稳定性同位素
稳定同位素voc内标物

稳定同位素voc内标物
稳定同位素 voc(挥发性有机化合物)内标物是一种用于分析和测量环境样品中 voc 的化学物质。
它具有以下特点和应用:
1. 稳定性:稳定同位素内标物的化学性质稳定,不容易受到环境因素的影响而发生变化,因此可以作为参照标准,帮助准确测量 voc 的浓度和组成。
2. 同位素标记:稳定同位素内标物通常含有一个或多个同位素原子,这些同位素原子的存在可以提供独特的识别标记,有助于追踪和识别特定的 voc 化合物。
3. 定量分析:通过加入已知浓度的稳定同位素内标物,可以进行定量分析,确定样品中 voc 的绝对浓度。
内标物的存在可以校正分析过程中的误差和干扰,提高测量结果的准确性和可靠性。
4. 环境监测:稳定同位素 voc 内标物常用于环境监测领域,例如大气、水和土壤等。
它们可以帮助评估环境中 voc 的污染水平、来源和传输途径,为环境保护和管理提供科学依据。
5. 质量控制:在实验室分析中,稳定同位素内标物也用于质量控制和方法验证。
它们可以确保分析方法的准确性和可重复性,以及检测仪器的性能和稳定性。
总之,稳定同位素 voc 内标物在环境分析和监测中发挥着重要作用,帮助我们更好地了解和管理环境中的挥发性有机化合物。
稳定同位素标记

稳定同位素标记引言稳定同位素标记被广泛应用于不同领域的科学研究中,包括地质学、环境科学、生物学等。
在这些研究中,稳定同位素的标记可以提供关于物质来源、代谢途径和地质过程的重要信息。
本文将探讨稳定同位素标记的原理、应用以及其在不同领域的作用。
稳定同位素标记的原理稳定同位素是指具有相同原子序数但不同质量数的同一种元素,其核外电子结构相同,但核内的中子数不同。
不同同位素之间的质谱值差异可以通过质谱仪进行精确测定,并用于稳定同位素标记。
稳定同位素标记的原理基于同位素的相对丰度稳定性。
相对于放射性同位素,稳定同位素具有长半衰期,不会放射出射线,并且相对丰度在地球上和生物体内具有稳定性。
因此,稳定同位素可以被用作标记物质的示踪剂,并提供关于物质来源、生物过程和地质过程的信息。
稳定同位素标记的应用稳定同位素标记在各个科学领域有着广泛的应用。
以下是几个主要领域的应用示例:1. 地质学稳定同位素标记被广泛用于研究地球历史和地质过程。
例如,通过测量岩石中不同同位素的丰度,可以确定岩石的形成时间和条件,揭示地壳演化的历史。
稳定同位素标记还用于研究地下水和地表水的起源和流动方式,以及地球气候的变化过程。
2. 环境科学稳定同位素标记在环境科学研究中也起着重要作用。
通过测量水体、土壤和大气中稳定同位素的丰度,可以追踪污染物的行为和传输途径。
稳定同位素标记还可以用于研究生态系统中物质循环和生物过程,如食物链和能量流动。
3. 生物学稳定同位素标记在生物学研究中有着广泛应用。
通过将稳定同位素标记物质引入生物体内,可以跟踪物质在生物体内的运动和转化过程。
例如,通过注入稳定同位素标记的氮气到植物叶片中,可以研究植物光合作用的速率和效率。
稳定同位素标记还可以应用于动物行为研究、食物链分析以及追踪动植物迁徙。
稳定同位素标记的示踪方法稳定同位素标记的示踪方法根据研究对象和目的的不同而有所差异。
以下是几种常见的示踪方法:1. 同位素比值法同位素比值法是最常用的稳定同位素标记方法之一。
稳定同位素化学分析技术介绍

稳定同位素化学分析技术介绍稳定同位素化学分析技术是一种研究化合物或物质组成、反应机制、动力学等方面的重要手段。
与传统的元素分析技术不同,稳定同位素化学分析技术是一种可定量和定性地识别分子结构、分子运动、化学反应、生物代谢等方面的手段。
本文将从基本概念、仪器设备、样品预处理、分析应用等方面对稳定同位素化学分析技术进行介绍。
一、基本概念稳定同位素是指相同元素的原子核中含有相同的质子数,但中子数不同的同位素。
例如,氢元素有三种稳定同位素,分别是氢-1、氢-2和氢-3。
其中,氢-1也称为普通氢或原子氢,中子数为0;氢-2也称为氘或重氢,中子数为1;氢-3也称为氚或超重氢,中子数为2。
同位素的存在使得分子中的原子具有不同的质量,因而可以用质谱等方法进行分析和测量。
稳定同位素化学分析技术是利用化合物或物质中含有的稳定同位素进行分析或测量的一种技术。
稳定同位素化学分析技术不同于放射性同位素化学分析技术,它不会释放放射性,对人体和环境无害。
二、仪器设备稳定同位素化学分析技术主要包括四个方面的设备,分别是质谱仪、冰箱、真空干燥箱和制氢装置。
质谱仪是稳定同位素化学分析的核心设备,主要用于分析样品中稳定同位素的含量和比例。
常用的质谱仪有燃烧型质谱仪、光谱型质谱仪和液质联用质谱仪等。
冰箱主要用于冷却和储存稳定同位素标准物质和样品,以保证其稳定性和质量。
真空干燥箱是用于将生物样品或化学样品制成稳定的干燥样品的设备。
它可以抽取空气中的水分和其他杂质,防止样品的氧化或污染。
制氢装置是用于制取氢气的设备。
氢气是稳定同位素化学分析的必要物质,通常采用电解制氢、碱金属还原法或水解方法制氢。
三、样品预处理稳定同位素化学分析技术的样品通常为化合物、气体或生物样品。
不同的样品需要不同的预处理方法。
下面以生物样品为例,介绍样品的预处理方法。
生物样品的预处理需要将其转化为稳定的干燥样品,以便进行质谱分析。
生物样品通常需要经过以下步骤:首先,对样品进行清洗、研磨或切割处理,以便于后续步骤的处理;然后,将样品加入去离子水中,进行分离和去除无机盐和杂质;接着,进行有机溶剂提取,抽取生物样品中的有机成分;最后,将有机溶剂样品转化成干燥样品,以便于质谱仪分析。
稳定同位素技术的应用

稳定同位素技术的应用稳定同位素是元素周期表中某元素中不发生或极不易发生放射性衰变的同位素,目前地球上发现的稳定同位素共有200多种。
现在稳定同位素技术还已经应用于医学、农业和环境科学等各领域。
稳定同位素的常规分析方法主要有:质谱法、核磁共振谱法、气相色谱法、中子活化分析法、光谱法等。
1.稳定性同位素探针技术将稳定同位素运用于微生物中的技术主要是稳定性同位素核酸探针技术,稳定性同位素核酸探针技术是将复杂环境中微生物物种组成及其生理功能耦合分析的有力工具。
由于自然环境中微生物具有丰富的多样性,在整体水平上清楚认知复杂环境中微生物群落生理代谢过程的分子机制具有较大难度。
而稳定性同位素核酸探针技术则能有效克服这一难点,在群落水平揭示复杂环境中重要微生物生理生态过程的分子机制。
稳定性同位素核酸探针技术的基本原理与DNA半保留复制实验类似、主要区别在于后者以纯菌为研究对象,证明子代DNA源于父代DNA,而前者主要针对微生物群落,揭示复杂环境中参与标记底物代谢过程的微生物作用者。
一般而言,重同位素或轻同位素组成的化合物具有相同的物理化学和生物学特性,因此,微生物可利用稳定性重同位素生长繁殖。
2.稳定同位素标记的相对定量与绝对定量方法2.1稳定同位素标记的相对定量方法稳定同位素在蛋白质组学中也有重要的应用。
根据同位素引入的方式,基于稳定同位素标记的蛋白质组定量方法可以分为代谢标记法、化学标记法和酶解标记法。
采用不同方法,标记同位素的样品在不同步骤混合;越早混合,样品预处理步骤引入的误差越小,定量的准确度越高。
代谢标记是指在细胞或生物体成长过程加入含有稳定同位素标记的培养基,完成细胞或生物体标记的方法。
该方法是在细胞培养过程中加入稳定同位素标记的必需氨基酸,使得每条肽段相差的质量数恒定。
与15N方法相比,由于肽段的质量差异数与氨基酸种类和数目无关,因此简化了相对定量分析的难度。
除代谢水平标记外,通过体外化学标记引入同位素是一种非常有价值的蛋白质组相对定量方法;适用于细胞、体液、组织等多种样品分析。
稳定性同位素示踪法

700℃ CuO 、 CaO 使 用 前 用 700℃ 高 温 12烘 干 除 去 CO2 , H2O , 并 在 122 压力下制成棒状 , 备光谱 18Kg/cm 18Kg/cm 压力下制成棒状, 分析
通电予热仪器10分钟,打开光电倍增管高压 通电予热仪器10分钟,打开光电倍增管高压 10分钟
大气中的氮气
大气中的氧气
氮的同位素表
射线种类 β+ β+ ββ半衰期 0.011S 9.96m 7.1S 4.15S 99.635 0.365 自然丰度
同位素
12N
13N
14N
15N
16N
17N
1978年国际纯化学和化学联合会 年国际纯化学和化学联合会IUPAC的命名 年国际纯化学和化学联合会 的命名 法: 1. 结构式 15[N]HCl 结构式: 物质不存在) 物质不存在
4.“Y”型管及内部反应抽气须彻底 , 型管及内部反应抽气须彻底, Y 型管及内部反应抽气须彻底 防其它气体干扰。 防其它气体干扰。
以下在光谱仪上进行, 以下在光谱仪上进行 , 可用液体样 品也可用干样品
(2).杜马法(Dumas) (2).杜马法(Dumas) 杜马法
—光谱分析中常用法 光谱分析中常用法
峰高。 峰高。
求得平均峰高,计算15N丰度。 求得平均峰高, 丰度。 平均峰高
15N实验结果计算 七.
14、15的质量比28、29、30的小10倍 的质量比28 的小10 14、15的质量比28、29、30的小10倍 不参加运算
15N丰度小于5%: 当 丰度小于5
质量为28离子流强度/质量为29 28离子流强度 R = 质量为28离子流强度/质量为29 子流强度
放电管装入燃烧室固定架上 放电管装入燃烧室固定架上。 装入燃烧室固定架上。
利用稳定同位素技术研究代谢动力学和营养与健康的关系

利用稳定同位素技术研究代谢动力学和营养与健康的关系稳定同位素技术是一种先进的生物医学研究手段,它以同位素标记分子的代谢过程为基础,通过分析同位素比值的变化来解析生物大分子的代谢途径。
利用稳定同位素技术研究营养与健康的关系,已成为营养学和健康科学领域的研究热点。
本文将深入探讨稳定同位素技术在代谢动力学和营养与健康关系研究中的应用。
一、稳定同位素技术概述稳定同位素技术是一种以非放射性稳定同位素标记大分子化合物,进而追踪其代谢过程的生物医学研究手段。
可以用来研究蛋白质代谢、碳水化合物代谢、脂类代谢等众多代谢途径,不仅提供了对人体健康问题的深入了解,也在疾病研究、药物研发和精准医疗等领域起到了重要作用。
二、稳定同位素技术在代谢动力学研究中的应用稳定同位素技术能够在非放射性的情况下完成代谢分析,使研究者可以通过同位素标记的分子来追踪其代谢途径。
在代谢动力学研究中,该技术可以用来解析代谢途径、代谢产物的生产量、代谢速度及能量流动等多方面问题。
下面,将分别从蛋白质代谢、碳水化合物代谢和脂质代谢三个方面来介绍其在代谢动力学研究中的应用:1.蛋白质代谢稳定同位素标记的蛋白质可以通过稳定性同位素比对其酸或碱水解产物中的同位素比例进行测定。
通过测定不同时间点的同位素比值变化,可以研究蛋白质的代谢速度、半衰期和组成成分等,从而探究蛋白质代谢途径和蛋白质代谢与健康的关系。
2.碳水化合物代谢稳定同位素标记的碳水化合物可以跟踪其在体内的代谢过程,例如可跟踪乳糖、葡萄糖和葡萄糖异构体等,其代谢速度和代谢途径均可由其同位素比率证明。
通过测定不同时间点的同位素比值变化,可以研究碳水化合物的代谢速度、组成和热效应等,从而探究碳水化合物代谢途径、机制和与健康的关系。
3.脂类代谢稳定同位素标记的脂类可以通过同位素标记法追踪其在体内代谢过程,如胆固醇、脂肪酸和磷脂酰肌醇等。
通过测定不同时间点的同位素比值变化,可以研究脂类的代谢速度、组成和合成过程等,从而探究脂类代谢途径、机制和与健康的关系。
稳定性同位素的概念

稳定性同位素的概念稳定性同位素是指在物理条件下,原子核中的质子和中子数量都保持不变的同位素。
同位素是由于原子核中的中子和质子数量的变化而产生的,而稳定性同位素是指在某一种特定原子核中的质子和中子数量采取了一种最稳定的状态。
在自然界中,存在许多不同的元素,每个元素都包括多种同位素。
其中,某些同位素是非常不稳定的,具有较短的半衰期,并会通过放射性衰变逐渐转变为其他元素。
而稳定性同位素则相对较稳定,具有较长的半衰期,其核内质子和中子的比例会在相当长的时间内保持相对稳定。
稳定性同位素的稳定性是由其核内的质子和中子之间的相互作用力决定的。
核内的质子具有正电荷,它们之间会发生相互排斥的作用力。
而质子和中子之间的作用力则是吸引力,由强力和电磁力共同作用产生。
在一个原子核中,质子和中子的数量比例会决定具体的核力情况。
如果质子和中子的数量比例是最稳定的,那么这种同位素就是稳定的。
同位素的稳定性与其核内质子和中子的数量比例的平衡性息息相关。
目前我们已经知道,质子和中子的数量比例对于同位素的稳定性具有重要影响。
一些稳定性同位素在原子核中质子和中子的数量比例较为接近,或呈现奇偶规律,以保持核内的相对稳定。
例如,碳(C)元素有两种主要同位素,碳-12和碳-14,其中碳-12的质子和中子数量比例为6:6,而碳-14的质子和中子数量比例为6:8,以碳-12为主要同位素,碳-14则通过放射性衰变逐渐转变为氮。
稳定性同位素在科学研究、医学诊断、地质研究、环境监测等领域具有广泛的应用。
稳定同位素的原理可以通过同位素质谱仪来测量,该仪器可以分析样品中不同同位素的含量。
在地质研究中,通过稳定性同位素分析,科学家可以了解地球演化过程中气候和环境的变化。
例如,通过分析岩石中的氧同位素比例,可以了解古气候的变化情况。
水体中的氢同位素分析则可以追踪水文循环和水资源管理。
在环境科学研究中,稳定同位素技术也被广泛应用。
例如,稳定同位素分析可以用于追踪土壤和水体中污染物的来源和迁移行为。
稳定同位素材料

稳定同位素材料
稳定同位素材料指的是某元素中不发生或极不易发生放射性衰变的同位素材料。
稳定同位素材料具有广泛的应用价值,包括但不限于以下几个方面:
1. 核工业:某些稳定同位素可用于制造中子计数管、反应堆的控制棒和热中子屏蔽材料。
2. 医学领域:某些稳定同位素可用于治疗癌症,例如硼中子俘获治疗。
3. 半导体行业:某些稳定同位素可作为掺杂剂,用于生产高度集成、高密度的微型芯片。
4. 钢材添加剂:某些稳定同位素可作为钢材的添加剂,提高反应器的耐高温、耐辐射性能。
此外,稳定同位素材料在地质学、生物学等领域也有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳定性同位素示踪法
概述:
1、1912年,Thomson首发现稳定性核素20Ne 和22Ne(氖)。 2、1929年,Naude发现了15N。
3、1937年,Urey等首次报道人工生产15N的 方法。
4、1940年,先后获得具生物意义的15N、18O 和2H大量生产。
5. 1947年9月在美国Wisconsin大学召开了“同位素 在生物学和医学中应用”专题讨论会,从此开始 了稳定性核素示踪技术应用的新纪元。
(4) 仪器精确度检查(检查去O2后的空气或 纯N气)。
2.分析样品的制备:
(1) K氏法(Kjeidali) 质谱分析常用法。
A.样品的消化:(例:0.05g植样+10ml浓
H2S04+3.3g催化剂(Se:CuSO4:K2SO4为1:10:100) → 样 液 清 亮 再 消 煮 5h ( 土 ) 或 2h( 植 ) , 温 度 120-140℃。
3.予测样品测定项目……
五、质谱和光谱测定15N原理
14N和15质量不同 质谱:把N2离子化为28N-N2,29N-N2 ,30N-N2 使其 在均匀磁场中发生不同角度偏转 光谱:28N-N2:谱线波长为2976.8埃
29N-N2:谱线波长为2982.9埃 30N-N2:谱线波长为2988.6埃
1800的均匀磁场
即某核素在该组同位素中浓度。
自然丰度(Natural abundaa) A自(AO)
15N:0.365%、18O:0.204%
原子百分超(Atom percent excess) a
a = A-A自 又称富集度(Enrichment)
富集15N(Enriched 15N) 贫化15N(Depeled 15N )
3. 混合标记化合物: ( 15NH2)13CO (13C15N)尿 素
二. 稳定性同位素示踪法的特点:
1.无放射性,无辐射效应及不良影响。 2.安全、对人无伤害。 3.无污染,不受环境条件限制。 4.无衰变,实验时间不受限制。 5.可进行放射性示踪法难以进行的实验。 例:N素中T最长的13N:T=9.096m
纯样品火焰为粉红色或淡黄色
注意:
如果是液体样品。需用毛细玻璃 管(1cm Φ2mm)吸满样液,烘干 后再放入放电管。
CuO 、 CaO 使 用 前 用 700℃ 高 温 烘干除去CO2,H2O,
七.15N实验结果计算
由质量为28、29、30的峰值直接算出:
[29]+2[30]
A=
×100%
2([28]+[29]+[30])
6. 近20年,稳定性核素示踪技术迅速发展,分离分析方 法取得了较大突破,13C、2H、18O、15N广泛应用于生物 学、医学、环保、农药、农学、微生物等研究领域。我 国先后分离了25种元素的100多种稳定性核素,例如: 15N标记化合物就有30余 种。
几个概念
稳定性同位素(Stable isotope) 丰度(Abundance) A
一.稳定性同位素示踪法的基本依据:
1.自然界中一种元素的同位素组成是相对恒定 2.同一元素的同位素具有相同的化学性质 3.同一元素的同位素之间存在质量差异
元素 H B C N O
重要化学元素的稳定性同位素
同位素
自然丰度
样品来源
1H
99.985
新鲜的表面淡水
2 H(D)
0.0147
10B
18.46
三. 稳定性同位素分析法的基本流程
同位素引入生物体
动植物原始样品 仪器所需的待测样品
进样过程
质谱分析法
光谱分析法
记录
实验结果分析
注意事项:
1.同位素交换反应:在一定条件下,标记 的铵盐可与大气发生反应:
15NH+4 水 溶 液 +14NH3→14NH+4 水 溶 液 +15NH3 15N丰度高时应注意。 2.同位素效应:藻类对14C、13C、12C的吸 收依次递减。
加 速
出口
电
入口
压
六.供仪器待测样品的制备、测量
1.对待测样品的要求:
(1) 因为测量的是不同质量离子流的相对含 量,因此,保证有一定的N量即可。一般要求 含N量1mg/ml最少不低于0.5mg。
(2) 仪器的本底检查。
(3)离子峰的选择(14N和15N的峰比28N、29N小 10倍,选28N、29N、30N)。
B.蒸馏:
用蒸汽蒸馏将消化液中NH3分离出来,并测定 总N。 方法:消化液中加过量40%NaOH,释放的NH3被蒸汽 逐出,经冷凝后被2%硼酸吸收,加入混合指示剂 用标准硫酸滴定(设置一个标准液)。 此步骤将NH3-N转变成了NH4+-N(铵态N),仪器 分析适宜量1mgN/2-3ml(浓缩或稀释)。
(2).杜马法(Dumas)
—光谱分析中常用法 适用于含N量低(少于100 μg) 的样品,光谱测量。
方法:
A.在放电管中装入样品,氧化剂(CuO) 及吸收剂(CaO)抽真空,抽完后熔封放 电管。
在 马 福 炉 中 燃 烧 0.5-3h ( 560℃ ) 样 品 , (CaO吸收CO2和H2O)以产生N2。 B.冷却至室温后在光谱仪上测定
意大利天然硼酸盐
11B
81.54
12C
98.892
捷克扑利兹石灰石
13C
1.108
14N
99.635
大气中的氮气
15N
0.365
16O
99.759
大气中的氧气
17O
0.0374
18O
0.2039
同位素 12N 13N 14N 15N 16N 17N 18N
氮的同位素表
射线种类 半衰期
β+
0.011S
C.将NH4+-N转化为N2气 :
在真空条件下,将上述样品与次溴酸钠反 应,放出N2
制样时注意:
1.所有试剂纯度要高。
2.消化要完全。
3.防止样品间交叉污染(每个样品 蒸馏前用蒸馏15ml乙醇洗器皿)。
4.“Y”型管及内部反应抽气须彻底, 防其它气体干扰。
以下在光谱仪上进行,可用液体样 品也可用干样品
β+
9.96m
-
-
-
-
β-
7.1S
β-பைடு நூலகம்
4.15S
β-
0.63S
自然丰度
99.635 0.365
稳定性同位素标记物的命名
1978年国际纯化学和化学联合会IUPAC的命名 法: 1. 单标记化合物: H215N-CO-NH2 15N-尿素,例 如15N的丰度可为5%,10%,15%…… 2. 双标记化合物(一个同位素): H215N-CO-15NH2 尿素