。
若选B 点的电势为零,则A 点的电势为( 45V ),C 点的电势为( -15V )。
13、 将一负电荷从无穷远处缓慢地移到一个不带电的导体附近,则导体内的电场强度( 不 变 ),导体的电势值( 减小 )(填增大、不变或减小)。
14、下列不可能存在的情况是( B )。
A.一物体具有加速度而速度为零B.一物体具有恒定的速度但仍有变化的速率C.一物体具有沿Ox 轴方向的加速度而有沿Ox 轴负方向的速度D.一物体的加速度大小恒定而其速度的方向改变15、一质点在平面上运动,已知质点位置矢量的表达式为22r at i bt j =+(其中a 、b 为常量),则该质点做( B )运动 A 、匀速直线B 、变速直线C 、抛物线D 、一般曲线16、一质点作直线运动,某时刻的瞬时速度为v =2m/s, 瞬时加速度为a = -2m/s 2,则一秒钟后质点的速度( D ) A 、等于零 B 、 等于-2m/sC 、等于2m/sD 、不能确定.17、在地面的上空停着一气球,气球下面吊着软梯,梯上站着一个人,当这个人沿着软梯上爬时,气球将( B )。
A.上升B.下降C.保持静止D.无法判断18、在光滑的水平地面上有一辆小车,甲乙两人站在车的中间,甲开始向车头走,同时乙向车尾走。
站在地面上的人发现小车向前运动了,这是因为( C )。
A 、甲的速度比乙的速度小 B 、甲的质量比乙的质量小 C 、甲的动量比乙的动量小 D 、甲的动量比乙的动量大19、A 、B 两滑块放在光滑的水平面上,A 受向右的水平力F A ,B 受向左的水平力F B 作用而相向运动。
已知m A =2m B ,F A =2F B 。
经过相同的时间t 撤去外力F A 、F B ,以后A 、B 相碰合为一体,这时他们将( C ) A 、停止运动 B 、向左运动 C 、向右运动 D 、无法判断 20、如图所示,在点(a ,0)处放置一个点电荷+q ,在点(-a ,0)处放置另一点电荷-q 。
p 点在y 轴上,其坐标为(0,y ),当y>>a 时,该点场强的大小为( C ) A 、 204q y πε; B 、 202q y πε; C 、 302qa yπε;D 、304qa yπε.21、关于电场强度与电势之间的关系,下列说法中正确的是( C )A 、 在电场中,场强为零的点,电势必为零;B 、 在电场中,电势为零的点,场强必为零;C 、 在电势不变的空间,场强处处为零;D 、 在场强不变的空间,电势处处相等.22、某电场的电场线分布情况如图所示,一个负电荷从M 点移到N 点。
有人根据这个电场线分布图做出下列几点结论,正确的是( C ) A 、场强大小M N E E < B 、电势M N U U < C 、电势能M N W W <D 、电场力做的功A>0.23、一质量为M 的斜面原来静止于光滑水平面上,将一质量为m 的木块轻轻放于斜面上(斜面光滑),如果让木块能静止于光滑的斜面上,则斜面应( ) A 、保持静止. B 、向右加速运动. C 、向右匀速运动. D 、向左加速运动. 判断题1、( 对 )在一个具体问题中,一个物体是否能当成质点,并不在于物体的大小,xyoa•••a-(0,)P y qq-而在于问题是否确实与物体的大小形状无关。
2、( 错 )在不同的参考系中考察同一物体的运动时,所反映的运动关系都是一样的。
3、( 错 )在直线运动中,质点的位移和路程相等的。
4、( 错 )当物体的加速度大于0时,表示运动方向与参考方向相同,当加速度小于0时,表示运动方向与参考方向相反。
5、( 对 )物体的运动可以看成是几个各自独立的运动的叠加。
6、( 对 )当我们推着一个物体沿着屋子的墙壁走一圈回到远处,整个过程重力对物体没有做功。
7、( 错 )做匀速圆周运动时,物体的加速度并没有发生变化。
8、( 错 )电场线是在电场中真实存在的表示电场变化的矢量线。
9、( 对 )静电场中,某点电势的正负取决于电势零点的选取。
10、( 错 )一个负电荷向正电荷靠近时,它的电势能逐渐增加。
解答题1、一质点作匀加速直线运动,在t=10s 内走过路程s=30m ,而其速度增为n=5倍。
试证加速度为2)1()1(2t n sn a +-=,并由上述数据求出加速度大小。
(10分)[证明]依题意得0nv v t =,根据速度公式at v v t +=0,得t v n a /)1(0-=, (1)根据速度与位移的关系式as v v t 2202+=,得as v n a 2/)1(202-=, (2)(1)平方之后除以(2)式证得:2)1()1(2tn sn a +-=计算得加速度为:210)15(30)15(2+-=a =0.4(m/s 2)2、一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道。
(12分)[解答]质点在斜上运动的加速度为 sin a g α=,方向与初速度方向垂直.其运动方程为22sin 2121t g at y ⋅==α 将0xt v =代入后一方程得质点的轨道方程为 22sin x v g y ⋅=α 这是抛物线方程.3、电荷为+q 和-2q 的两个点电荷分别置于x=1m 和x=-1m 处,一实验电荷置于x 轴上何处,它受到的合力才为0?【解答】设实验点和q o 置于x 处所受合力为0,根据电场力叠加原理可得00220022(2)04(1)4(1)20(1)(1)q q q q i i x x q qx x πεπε⋅-⋅+=-+-=>+=-+即2610(32)x x x m ++==>=±因322x =-q 、-2q 两点电荷之间,该处场强不可能为0,故舍去,得(322)x m =+4、如图所示,质量为0.4kg 的木块以2m/s 的速度水平地滑上静止的平板小车,车的质量为 1.6kg ,木块与小车之间的摩擦系数为0.2(g 取10m/s 2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
[解答]分析:(1)以木块和小车为研究对象,系统所受合外力为零,系统动量守恒,以木块速度方向为正方向,由动量守恒定律可得:木块m 小车M 初:v 0=2m/s v 0=0末:v v ⇒mv 0=(M+m)v⇒s m v m M m v /4.026.14.04.00=⨯+=+=(2)再以木块为研究对象,其受力情况如图所示,由动量定理可得ΣF=-ft=mv-mv 0⇒s g v v t 8.04102.0)24.0(0=⨯⨯--=-=μ f=μmg(3)木块做匀减速运动,加速度21/2s m g m fa ===μ 车做匀加速运动,加速度22/5.06.1104.02.0s m M mg M f a =⨯⨯===μ,由运动学公式可得: v t 2-v 02=2as在此过程中木块的位移m a v v S t 96.02224.02222021=⨯--=-=车的位移m t a S 16.08.05.021212222=⨯⨯==由此可知,木块在小车上滑行的距离为ΔS=S 1-S 2=0.8m 即为所求。