高一物理力的合成知识点总结
高一物理力的合成和分解知识点

高一物理力的合成和分解知识点力的合成和分解是高中物理中一个非常重要的知识点,它是力学研究的基础。
在这篇文章中,我们将探讨力的合成和分解的概念、方法以及应用。
一、力的合成力的合成是指将多个力合成为一个力的过程。
当多个力作用于同一个物体时,可以将它们合成为一个等效的力。
1.1 向量图示法向量图示法是力的合成的一种常用方法。
我们将多个力用箭头表示,箭头的长度代表了力的大小,箭头的方向表示了力的方向。
将多个力的箭头连在一起,起点为物体的起始位置,终点为物体的终止位置,最后结果的箭头即为合成力。
1.2 分解求合分解求合是另一种常用的力的合成方法。
对于平行四边形法则中的图形,我们可以用三角形法则将合力分解为两个分力。
分解时,需要确定一个参考方向,将合力拆分为垂直于参考方向的两个分力。
二、力的分解力的分解是指将一个力分解为平行或垂直于某一方向的两个力的过程。
力的分解可以将一个复杂的问题简化为两个相对简单的问题,便于计算。
2.1 平行分解平行分解是将一个力分解为平行于某一参考方向的两个力的过程。
利用力的平行四边形法则,我们可以通过确定一个参考方向,将合力拆分为两个平行力。
2.2 垂直分解垂直分解是将一个力分解为垂直于某一参考方向的两个力的过程。
利用力的三角形法则,我们可以通过确定一个参考方向,将合力拆分为一个垂直于参考方向的力和一个平行于参考方向的力。
三、力的合成和分解的应用力的合成和分解在物理学中有广泛的应用。
下面我们将介绍几个常见的应用。
3.1 平面力问题在平面力问题中,物体受到多个平面力的作用。
利用力的合成和分解的方法,可以将这些力合成为一个等效力,从而简化问题的求解。
3.2 斜面上的力在斜面上,一个物体同时受到重力和斜面给予的支持力的作用。
利用力的分解,我们可以将这两个力分解为平行于斜面和垂直于斜面的两个力,以便求解问题。
3.3 物体受力平衡问题在物体受力平衡问题中,物体受到多个力的作用,且力的合力为零。
高一物理力的合成与分解计算公式归纳

高一物理力的合成与分解计算公式归纳力的合成与分解是高一物理教材重要学习内容,下面是店铺给大家带来的高一物理力的合成与分解计算公式归纳,希望对你有帮助。
高一物理力的合成与分解计算公式1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2 (F1>F2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
高一物理学习方法一、课前认真预习预习是在课前,独立地阅读教材,自己去获取新知识的一个重要环节。
课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。
对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。
二、主动提高效率的听课带着预习的问题听课,可以提高听课的效率,能使听课的重点更加突出。
课堂上,当老师讲到自己预习时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。
同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。
三、定期整理学习笔记在学习过程中,通过对所学知识的回顾、对照预习笔记、听课笔记、作业、达标检测、教科书和参考书等材料加以补充、归纳,使所学的知识达到系统、完整和高度概括的水平。
高一物理知识点解析力的合成与分解

高一物理知识点解析力的合成与分解在高一物理学习中,力是一个重要的概念。
而在实际问题中,力可以通过合成与分解的方法进行分析和计算。
本文将解析力的合成与分解的相关知识点,并介绍其应用。
一、力的合成与分解的基本概念力的合成是指将多个力的作用效果合而为一的操作。
在合成过程中,可以使用三角法则或平行四边形法则进行计算。
三角法则适用于两个力的合成,而平行四边形法则适用于任意数量的力的合成。
力的分解是指将一个力拆分为多个作用方向不同的力的操作。
力的分解过程中,可以使用正弦定理和余弦定理进行计算。
通过分解,可以区分力的作用方向和大小,从而更好地分析力的作用效果。
二、力的合成与分解的数学表示在力的合成与分解中,常用矢量的数学表示来描述力的大小和方向。
矢量的表示形式可以是箭头图、坐标表示或单位矢量表示。
1. 箭头图表示:在箭头图中,力的大小用箭头的长度表示,箭头的方向表示力的方向。
2. 坐标表示:在坐标表示中,力的大小和方向可以用矢量的坐标表示。
一般而言,力在水平方向上的分量表示为Fx,力在竖直方向上的分量表示为Fy。
利用三角函数的关系,可以将力的大小和方向与其分量联系起来。
3. 单位矢量表示:单位矢量表示是力的强度和方向的数学表示方法。
通常用i、j、k分别表示力在x、y、z轴方向上的单位矢量。
通过力的分量与单位矢量相乘,可以得到力的向量表示。
三、合成与分解的应用案例1. 合成的应用案例:假设有两个力F1和F2,其大小分别为10N和20N,方向分别为向右和向上。
根据三角法则,可以将F1和F2合成为合力F3。
利用勾股定理和正切函数,可以计算出F3的大小和方向。
2. 分解的应用案例:假设一个力F斜向上作用在一个斜面上,需要将F分解为垂直于斜面和平行于斜面的两个力F1和F2。
通过正弦定理和余弦定理,可以计算出F1和F2的大小和方向。
四、力的合成与分解的实际应用力的合成与分解在实际生活和工程中有着广泛的应用。
1. 飞行力学:在航空航天工程中,飞机的升力和阻力可以通过合成和分解进行分析和计算,从而优化设计和改进飞行性能。
高一物理合力知识点归纳

高一物理合力知识点归纳物理,作为一门自然科学学科,对于学生来说可能并不好学。
尤其是高一物理,其中不乏一些抽象且难懂的概念。
而合力作为物体受力的综合效果,是物理学中重要的概念之一。
本文将对高一物理中的合力知识点进行归纳和梳理,帮助学生更好地理解和掌握这一内容。
合力,顾名思义即力的合成或合成力。
合力的性质包括大小、方向和作用点。
合力的大小等于各个力的矢量和;合力的方向与物体所受合力的力矩有关;合力的作用点与物体所受合力的力矩、力矩的大小和方向有关。
在物理学中,合力的概念与向量的加法密切相关。
合力的计算可以通过向量的几何方法和代数方法进行。
一、合力的几何方法合力的几何方法主要是通过图示和几何方法来计算合力的大小和方向。
以平面内的合力为例,设有两个力 F1 和 F2,其大小分别为 F1 = 2N,F2 = 3N。
可以通过绘制一个以 F1 和 F2 作为边的平行四边形来表示合力的大小和方向。
对于平行四边形的对角线,可以使用平行四边形法则进行计算,即合力的大小等于对角线的长度,合力的方向则与对角线的方向相同。
二、合力的代数方法合力的代数方法主要是通过分解力和合成力的原理来计算合力的大小和方向。
分解力的原理是将合力分解为两个或多个力的合成。
以平面内的合力为例,设有两个力 F1 和 F2,其大小分别为 F1 = 2N,F2 =3N。
可以将合力分解为与 F1 和 F2 方向相同的两个力 F1' 和 F2',使得 F1' + F2' = F。
可以通过三角函数的知识进行计算,即 F1' =F1*cosθ,F2' = F2*cosθ。
其中θ 是两个力之间的夹角。
合成力的原理是将多个力合成为一个力。
以平面内的合力为例,设有两个力 F1 和 F2,其大小分别为 F1 = 2N,F2 = 3N。
可以通过合成力的方法计算合力的大小和方向。
合力的大小等于各个力的矢量和,合力的方向与物体所受合力的力矩有关。
高一物理-力的合成与分解

第三讲 力的合成与分解知识点一:力的合成合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力 力的合成:求几个已知力的合力叫做力的合成①共点力:几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力 ②平行四边形定则:根据两个分力的大小和方向,用力的图示法,从力的作用点起,按同一标度作出两个分力 F 1、F 2,以F 1、F 2为邻边作平行四边形,它的对角线就表示合力的大小及方向③矢量三角形法则:将两分力F 1、F 2首尾相接(有箭头的叫尾,无箭头的叫首),由F 1的首端指向F 2的尾端 的有向线段即为合力F 的大小及方向二力合成:2121F FF F F +≤≤-合,θ越大,F 合越小 ①当︒=0θ时,即两个力的方向一致,21F F F +=合,为最大②当︒=180θ时,即二力方向相反,21-F F F =合,为最小,且方向与较大的力的方向一致③当︒=90θ时,2221F F F +=合,12tan F F =θ④当︒=120θ,且F 1=F 2时,F 合=F 1=F 2,合力的方向在两分力的夹角平分线上 题型一、概念理解1. 关于两个大小不变的共点力与其合力的关系,下列说法正确的是( )A 合力大小随两力夹角增大而增大B 合力的大小一定大于分力中最大者C 两个分力夹角小于180°时,合力大小随夹角减小而增大D 合力的大小不能小于分力中最小者 2、 关于共点力,下列说法中不正确的是( )A 作用在一个物体上的两个力,如果大小相等,方向相反,这两个力是共点力B 作用在一个物体上的两个力,如果是一对平衡力,则这两个力是共点力C 作用在一个物体上的几个力,如果它们的作用点在同一点上,则这几个力是共点力D 作用在一个物体上的几个力,如果它们力的作用线汇交于同一点,则这几个力是共点力 3、 关于两个分力F 1、F 2与它们的合力F ,下列说法中正确的是( )A 合力F 的作用效果一定与F 1 , F 2共同作用产生的效果相同B F 1、 F 2一定是同种性质的力C F 1、 F 2 不一定是同一个物体受的力D F 1、F 2与F 是物体同时受到的三个力 4、 关于合力与其两个分力的关系,下列说法正确的是( )A 合力的大小一定大于小的分力,小于大的分力B 合力的大小随分力夹角的增大而增大C 合力的大小一定大于任何一个分力D 合力的大小可能大于大的分力,也可能小于小的分力题型二、力的合成1. 如下图所示,F 1、F 2、F 3恰好构成封闭的直角三角形,这三个力的合力最大的是( )2. 作图求下图所示各种情况下三个力的合力大小( )3. 如图所示,重为100N 的物体在水平向左的力F =20N 作用下,以初速度v 0沿水平面向右滑行。
高一物理讲义《力的合成与分解》

考试要求内容基本要求 略高要求 较高要求力的合成掌握力的合成法则灵活选用力的合成法则分析计算问题 用力的合成方法处理较复杂的力学问题 力的分解掌握常见的力的分解方法用效果分解法和正交分解法分解力用力的分解方法处理较复杂的力学问题知识点1 力的合成 1.合力当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力的作用效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力(resultant force ). 2.共点力如果一个物体受到两个或者更多力的作用,有些情况下这些力共同作用在同一点上,或者虽不作用在同一点上,但他们的力的作用线延长线交于一点,这样的一组力叫做共点力(concurrent forces ). 3.共点力的合成法则求几个已知力的合力叫力的合成(composition of forces ).力的合成就是找一个力去替代几个已知的力,而不改变其作用效果.力的平行四边形定则(parallelogram rule ):如右图所示,以表示两个力的有向线段为邻边作平行四边形,这两边夹角的对角线大小和方向就表示合力的大小和方向.(只适用于共点力)下面根据已知两个力夹角θ的大小来讨论力的合成的几种情况:(1)当0θ=︒时,即12F F 、同向,此时合力最大,12F F F =+,方向和两个力的方向相同.(2)当180θ=︒时,即12F F 、方向相反,此时合力最小,12F F F =-,方向和12F F 、中较大的那个力相同.(3)当90θ=︒时,即12F F 、相互垂直,如图,2212F F F =+,12tan F F α=. (4)当θ为任意角时,根据余弦定律,合力2212122cos F F F F F θ=++知识讲解力的合成与分解根据以上分析可知,无论两个力的夹角为多少,必然有1212F F F F F -+≤≤成立. 力的三角形定则(triangular rule )和多边形法则力的平行四边形定则,也可以用力的矢量三角形表示,如图甲可用图乙的力的三角形法表示,即将待合成的力按原来力的方向“首”、“尾”相接,合力即为起于一个力的“首”,止于另一个力的“尾”的有向线段.力的多边形法则:若是物体受到的几个力的合力为零,那么这几个力按照力的图示首尾相接,可以组成一个封闭的矢量多边形.物体处于平衡状态时,所受合外力为零,反之也正确.4.解题方法(1)图解法:从力的作用点起,依两个分力的作用方向按同一标度作出两个分力1F 、2F ,并构成一个平行四边形,这个平行四边形的对角线的长度按同样比例表示合力的大小.对角线的方向就是合力的方向,通常可用量角器直接量出合力F 与某一个力(如1F )的夹角ϕ,如图所示.(2)计算法:从力的作用点按照分力的作用方向画出力的平行四边形后,算出对角线所表示的合力的大小.【例1】 某物体在三个共点力作用下处于平衡状态,若把其中一个力1F 的方向沿顺时针转过90︒而保持其大小不变,其余两个力保持不变,则此时物体所受到的合力大小为( ) A .1FB .12FC .12FD .无法确定【例2】 将二力F 1、F 2合成F 合,则可以肯定 ( )A .F 1和F 合是同一性质的力B .F 1、F 2是同一施力物体产生的力C .F 合的效果与F 1、F 2的总效果相同D .F 1、F 2的代数和等于F 合【例3】 如图所示,用两根绳子吊着一个物体,逐渐增大两绳间的夹角,物体始终保持静止,则两绳对物体的拉力的合力( )例题精讲A .大小不变B .逐渐增大C .逐渐减小D .先减小后增大【例4】 有两个大小恒定的力,作用在一点上,当两力同向时,合力为A ,反向时合力为B ,当两力相互垂直时,其合力大小为( ) A .22A B + B .22()/2A B + C .A B + D .()/2A B +【例5】 两个大小相等的共点力12F F 、,当它们间的夹角为90︒时合力大小为20N ,则当它们间的夹角为120︒时,合力的大小为多少?【例6】 三个共点力12N F =,25N F =,38N F =则( )A .1F 可能是2F 与3F 的合力B .2F 可能是1F 与3F 的合力C .3F 可能是1F 与2F 的合力D .以上三种说法都不正确【例7】 右图给出了六个力1234456F F F F F F F 、、、、、、,它们作用于同一点O ,大小已在图中标出,相邻的两个力之间的夹角均为60︒,则这六个力的合力大小为( )A .20NB .40NC .60ND .0【例8】 如图为节日里悬挂灯笼的一种方式,A 、B 点等高,O 为结点,轻绳AO 、BO 长度相等,拉力分别为A F 、B F ,灯笼受到的重力为G .下列表述正确的是( ) A .A F 一定小于G B .A F 与B F 大小相等 C .A F 与B F 是一对平衡力 D .A F 与B F 大小之和等于G【例9】 如图所示,质量为5kg 的物体,在水平面上向右运动,此时所受到的水平力向右,20N F =,物体与地面之间的动摩擦因数为0.2μ=,则物体所受到的合力为( ) A .20N ,水平向右 B .9.8N ,水平向左 C .29.8N ,水平向右D .10.2N ,水平向右【例10】如图所示,一木块在拉力F的作用下,沿水平面做匀速直线运动,则拉力F和摩擦力fF的合力的方向是()A.向上偏右B.向上偏左C.向上D.向右【例11】如图所示,轻绳MO和NO共同吊起质量为m的重物.MO与NO垂直,MO与竖直方向的夹角30θ=︒.已知重力加速度为g.则()A.MO所受的拉力大小为32 mgB.MO所受的拉力大小为233mgC.NO所受的拉力大小为33 mgD.NO所受的拉力大小为2mg【例12】用三根轻绳将质量为m的物块悬挂在空中.如图所示.已知绳ac 和bc与竖直方向的夹角分别为30°和60°,则ac绳和bc绳中的拉力分别为()A.31,22mg mg B.13,22mg mgC.31,42mg mg D.13,42mg mg【例13】用一根长1m的轻质细绳将一副质量为1kg的画框对称悬挂在墙壁上,已知绳能承受的最大张力为10N,为使绳不断裂,画框上两个挂钉的间距最大为(g取210m/s)()A.3m2B.2m2C.1m2D.3m4【例14】两个人在两岸用绳拉小船在河流中行驶.如图所示,已知甲的拉力是200N,拉力方向与航向夹角为60︒,乙的拉力大小为2003N,且两绳在同一水平面内.若要使小船能在河流正中间沿直线行驶,乙用力的方向如何?小船受到两拉力的合力为多大?【例15】某同学做“探究力的平行四边形定则”的实验时,主要步骤是:A.在桌上放一块方木板,在方木板上铺一张白纸,用图钉把白纸钉在方木板上;B.用图钉把橡皮条的一端固定在板上的A点,在橡皮条的另一端拴上两条细绳,细绳的另一端系着绳套;C.用两个弹簧测力计分别钩住绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O,记录下O点的位置,读出两个弹簧测力计的示数;D.按选好的标度,用铅笔和刻度尺作出两只弹簧测力计的拉力F1和F2的图示,并用平行四边形定则作出合力F;E.只用一只弹簧测力计,通过细绳套拉橡皮条使其伸长,读出弹簧测力计的示数,记下细绳的方向,按同一标度作出这个力F′的图示;F.比较F′和F的大小和方向,看它们是否相同,得出结论.上述步骤中:(1)有重要遗漏的步骤的序号是________和________;(2)遗漏的内容分别是_____________________________________________________和______________________________.【例16】如图实所示是甲、乙两位同学在“探究力的平行四边形定则”的实验中所得到的实验结果,若用F 表示两个分力F1、F2的合力,用F′表示F1和F2的等效力,则可以判断________(填“甲”或“乙”)同学的实验结果是符合事实的.【例17】如图所示,轻质光滑滑轮两侧用细绳连着两个物体A与B,物体B放在水平地面上,A、B均静止.已知A和B的质量分别为m A、m B,绳与水平方向的夹角为θ,则()A.物体B受到的摩擦力可能为0B.物体B受到的摩擦力为m A gcosθC.物体B对地面的压力可能为0D.物体B对地面的压力为m B g-m A gsinθ【例18】在研究共点力合成实验中,得到如图所示的合力与两力夹角θ的关系曲线,关于合力F的范围及两个分力的大小,下列说法中正确的是()A.2N≤F≤14N B.2N≤F≤10NC.两力大小分别为2N、8N D.两力大小分别为6N、8N【例19】如图所示,物体A在同一平面内的四个共点力F1、F2、F3和F4的作用下处于静止状态,若其中力F1沿逆时针方向转过120°而保持其大小不变,且其他三个力的大小和方向均不变,则此时物体所受的合力大小为()θFA.2F1B.3F1C.F1D.3 2F1【例20】一质量为m的物块恰好静止在倾角为θ的斜面上.现对物块施加一个竖直向下的恒力F,如图所示.则物块()A.仍处于静止状态B.沿斜面加速下滑C.受到的摩擦力不便D.受到的合外力增大【例21】有些人员,需要知道绳(或金属线)中的张力F T,可又不便到绳(或线)的自由端去测量.现某家公司制造了一种夹在绳上的仪表(图中B、C为该夹子的横截面).测量时,只要如图示那样用一硬杆竖直向上作用在绳上的某点A,使绳产生一个微小偏移量a,借助仪表很容易测出这时绳对硬杆的压力F.现测得该微小偏移量为a=12mm,BC间的距离为2L=250mm,绳对横杆的压力为F=300N,试求绳中的张力F T.知识点2 力的分解知识讲解1.分力几个力共同产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力.2.力的分解(1)求一个已知力的分力叫做力的分解.(2)分解规律:力的分解是力的合成的逆运算,同样遵守平行四边形定则,即把已知力作为平形四边形的对角线,那么,与已知力共面的平行四边形的两条邻边就表示已知力的两个分力.3.力的分解方法力的分解方法:根据力F 产生的作用效果,先确定两个分力的方向,再根据平行四边形定则用作图法作出两个分力1F 和2F 的示意图,最后根据相关数学知识计算出两个分力的大小.实际上,对于同一条对角线,可以作出无数个不同的平行四边形.也就是说,同一个力可以分解为无数对大小、方向不同的分力.一个已知力究竟应该怎样分解,这要根据实际情况来决定. 4.力的正交分解方法正交分解法是把力沿着两个经选定的互相垂直的方向作分解,其目的是便于运用普通代数运算公式来解决矢量的运算,它是处理力的合成和分解的复杂问题的一种简便方法,其步骤如下: (1)正确选定直角坐标系.通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际问题来确定,原则是使坐标轴与尽可能多的力重合,即:使向两坐标轴投影分解的力尽可能少.在处理静力学问题时,通常是选用水平方向和竖直方向上的直角坐标,当然在其他方向较为简便时也可选用. (2)分别将各个力投影到坐标轴上,分别求出x 轴和y 轴上各力的投影的合力xF 和y F :123x x x x F F F F =+++⋯ 123y y y y F F F F =+++⋯(式中的1x F 和1y F 是1F 在x 轴和y 轴上的两个分量,其余类推.)这样,共点力的合力大小为:22x y F F F =+.设合力的方向与x 轴正方向之间的夹角为α,因为tan y xF F α=,所以,通过查数学用表,可得α数值,即得出合力F 的方向.特别的:若0F =,则可推得0x F =,0y F =.这是处理多个力作用下物体平衡问题的常用的好办法.例题精讲【例22】 把一个力分解为两个力1F 和2F ,已知合力为40N F =,1F 与合力的夹角为30︒,如图所示,若2F 取某一数值,可使1F 有两个大小不同的数值,则2F 大小的取值范围是什么?【例23】 在图中,叠放在物体C 的斜面上的物体A 与B ,共同沿斜面匀速下滑,下列说法正确的是( )A .B 物体受重力、A 给的正压力、C 给的支持力B .B 物体受重力、A 对B 的正压力和静摩擦力、C 对B 的支持力和滑动摩擦力 C .A 物体受重力和B 对A 的支持力D .C 物体的斜面受到A 对C 的正压力,B 对C 的摩擦力【例24】 在图中电灯的重力为20N ,绳AO 与天花板间的夹角为45︒,绳BO 水平.求绳AO 、BO 所受的拉力.C ABO【例25】 一攀岩运动员正沿竖直岩壁缓慢攀登,由于身背较重的行囊,重心上移至肩部的O 点,总质量为60 kg .此时手臂与身体垂直,手臂与岩壁夹角为53°.则手受到的拉力和脚受到的作用力分别为(设手、脚受到的作用力均通过重心O ,g 取10 m/s 2,sin53°=0.8,cos53°=0.6)( ) A .360N 480N B .480N 360N C .450N 800ND .800N 450N【例26】 如图所示装置,两物体质量分别为1m 、2m ,悬点ab 间的距离大于滑轮的直径,不计一切摩擦,若装置处于静止状态,则( )b θ2θ1aF 1的方向30︒FOA .2m 可以大于1mB .2m 一定大于12m C .2m 可能等于12mD .1θ一定等于2θ【例27】 如图所示,OA 为一粗糙的木板,可绕O 在竖直平面内转动,板上放一质量为m 的物块,当缓慢使板沿逆时针方向转动,物块始终保持静止,则下列说法中正确的是( ) A .物块受到的静摩擦力逐渐增大 B .物块对木板的压力逐渐减小 C .物块受到的合力逐渐增大D .木板对物块的支持力及静摩擦力的合力不变【例28】 如图所示,一物块置于水平地面上.当用与水平方向成60角的力1F 拉物块时,物块做匀速直线运动;当改用与水平方向成30角的力2F 推物块时,物块仍做匀速直线运动.若1F 和2F 的大小相等,则物块与地面之间的动摩擦因数为( ) A .31- B .23-C .3122- D .1-32【例29】 小船用绳索拉向岸边,如图所示,船在水中运动时设水的阻力大小不变,那么在小船匀速靠岸的过程中,下列哪句话是正确的( ) A .绳子的拉力F 不断增大 B .绳子的拉力F 不变 C .船的浮力减小 D .船的浮力增大【例30】 如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,绳上的拉力将( )A .逐渐增大B .逐渐减小C .先增大后减小D .先减小后增大【例31】 如图所示是用来粉刷墙壁的涂料滚的示意图.使用时,用撑竿推着涂料滚沿墙壁上下滚动,把涂料均匀地粉刷到墙壁上.撑竿的重量和墙壁的摩擦均不计,而且撑竿足够长.粉刷工人站在离墙壁某一距离处缓缓上推涂料滚,使撑竿与墙壁间的夹角越来越小.该过程中撑竿对涂料滚的推力为F 1,墙壁对涂料滚的支持力为F 2,下列说法正确的是( ) A .F 1、F 2均减小B .F 1、F 2均增大C .F 1减小,F 2增大D .F 1增大,F 2减小【例32】 如图所示,用一根长为l 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向夹30°角且绷紧,小球A 处于静止,对小球施加的最小的力是( ) A .3mg B .32mg C .12mg D .33mg【例33】 如图所示,质量为m 的等边三棱柱静止在水平放置的斜面上.已知三棱柱与斜面之间的动摩擦因数为μ,斜面的倾角为30︒,则斜面对三棱柱的支持力与摩擦力的大小分别为( ) A .32mg 和12mg B .12mg 和32mg C .12mg 和12mg μD .32mg 和32mg μ 【例34】 如图甲所示轻绳AD 跨过固定在水平横梁BC 右端的定滑轮挂住一个质量为1m 的物体.30ACB ∠=︒;图乙中轻杆HG 一端用铰链固定在竖直墙上,另一端G 通过细绳EG 拉住,EG 与水平方向也成30︒,轻杆的G 点用细绳GF 拉住一个质量为2m 的物体,求细绳AC 段的张力AC T 与细绳EG 的张力EG T 之比.【例35】 某压榨机的结构示意图如图所示,其中B 点为固定铰链.若在A 铰链处作用一垂直于壁的力F ,则由于F 的作用,使滑块C 压紧物体D .设滑块C 与物体D 光滑接触,杆的重力不计,压榨机的尺寸如图所示,求物体D 所受的压力大小是F 的多少倍.(滑块C 重力不计)【例36】 如图所示,杆AB 重20N ,为了使杆处于竖直位置,用一根与竖直方向成30°角的斜绳AC 拉住杆,测得该绳的拉力为100N .求: (1)水平绳AD 的拉力是多少?(2)杆对地面的压力为多少?【例37】已知如图,A的重量为G.在F的作用下,沿斜面向上滑动,若动摩擦因数为μ,求:滑动摩擦力的大小.μ.有甲、乙两个人,一个在前【例38】水平面上的木箱质量是200kg,它与地面间的动摩擦因数为0.2=面拉,一个在后面推.假设拉力与推力大小相等,都是400N,且与水平方向的夹角都是45︒,如图所示.试判断这两个人是否能推动木箱.FFO基础演练1、把一个力分解为两个力时()A.一个分力变大时,另一个分力一定要变小B.两个分力不能同时变大C.无论如何分解,两个分力不能同时小于这个力的一半D.无论如何分解,两个分力不能同时大于这个力的2倍2、如图所示,有五个力作用于一点P,构成一个正六边形的两个邻边和三条对角线,设F3=10 N,则这五个力的合力大小为()A.10(2+2)N B.20N C.30N D.03、关于两个大小不变的共点力与其合力的关系,下列说法正确的是()A.合力大小随着两力夹角的增大而增大B.合力大小一定大于分力中最大者C.两分力夹角小于180°时,合力随夹角的减小而增大D.合力不能小于分力中最小者E.合力F一定大于任一个分力F.合力的大小可能等于F1也可能等于F2G.合力有可能小于任一个分力4、做“探究力的平行四边形定则”的实验,在水平放置的木板上铺一张白纸,把橡皮条的一端固定在木板的A点,橡皮条的另一端拴上两细绳套,如图所示,两个弹簧测力计分别钩住细绳套,互成角度拉橡皮条使之伸长,到达某一位置O时需记下__________、________,描下________,再用一个弹簧测力计钩住细绳套把橡皮条拉长,使结点到达位置________,再记下____________________.5、如图所示为逆风帆船航行的示意图,风斜吹向船帆对帆产生一个垂直于船帆方向的力F,正是这个力F为帆船的前进提供了动力.已知帆船沿其龙骨线方向匀速向前航行,船帆与龙骨线的夹角为30°,F 的大小为2000N,求船在前进方向上受到平均阻力的大小.课后练习1、关于力的合成与分解,下列说法正确的是()A.放在斜面上的物体,它的重力可以分解为一个沿斜面方向的下滑力和一个对斜面的正压力B.有三个共点力,它们的大小分别是4N、3N、6N,则它们的合力的最大值为13N,最小值为1NC.无论如何分解,两个分力不能同时小于合力的一半D.两个不同性质的力可以合成一个力2、三个共点力构成如图所示的示意图,则这三个力的合力大小为____________.3、如图所示,六个力的合力为_________N,若去掉1N的那个分力,则其余五个力的合力为__________,合力的方向是__________.4、吊环中有一个高难度的动作,就是先双手撑住吊环,然后身体下移,双臂缓慢张开到如图所示位置,则在两手之间的距离增大过程中,吊环的两根绳的拉力F T(两个拉力大小相等)及它们的合力F的大小变化情况为()A.F T增大,F不变B.F T增大,F增大C.F T增大,F减小D.F T减小,F不变5、如图所示,作用于O点的三个力平衡,设其中一个力大小为F1沿-y方向,大小未知的力F2与+x方向夹角为θ,下列说法正确的是()A.力F3只能在第二象限B.力F3可能在第三象限的任意方向上C.力F3与F2夹角越小,则F3与F2的合力越小D.F3的最小值为F1cosθ6、有两个大小不变的共点力F1和F2,它们合力的大小F合随两力夹角变化情况如图所示,则F1、F2的大小分别为多少?7、如图所示,AO、BO、CO是完全相同的三条绳子,将一根均匀的钢梁吊起,当钢梁足够重时,结果AO先断,则()A.α>120°B.α=120°C.α<120°D.不能确定8、如图所示,力F作用于物体的O点.现要使作用在物体上的合力沿OO'方向,需再作用一个力F1,则F1的大小可能为()A.F1=F·sinα B.F1=F·tanαC.F1=F D.F1<F sinα9、举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75kg,举起的杠铃的质量为125kg,如图甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10m/s2)10、已知如图,A的重量为G.在F的作用下,在水平面上滑动,若动摩擦因数为 ,求:滑动摩擦力的大小.。
高一物理力的合成知识点总结

高一物理力的合成知识点总结力的合成是物理学中一个非常重要的概念,它涉及到如何计算多个力的合力以及合力的方向。
在高一物理中,力的合成是一个需要掌握的基本知识点。
本文将从向量的概念、力的合成的基本原理和应用等方面进行讨论和总结。
一、向量的概念向量是物理学中经常用到的一个概念,它不仅包含了大小,还包含了方向。
在物理学中,向量通常用箭头表示。
向量的大小通常用代表其大小的字母加上一个上标箭头来表示,如A。
向量的方向通常用一个角度或者方向的名称来表示,如θ或者东南西北等。
二、力的合成的基本原理力的合成是指将多个力合成为一个力的过程。
力的合成有两种情况,分别是同方向合成和异方向合成。
1. 同方向合成同方向合成是指多个力的方向相同,合成后的力的大小等于各个力的大小之和。
例如,当一个物体被两个人用大小相等的力同时拉动时,合成后的力等于两个力的大小之和,且方向与这两个力的方向相同。
2. 异方向合成异方向合成是指多个力的方向不同,合成后的力的大小等于各个力的大小之差。
例如,当一个物体同时受到两个力,一个向上,一个向下,大小相等时,合成后的力为零,物体保持静止。
三、力的合成的应用力的合成在物理学中有着广泛的应用。
以下是一些常见的应用场景。
1. 利用力的合成解析平衡问题在分析平衡问题时,常常需要将多个力进行合成。
例如,当一个人同时作用于一个物体的两个方向不同的力时,我们可以通过力的合成来分析物体平衡的条件和可能的结果。
2. 力的合成在建筑工程中的应用在建筑工程中,我们常常需要将多个力合成为一个力来计算结构物的稳定性。
例如,当建筑物受到多个方向的风力时,我们可以通过合成这些风力来计算建筑物的总风载。
3. 物体运动中的力合成在研究物体运动的过程中,我们常常需要考虑多个力对物体的合成效果。
例如,当一个物体同时受到竖直方向的重力和水平方向的摩擦力时,我们可以通过合成这两个力来计算物体的运动状态和加速度。
综上所述,力的合成是高一物理中一个重要的知识点。
高一物理《力的分解与合成》知识点讲解

高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。
以下是对该知识点的讲解。
1. 力的分解力的分解是指将一个力分解为多个力的效果。
这样做有助于我们更好地理解和分析力的作用。
在力的分解中,我们常使用正交分解法和图解法。
1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。
这种方法常用于解决斜面问题和倾斜物体问题。
在正交分解时,我们可以根据三角函数关系来计算力的分解分量。
1.2 图解法图解法是通过绘制矢量图来展示力的分解。
我们可以使用比例尺来确定力的大小和方向。
通过观察图示,我们可以清楚地看到力的分解效果。
图解法常用于解决平面力系统和多个力合成问题。
2. 力的合成力的合成是指将多个力合成为一个力的效果。
这有助于我们将多个力简化为一个力进行分析。
力的合成有两种常见方法:向量法和平行四边形法。
2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。
在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。
最终的合成力的大小和方向由向量相加或相减的结果得出。
2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。
我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。
通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。
力的分解与合成是物理学中非常实用的技巧。
通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。
以上是对高一物理《力的分解与合成》知识点的简要讲解。
希望对您的学习有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理力的合成知识点总结
高一物理力的合成知识点总结:
求几个共点力的合力,叫做力的合成。
(1)力是矢量,其合成与分解都遵循平行四边形定则。
(2)一条直线上两力合成,在规定正方向后,可利用代数运算。
(3)互成角度共点力互成的分析
①两个力合力的取值范围是|F1-F2|≤F≤F1+F2
②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。
③同时作用在同一物体上的共点力才能合成(同时性和同体性)。
④合力可能比分力大,也可能比分力小,也可能等于某一个分力。
力的分解
求一个已知力的分力叫做力的分解。
(1)力的分解是力的合成的逆运算,同样遵循平行四边形定则。
(2)已知两分力求合力有唯一解,而求一个力的两个分力,如不
限制条件有无数组解。
要得到唯一确定的解应附加一些条件:
①已知合力和两分力的方向,可求得两分力的大小。
②已知合力和一个分力的大小、方向,可求得另一分力的大小和方向。
③已知合力、一个分力F1的大小与另一分力F2的方向,求F1
的方向和F2的大小:
若F1=Fsinθ或F1≥F有一组解
若F>F1>Fsinθ有两组解
若F
(3)在实际问题中,一般根据力的作用效果或处理问题的方便需要进行分解。
(4)力分解的解题思路
力的合成:已知几个力的大小和方向,求合力的大小和方向叫做力的合成。
1)当二力方向相同时,其合力的大小等于这两个力之和;方向与两力的方向相同;
数学表述:F合=F1+F2。
2)当二力方向相反时,其合力的大小等于这两个力之差,方向为较大力的方向;
数学表述:F合=F1-F2(其中:F1>F2)。
高一物理弹力知识点总结:
弹力定义:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。
1)形变:物体的形状或体积的改变,叫做形变。
①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。
②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。
2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。
①弹力产生的条件:接触;弹性形变。
②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。
③弹力必须产生在同时形变的两物体间。
④弹力与弹性形变同时产生同时消失。
3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。
4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,
而与运动状态、所处位置无关。
其他物体的弹力应根据运动情况,
利用平衡条件或运动学规律计算。
弹力产生原因:发生形变的物体想要恢复原状而对迫使它发生形变的物体产生的力。
1、定义:直接接触的物体间由于发生弹性形变(即是相互挤压)
而产生的力.
2、产生条件:直接接触,有弹性形变。
3、方向:弹力的方向与施力物体的形变方向相反(与形变恢复方向相同),作用在迫使物体发生形变的物体上。
弹力是法向力,力垂
直于两物体的接触面。
具体说来:(弹力方向的判断方法)
(1)弹簧两端的弹力方向,与弹簧中心轴线重合,指向弹簧恢复原
状的方向。
其弹力可为拉力,可为压力;对弹簧秤只为拉力。
(2)轻绳对物体的弹力方向,沿绳指向绳收缩的方向,即只为拉力。
高一物理弹力知识点总结(二)
弹力易错知识点
(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产
生的。
(2)产生条件:①直接接触;②有弹性形变。
(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;
在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。
①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。
②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。
(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解。
★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx,k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m。