2020-2021学年湖北省黄冈市高三3月调研考试数学(文)试题及答案解析
2020-2021学年人教版高三上学期模拟考试卷2(语文)附答案及解析

D. 文章结尾部分以整齐的排比句罗列了斑竹村扶贫工作成功后的喜人景象,表达了对扶贫工作的赞美。
材料二:
科学技术的每一次进步,都将推动艺术和文学向着更加开阔和自由的世界拓展,并在作家作品中形成一个时代与一个时代之间的代际感。
在艺术回归的时代,全媒体是技术、是背景、是视角,也是价值观和审美观,但它不是内涵和内容。它的内涵和内容仍然是人的身体、声音、情感,以及其所依附的乡土和家国,这是人类所共同面对的全媒体背景下的极其珍贵的个别性、独特性。我们可以拥有一万台相同的电脑,但透过屏幕却能映射出一万张不同的面庞。这一万张不同的面庞因不同的人种、不同的国度、不同的宗教而构成不同的表情。如果一万台电脑映射出的是同一张面孔、同一个表情、同一副眼神,那么全媒体时代的到来,就是人类文明的灾难。
C.全媒体时代如果将创新融入戏曲艺术,那么即使是中国最古老的戏曲剧种也可以呈现出最现代的艺术品质。
D.科学技术的进步将推动艺术与文学向更开阔和自由的世界拓展,所以要在作家作品中形成时代间的代际感。
2.根据材料内容,下列说法不正确 一项是( )
A.任何一种艺术都很难得到所有观众的喜欢,我国的戏曲艺术也不例外,而且当代戏曲艺术对年轻观众的吸引力相对变小了。
B.梨园戏被誉为“古南戏活化石”,新戏《董生与李氏》让不少年轻人不远千里去观赏的原因是该剧实现了传统和时尚的结合。
C.既不使用欧美古典音乐,又不使用美国当下流行音乐的音乐剧《汉密尔顿》取得成功,应归功于其对传统文化的自觉回归。
D.现在有最好剧场和音乐剧演员的百老汇,用最传统的表演元素表现最现代的品质,这一点和中国的昆曲、梨园戏大体相同语文)
使用时间:2020年12月20日
湖北省黄冈市2025届高三年级9月调研考试语文试题(含答案)

湖北省黄冈市2024年高三年级9月调研考试语文试题一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
①“泱泱中华,历史何其悠久,文明何其博大,这是我们的自信之基、力量之源。
”中央领导人在二0二四年新年贺词中指出中华伟大文化对于新时代砥砺前行的重要作用,而他提到的这片辽阔土地所孕育的、令全国乃至全世界都心驰神往的大漠孤烟、江南细雨、黄河九曲、奔流长江、良渚、二里头、殷墟甲骨、三星堆等等,都是纪录片人的创作富矿。
2023年,纪录片行业深入贯彻中央领导人在文化传承发展座谈会上的讲话精神,在全面贯彻落实党的二十大精神的开局之年坚定文化自信,承担起承历史、传播文化、记录时代的重要使命,记录下国家行进步伐何以坚实、有力量、见风采、显底色,持续推动文化繁荣、创作繁荣。
②记录中国积极拥抱世界,担当大国责任之姿。
2023年纪录片搭建文化对话交流的桥梁,国际合作灵动多样,出海态势欣欣向荣,结出累累硕果。
传播视角方面,重全球视野,《当法老遇见三星堆》在文化互鉴角度揭示不同文明背景下相同的热爱,《下一站出口》邀请外籍青年走进、体验真实的中国。
合作模式方面,联合拍摄制作,增强纪录片的国际竞争力,在中法建交即将迎来60周年之际,中法合拍纪录片《野性四季:珍稀野生动物在中国》留存具有科学价值的影像档案;中央广播电视总台影视剧纪录片中心与海南广播电视总台(集团)联合出品,华纳兄弟探索集团联合制作的《中国海南·雨林秘境》呈现海南热带雨林的独特性、稀缺性和神秘性。
跨国发行和传播效力方面,《诗约万里》(第二季)征集制作了全球网友互动产品《我在全世界为你读诗》等衍生产品,点燃了海内外网友的多语种传播热情;《何以中国》不仅立足“中华文明探源工程”和“考古中国”的重大研究成果和最新发现,创新讲述“多元一体”中华民族的形成和中华文明创生的故事,而且启动国际版的制作,推进海外传播,进一步提升中国文化、中国智慧和中国精神的国际影响力。
【高中冲刺加分】湖北省黄冈市罗田县第一中学高三数学调研考试试题 文(扫描版)

湖北省黄冈市罗田县第一中学2019届高三数学调研考试试题文(扫描版)黄冈市2019届高三九月起点考试数学参考答案(文科)一、选择题1.C2.B3.A4.D5.C6.A7.D8.B9.C 10.B 11.A 12.D 二、 填空题 13.14.-1 15.16. ②③17.解 (1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.……5分(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号. 由已知f (x )≤t 对任意x >0恒成立, 故t ≥66,即t 的取值范围是⎣⎢⎡⎭⎪⎫66,+∞.……10分 18.解:(1)设数列{}n a 的公比为q ,由234,2,3a a a +成等差数列得3244=+3a a a +,又24a =,所以216=4+43q q +,即241670q q -+=,解得12q =或72q =(舍去), 故224211=4()()22n n n n a a q ---⋅=⋅= .即数列{}n a 的通项公式为41=()2n n a -.………………6分 (2)216log ()n nb n a ==, ………………………………………………7分 211111()(2)22k k b b k k k k +==-++11111111111(1)()()()23224235221111(1)221232342(1)(2)n S n n n n n n n =-+-+-++-+=+--+++=-++K ……12分19.【解析】(1)设内角A ,B ,C 所对的边分别为a ,b ,c . 根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-,·········3分 所以2221cos 222b c a bc A bc bc +-===,又因为0A <<π,所以3A π=.·········6分(2)22sin 2sin sin 3a R a R A A π=⇒===分 所以2232b c bc bc bc bc =+--=≥,·········10分所以11sin 322S bc A =⨯=≤(b c =时取等号).·········12分 20.【解析】(1)Θ方程x x f 2)(=有两等根,即0)2(2=-+x b ax 有两等根,0)2(2=-=∆∴b ,解得2=b ; )3()1(x f x f -=-Θ,得1,1231=∴=-+-x xx 是函数图象的对称轴.而此函数图象的对称轴是直线1,12,2-=∴=-∴-=a aba b x ,故x x x f 2)(2+-=……………………………………………6分 (2)(]22222,(,2),20,2xxxxy t x -+-+=-∈-∞∈,02p t <≤真则;2()(2)3g x x t x =-++-在(,2)-∞上单调递增,则22,22tt +≥∴≥. 若p q ∨真,则0t >. ……………………………………………12分21.解:(1)(2,1),(cos ,sin ),AB AC θθ==u u u r u u u r 若AB 与AC 平行,则1tan 2θ=, 22222sin sin cos tan tan 1sin (sin cos )sin cos tan 15θθθθθθθθθθθ---===-++……6分(2)(3,3),(2,1)(3,3)(23,3),AD OP m n m n m n ==+=++u u u r u u u r23,3,x m n y m n =+=+ 11,(2),(2),33m x y n y x m n x y =-=-+=-由图知m +n 的最大值为1. …………12分22.解:(1)当1a =时22113(1)(21)()23ln ,0,()2x x f x x x x f x x x x x --'=-->=+-=令121()0,,12f x x x '===,当x 在1(0,),(1,)2+∞上()0,f x '>当x 在1(,1)2上()0f x '<可知()f x 在10,2⎛⎫ ⎪⎝⎭上是增函数,在1,12⎛⎫ ⎪⎝⎭上是减函数. 在 (1,)+∞上是增函数 ∴()f x 的极大值为1()3ln 212f =-,()f x 的极小值(1)1f =. ……4分2221112(2)1(2)()2(2)ln ()=2(2)ax a x f x ax a x f x a a x x x x -++=--+⇒+-+=、①当02a <<时,()f x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭上是增函数,在11,2a ⎛⎫ ⎪⎝⎭上是减函数 ②当2a =时,()f x 在()0,+∞上是增函数; ③当2a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭上是增函数,在11,2a ⎛⎫ ⎪⎝⎭上是减函数 ……8分 (3)当24a <<时,由(2)可知()f x 在[]1,3上是增函数, ∴ 122()()(3)(1)4(2)ln 33f x f x f f a a -≤-=-++由12(ln 3)2ln 3()()m a f x f x -->-对任意的a ∈(2, 4),x 1, x 2∈[1, 3]恒成立, ∴12max (ln 3)2ln 3()()m a f x f x -->- 即2(ln 3)2ln 34(2)ln 33m a a a -->-++对任意24a <<恒成立, 即243m a>+对任意24a <<恒成立, 由于24a <<,∴133m ≥. …………12分。
湖北省黄冈市2024_2025学年高三英语上学期9月调研考试试题含听力含解析

听下面一段较长对话,回答以下小题。【此处可播放相关音频,请去附件查看】
3.非选择题的作答:用黑色墨水的签字笔干脆答在答题卷上的每题所对应的答题区域内。答在试题卷上或答题卷指定区域外无效。
4.考试结束,监考人员将答题卷收回,考生自己保管好试题卷,评讲时带来。
第一部分听力(共两节,满分30分)
做题时,先将答案标在试卷上。录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
【答案】B
【解析】
【原文】W: Helen, have you finished reading the book Mr Smith recommended ?
M: Oh, Jane, I didn’t read straight through the way you read a novel. I just covered a few chapters which interested me most.
听下面一段较长对话,回答以下小题。【此处可播放相关音频,请去附件查看】
8. What style of swimming does the man like best?
A. The freestyle stroke.B. The breast stroke.C. The back stroke.
9. What is the possible relationship between the two speakers?
A. He was ill.B. He was helpless.C. He was frightened.
2020-2021学年湖北省新高考联考协作体高二上学期期中数学试卷(解析版)

2020-2021学年湖北省新高考联考协作体高二(上)期中数学试卷一、选择题(共8小题).1.命题p:∃x∈R,2x+1>0的否定为()A.∀x∈R,2x+1<0B.∃x∈R,2x+1≤0C.∀x∈R,2x+1>0D.∀x∈R,2x+1≤02.下列各组数中方差最小的是()A.1,2,3,4,5B.2,2,2,4,5C.3,3,3,3,3D.2,3,2,3,2 3.已知直线过A(3,m+1),B(4,2m+1)两点且倾斜角为,则m的值为()A.﹣B.C.﹣D.4.一个等比数列的第3项和第7项分别为8和18,则它的第5项为()A.12B.﹣12C.±12D.5.已知某圆拱桥拱高5米,水面跨度为30米,则这座圆拱桥所在圆的半径为()米A.20B.25C.24D.236.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市实行阶梯水价,每人月用水量中不超过a立方米的部分按2.5元/立方米收费,超出a立方米的部分按7元/立方米收费,从该市随机调查了10000位居民,获得了他们某年的月均用水量数据,整理得到如下频率分布直方图:如果a为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为2.5元/立方米,a至少定为()A.2B.2.5C.3D.47.一个袋中装有6个大小形状完全相同的小球,其中有4个白球,2个黑球,现随机从袋中摸出一球,记下颜色,放回袋中后,再从袋中随机摸出一球,记下颜色,则两次摸出的球中至少有一个黑球的概率为()A.B.C.D.8.已知动点M到A(1,1),B(﹣3,3)两点的距离相等,P是圆(x﹣3)2+y2=5上的动点,则|PM|的最小值为()A.B.C.2D.二、选择题(共4个小题)9.若A,B为互斥事件,P(A),P(B)分别表示事件A,B发生的概率,则下列说法正确的是()A.P(A)+P(B)<1B.P(A)+P(B)≤1C.P(A∪B)=1D.P(A∩B)=010.某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:x23456y 2.2 3.8 6.57.0已知根据表中原始数据得回归直线方程为=1.23x+0.08.某位工作人员在查阅资料时发现表中有个数据模糊不清了,下列说法正确的是()A.所支出的维修费用与使用年限正相关B.估计使用10年维修费用是12.38万元C.根据回归方程可推断出模糊不清的数据的值为5D.点(4,5)一定在回归直线=1.23x+0.08上11.下列命题为真命题的是()A.“a,A,b成等差数列”的充要条件是“2A=a+b”B.“a,A,b成等比数列”的充要条件是“A2=ab”C.“a=﹣”是“方程(6a2﹣a﹣2)x+(3a2﹣5a+2)y+a﹣1=0表示平行于x轴的直线”的充分不必要条件D.已知直线l过点(3,1),则“直线l的斜率为”是“直线l与圆(x﹣1)2+(y﹣2)2=4相切”的充分不必要条件12.已知数列{a n}的前n项和S n满足,下列说法正确的是()A.若首项a1=1,则数列{a n}的奇数项成等差数列B.若首项a1=1,则数列{a n}的偶数项成等差数列C.若首项a1=1,则S15=477D.若首项a1=a,若对任意n∈N*,a n<a n+1恒成立,则a的取值范围是(3,5)三、填空题(共4个小题)13.若“x≤a”是“x≤2”的必要不充分条件,则实数a的取值范围为.14.在所有7位自然数中任取一个数,则头两位都是3的概率为15.已知直线l1:mx+ny+5=0,l2:x+2y﹣5=0,l3:3x﹣y﹣1=0,若这三条直线交于一点,则交点坐标为,点(m,n)到原点的距离最小值为.16.长为的线段AB的两个端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C,已知过定点P(2,0)的直线l与曲线C相交于E,F两点,O为坐标原点,当△EOF的面积取到最大值时,直线l的斜率为四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知A(2,0),B(3,3),C(﹣1,1).(1)求点A到直线BC的距离;(2)求△ABC的外接圆的方程.18.(12分)在①a2﹣2,a3,a4+6成等比数列,②a3+1,a5,a6+1成等差数列,③a2,a4+2,a6+10成等比数列,这三个条件中任选一个,补充在下列问题中并作答.正项等差数列{a n}满足a1=4,且______.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和.19.(12分)由于疫情,学生在家经过了几个月的线上学习,某高中学校为了了解学生在家学习情况,复学后进行了复学摸底考试,并对学生进行了问卷调查,如表(单位:人)是对高二年级数学成绩及“认为自己在家学习态度是否端正”的问卷调查的统计结果,其中成绩不低于120分为优秀,成绩不低于90分且小于120分的为及格,成绩小于90分的为不及格.优秀及格不及格学习态度端正91300a学习态度不端正9200322按成绩用分层抽样的方法在高二年级中抽取50人,其中优秀的人数为5.(1)求a的值;(2)用分层抽样的方法在及格的学生中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2人,求至少有1人学习不端正的概率;(3)在及格的学生中随机抽取了10人,他们的分数如图所示的茎叶图,已知这10名学生的平均分为104.5,求a>b的概率.20.(12分)已知命题p:∃x∈[2,3],使不等式ax2﹣ax﹣1<0成立;命题q:∀x1∈[﹣1,2],∃x2∈[1,2]使不等式<0成立.(1)若命题p为真,求实数a的取值范围;(2)若命题p和命题q一真一假,求实数a的取值范围.21.(12分)已知圆C:(x﹣1)2+(y﹣1)2=25,直线l:(m+2)x+(m+1)y+4m+6=0.(1)证明:不论实数m为何值,直线l与圆C始终相交;(2)若直线l与圆C相交于A,B两点,设集合M={x|x=|AB|且x∈N},在集合M中任取两个数,求这两个数都不小于8的概率.22.(12分)已知数列{a n}的前n项和S n满足S n=3a n﹣3,.(1)求数列{a n},{b n}的通项公式;(2)记,若数列{c n}为递增数列,求λ的取值范围.参考答案一、选择题(共8小题).1.命题p:∃x∈R,2x+1>0的否定为()A.∀x∈R,2x+1<0B.∃x∈R,2x+1≤0C.∀x∈R,2x+1>0D.∀x∈R,2x+1≤0解:命题为特称命题,则命题的否定为:∀x∈R,2x+1≤0,故选:D.2.下列各组数中方差最小的是()A.1,2,3,4,5B.2,2,2,4,5C.3,3,3,3,3D.2,3,2,3,2解:根据各个选项的数据,显然选项C的方差是0,方差最小,故选:C.3.已知直线过A(3,m+1),B(4,2m+1)两点且倾斜角为,则m的值为()A.﹣B.C.﹣D.解:根据题意,直线AB的倾斜角为,则其斜率k=tan=﹣,又由A(3,m+1),B(4,2m+1),则AB的斜率k==m,则有m=﹣,故选:C.4.一个等比数列的第3项和第7项分别为8和18,则它的第5项为()A.12B.﹣12C.±12D.解:∵a3•a7=8×18,∴a5=±=±=±12,∵等比数列的奇数项的符号相同,∴a5=12,故选:A.5.已知某圆拱桥拱高5米,水面跨度为30米,则这座圆拱桥所在圆的半径为()米A.20B.25C.24D.23解:设圆的半径为r,由题意可得弦心距为r﹣5,半弦长为15,故有152+(r﹣5)2=r2,求得r=25,故选:B.6.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市实行阶梯水价,每人月用水量中不超过a立方米的部分按2.5元/立方米收费,超出a立方米的部分按7元/立方米收费,从该市随机调查了10000位居民,获得了他们某年的月均用水量数据,整理得到如下频率分布直方图:如果a为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为2.5元/立方米,a至少定为()A.2B.2.5C.3D.4解:由频率分布直方图得:用水量在[0,0.5)的频率为0.08×0.5=0.04,用水量在[0.5,1)的频率为0.16×0.5=0.08,用水量在[1,1.5)的频率为0.30×0.5=0.15,用水量在[1.5,2)的频率为0.44×0.5=0.22,用水量在[2,2.5)的频率为0.50×0.5=0.25,用水量在[2.5,3)的频率为0.28×0.5=0.14,∵用水量在[0,2.5)的频率为:0.04+0.08+0.15+0.22+0.25=0.74,用水量在[0,3)的频率为:0.04+0.08+0.15+0.22+0.25+0.14=0.88.∴根据此次调查,为使80%以上居民在该月的用水价格为2.5元/立方米,a至少定为3元.故选:C.7.一个袋中装有6个大小形状完全相同的小球,其中有4个白球,2个黑球,现随机从袋中摸出一球,记下颜色,放回袋中后,再从袋中随机摸出一球,记下颜色,则两次摸出的球中至少有一个黑球的概率为()A.B.C.D.解:一个袋中装有6个大小形状完全相同的小球,其中有4个白球,2个黑球,现随机从袋中摸出一球,记下颜色,放回袋中后,再从袋中随机摸出一球,记下颜色.则两次摸球全是白球的概率为×=,故两次摸出的球中至少有一个黑球的概率为1﹣=,故选:B.8.已知动点M到A(1,1),B(﹣3,3)两点的距离相等,P是圆(x﹣3)2+y2=5上的动点,则|PM|的最小值为()A.B.C.2D.解:由动点M到A(1,1),B(﹣3,3)两点的距离相等,得M在线段AB的垂直平分线上,∵AB的中点坐标为(﹣1,2),,∴AB的垂直平分线方程为y﹣2=2(x+1),即2x﹣y+4=0.P是圆C:(x﹣3)2+y2=5上的动点,如图:∵圆心C到直线2x﹣y+4=0的距离d=,∴|PM|的最小值为.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.若A,B为互斥事件,P(A),P(B)分别表示事件A,B发生的概率,则下列说法正确的是()A.P(A)+P(B)<1B.P(A)+P(B)≤1C.P(A∪B)=1D.P(A∩B)=0解:∵A,B为互斥事件,P(A),P(B)分别表示事件A,B发生的概率,∴P(A)+P(B)≤1,P(A∩B)=0,故A错误,B正确,C错误,D正确.故选:BD.10.某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:x23456y 2.2 3.8 6.57.0已知根据表中原始数据得回归直线方程为=1.23x+0.08.某位工作人员在查阅资料时发现表中有个数据模糊不清了,下列说法正确的是()A.所支出的维修费用与使用年限正相关B.估计使用10年维修费用是12.38万元C.根据回归方程可推断出模糊不清的数据的值为5D.点(4,5)一定在回归直线=1.23x+0.08上解:由线性回归方程为=1.23x+0.08,回归系数为>0,所支出的维修费用与使用年限正相关,选项A正确;x=10时,=1.23×10+0.08=12.38,所以估计使用10年维修费用是12.38万元,选项B 正确;某设看不清的数字为a,计算=×(2+3+4+5+6)=4,=×(2.2+3.8+a+6.5+7.0)=,代入回归直线方程=1.23x+0.08中,得=1.23×4+0.08,解得a=5.5,所以根据回归方程可推断出模糊不清的数据值为5.5,选项C错误;样本中心点(4,5)在线性回归方程=1.23x+0.08上,所以选项D正确.故选:ABD.【点评】本题考查了线性回归方程过样本中心点的应用问题,也考查了运算求解与推理能力,是中档题.11.下列命题为真命题的是()A.“a,A,b成等差数列”的充要条件是“2A=a+b”B.“a,A,b成等比数列”的充要条件是“A2=ab”C.“a=﹣”是“方程(6a2﹣a﹣2)x+(3a2﹣5a+2)y+a﹣1=0表示平行于x轴的直线”的充分不必要条件D.已知直线l过点(3,1),则“直线l的斜率为”是“直线l与圆(x﹣1)2+(y﹣2)2=4相切”的充分不必要条件解:对于A:由2A=a+b得A﹣a=b﹣A,即a,A,c成等差数列,若a,A,b成等差数列,则A﹣a=b﹣A,即“2A=a+b“是“a,A,b成等差数列”的充要条件,故A正确;对于B:若a,A,b成等比数列,则A=±(ab>0),由A=,可得a,A,b成等比数列,或“x=0且a与b中至少一个为0”,属于a,A,b成等比数列”的必要条件是“A2=ab”不对,故B错误;对于C:当a=﹣时,代入方程(6a2﹣a﹣2)x+(3a2﹣5a+2)y+a﹣1=0,可得k=0,表示平行于x轴的直线”当示平行于x轴的直线时,可得6a2﹣a﹣2=0,可得a=﹣或a=,所以a=﹣”是“方程(6a2﹣a﹣2)x+(3a2﹣5a+2)y+a﹣1=0表示平行于x轴的直线”的充分不必要条件;故C正确;对于D:已知直线l过点(3,1),且直线l的斜率为”与圆(x﹣1)2+(y﹣2)2=4相切”,而过(3,1)与圆(x﹣1)2+(y﹣2)2=4相切”的直线l的斜率有两个值,所以是充分不必要条件,故D正确;故选:ACD.【点评】本题等差等比的性质应用和直线方程以及圆的切线问题,属于中档题.12.已知数列{a n}的前n项和S n满足,下列说法正确的是()A.若首项a1=1,则数列{a n}的奇数项成等差数列B.若首项a1=1,则数列{a n}的偶数项成等差数列C.若首项a1=1,则S15=477D.若首项a1=a,若对任意n∈N*,a n<a n+1恒成立,则a的取值范围是(3,5)解:数列{a n}的前n项和S n满足,所以,,当n=1时,S1+S2=4×4=16,即2a1+a2=16,当n=2时,a3+2S2=36,对于A:已知a1=1,故a2=14,a3=6,所以a3﹣a1=5≠8,故数列{a n}的奇数项不成等差数列,故A错误;对于B:故a n+1+a n=4(2n+1),a n+a n﹣1=4(2n﹣1),所以a n+1﹣a n﹣1=8,故数列{a n}的偶数项成等差数列,故B正确;对于C:S15=(a1+a3+…+a15)+(a2+a4+…+a14)=1+6×+,故C正确;对于D:由a1=a,知,所以a2=16﹣2a,,解得a3=4+2a,a4=24﹣2a.若对任意n∈N*,a n<a n+1恒成立,只需满足a1<a2<a3<a4,即a<16﹣2a<4+2a<24﹣2a,解得:3<a<5.故a的取值范围是(3,5),故D正确.故选:BCD.【点评】本题考查的知识要点:数列的递推关系式,数列的求和,裂项相消法在求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分.13.若“x≤a”是“x≤2”的必要不充分条件,则实数a的取值范围为(2,+∞).解:设P={x|x≤a},Q={x|x≤2},由条件知,“x∈P”是“x∈Q”的必要不充分条件,则Q⫋P;∴a>2,即则实数a的取值范围为(2,+∞).故答案为:(2,+∞).【点评】本题主要考查充分条件和必要条件的应用,根据定义建立不等式关系是解决本题的关键,属于基础题.14.在所有7位自然数中任取一个数,则头两位都是3的概率为解:在所有7位自然数中任取一个数,基本事件总数n=9×106,其中头两位都是3包含的基本事件个数m=105,则头两位都是3的概率p===.故答案为:.【点评】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.15.已知直线l1:mx+ny+5=0,l2:x+2y﹣5=0,l3:3x﹣y﹣1=0,若这三条直线交于一点,则交点坐标为(1,2),点(m,n)到原点的距离最小值为.解:联立,得,∵直线l1:mx+ny+5=0,l2:x+2y﹣5=0,l3:3x﹣y﹣1=0,这三条直线交于一点,∴交点坐标为(1,2),把(1,2)代入直线l1:mx+ny+5=0得:m+2n+5=0,即m=﹣2n﹣5,点(m,n)到原点的距离:d====,∴当n=﹣2,m=﹣1时,点(m,n)到原点的距离最小值为.故答案为:(1,2),.【点评】本题考查直线的交点坐标、两点间的距离的最小值的求法,考查直线方程、两点间距离公式等基础知识,考查运算求解能力,是基础题.16.长为的线段AB的两个端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C,已知过定点P(2,0)的直线l与曲线C相交于E,F两点,O为坐标原点,当△EOF的面积取到最大值时,直线l的斜率为±解:设M点坐标为(x,y),则A点坐标为(2x,0),B点坐标为(0,2y),由|AB|=2,得(2x﹣0)2+(0﹣2y)2=8,化简得x2+y2=2,所以曲线C的方程x2+y2=2,由题知,直线l斜率存在,设直线l的斜率为k,方程为y=k(x﹣2),即kx﹣y﹣2k=0,△EOF的面积取到最大值时,OE⊥OF,圆心到直线的距离d=1,∴d==1,∴k=±.故答案为:±.【点评】本题考查了点的轨迹方程,直线与圆的位置关系,考查点到直线的距离公式的运用,确定△AOB的面积取到最大值时,OA⊥OB是关键,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知A(2,0),B(3,3),C(﹣1,1).(1)求点A到直线BC的距离;(2)求△ABC的外接圆的方程.解:(1)∵A(2,0),B(3,3),C(﹣1,1),故直线BC的方程为=,即2x﹣y+3=0.故点A到直线BC的距离d===.(2)△ABC的外接圆的方程为x2+y2+dx+ey+f=0,把A、B、C的坐标代入可得,求得,故△ABC的外接圆的方程为x2+y2﹣2x﹣4y=0.【点评】本题主要考查用两点式求直线的方程,点到直线的距离公式,用待定系数法求圆的方程,属于中档题.18.(12分)在①a2﹣2,a3,a4+6成等比数列,②a3+1,a5,a6+1成等差数列,③a2,a4+2,a6+10成等比数列,这三个条件中任选一个,补充在下列问题中并作答.正项等差数列{a n}满足a1=4,且______.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和.解:若选①:(1)设正项等差数列{a n}的公差为d,由题设可得:a32=(a2﹣2)(a4+6),又a1=4,∴(4+2d)2=(4+d﹣2)(4+3d+6),解得:d=2或d=﹣2(舍),∴a n=4+2(n﹣1)=2n+2;(2)由(1)可得:==﹣,∴数列{b n}的前n项和为﹣+﹣+…+﹣=﹣=.若选②:(1)设正项等差数列{a n}的公差为d,由题设可得:2a5=a3+a6+2,又a1=4,∴2(4+4d)=4+2d+4+5d+2,解得:d=2,∴a n=4+2(n﹣1)=2n+2;(2)由(1)可得:==﹣,∴数列{b n}的前n项和为﹣+﹣+…+﹣=﹣=.若选③:(1)设正项等差数列{a n}的公差为d,由题设可得:(a4+2)2=a2(a6+10),又a1=4,∴(4+3d+2)2=(4+d)(4+5d+10),解得:d=2或d=﹣(舍),∴a n=4+2(n﹣1)=2n+2;(2)由(1)可得:==﹣,∴数列{b n}的前n项和为﹣+﹣+…+﹣=﹣=.19.(12分)由于疫情,学生在家经过了几个月的线上学习,某高中学校为了了解学生在家学习情况,复学后进行了复学摸底考试,并对学生进行了问卷调查,如表(单位:人)是对高二年级数学成绩及“认为自己在家学习态度是否端正”的问卷调查的统计结果,其中成绩不低于120分为优秀,成绩不低于90分且小于120分的为及格,成绩小于90分的为不及格.优秀及格不及格学习态度端正91300a学习态度不端正9200322按成绩用分层抽样的方法在高二年级中抽取50人,其中优秀的人数为5.(1)求a的值;(2)用分层抽样的方法在及格的学生中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2人,求至少有1人学习不端正的概率;(3)在及格的学生中随机抽取了10人,他们的分数如图所示的茎叶图,已知这10名学生的平均分为104.5,求a>b的概率.解:(1)设高二年级总人数为n人,由题意可得=,解得n=1000,则a=100﹣(91+9)﹣322﹣(300+200)=78,(2)设所抽样本中有x人学习态度端正的学生,则由分层抽样可知=,解得x=3,因此抽取一个容量为5的样本中,由2个学习态度不端正,3个学习态度端正,分别记作a,b,A,B,C,从中任取2个的基本事件为(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10个.至少含有11人学习不端正的基本事件有7个,(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),∴从中任取2人,至少有1人学习不端正的概率P=;(3)记事件A为“a>b“,因为平均分为104.5,则(90×3+100×4+110×3+2+a+b+5+6+8+3+6+7)=104.5,解得a+b=8,∴a和b的取值共有9种情况,它们是(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0),其中a>b有4种情况,它们是(5,3),(6,2),(7,1),(8,0),故P(A)=.20.(12分)已知命题p:∃x∈[2,3],使不等式ax2﹣ax﹣1<0成立;命题q:∀x1∈[﹣1,2],∃x2∈[1,2]使不等式<0成立.(1)若命题p为真,求实数a的取值范围;(2)若命题p和命题q一真一假,求实数a的取值范围.解:命题p:∃x∈[2,3],使不等式ax2﹣ax﹣1<0成立,即a<在[2,3]上有解,又当2≤x≤3时,2≤x2﹣x≤6,所以,故a,命题q:∀x1∈[﹣1,2],∃x2∈[1,2]使不等式<0成立,所以,因为y=()x﹣x在[﹣1,2]上单调递减,故x1∈[﹣1,2]时,值域[﹣,3],所以∃x2∈[1,2],,即a>=x+在[1,2]上有解,因为y=x+在[1,2]上先减后增,当x=时取得最小值2,故a>2,(1)若命题p为真,则a的范围{a|a},(2)若命题p和命题q一真一假,当p真q假时,即a<,当p假q真时,即a>2,综上,实数a的取值范围{a|a<或a>2}.21.(12分)已知圆C:(x﹣1)2+(y﹣1)2=25,直线l:(m+2)x+(m+1)y+4m+6=0.(1)证明:不论实数m为何值,直线l与圆C始终相交;(2)若直线l与圆C相交于A,B两点,设集合M={x|x=|AB|且x∈N},在集合M中任取两个数,求这两个数都不小于8的概率.【解答】(1)证明:化直线l:(m+2)x+(m+1)y+4m+6=0为m(x+y+4)+2x+y+6=0,由,解得,∴直线l过定点P(﹣2,﹣2),又(﹣2﹣1)2+(﹣2﹣1)2=18<25,∴点P在圆内,∴不论实数m为何值,直线l与圆C始终相交;(2)解:设C到直线l的距离为d,∵|AB|=,∴当d最大时|AB|最小,d最小时|AB|最大,又0≤d≤|CP|,即当l与直线CP垂直时,,∴.|AB|max=10,即M={x|且x∈N}={6,7,8,9,10},从6,7,8,9,10中任取两数的基本事件有:(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)共10种,两数都不小于8的有(8,9),(8,10),(9,10)共3种.∴在集合M中任取两个数,这两个数都不小于8的概率为.22.(12分)已知数列{a n}的前n项和S n满足S n=3a n﹣3,.(1)求数列{a n},{b n}的通项公式;(2)记,若数列{c n}为递增数列,求λ的取值范围.解:(1)∵S n=3a n﹣3,∴S n﹣1=3a n﹣1﹣3(n≥2),两式相减得:a n=3a n﹣3a n﹣1,即a n=a n﹣1,n≥2,又当n=1时,有S1=3a1﹣3,解得:a1=,∴数列{a n}是首项、公比均为的等比数列,∴a n=()n,b n=3log a n+1=3n+1;(2)由(1)可得:=()n﹣λ(3n+1)2,∵数列{c n}为递增数列,∴c n+1﹣c n=()n+1﹣λ(3n+4)2﹣()n+λ(3n+1)2=×()n﹣λ(18n+15)>0对∀n∈N*恒成立,即λ<对∀n∈N*恒成立,设f(n)=,n∈N*,则=×,由>1解得:n>,∴当n≥2时,f(n+1)>f(n);当n=1时,f(n+1)<f(n),∴f(n)min=f(2)=,∴λ<,即λ的取值范围为(,+∞).。
2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。
2020-2021学年度湖北省 黄冈市高级中学提前招生数学考试模拟试卷1(Word版,附答案)

2021年黄高预录考试数学模拟试题(一)考试时间:120分钟,满分:120分一、选择题(每小题3分,共30分)1.若2|1|816x x x ---+化简的结果为25x -,则x 的取值范围是( ) A .x 为任意实数 B .14x ≤≤C .1x ≥D .4x ≤2.边长为的正六边形的面积等于( ) A .243a B .2a C .2233a D .233a3.已知三角形的三边长分别是3,8,x ;若x 的值为偶数, 则x 的值有( )A.6个 B.5个 C.4个 D.3个4.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)5.在△ABC 中,M 是边AB 的中点,N 是边AC 上的点,且AN =2NC ,CM 与BN 相交于点K ,若△BCK 的面积等于1,则△ABC 的面积等于( )A.3 B.103C.4 D.1336.⊙O 的半径为r ,其外切直角梯形ABCD 的两底AB =a ,DC =b ,则r ,a ,b 之间的关系是( )A .r a b =-B . 2212r a b =- C . 12r ab = D . 111r a b=+ 7.已知x ,y ,z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( ) A.8 B.7 C.6 D.58.已知关于x 的不等式组230bx a x -≥⎧⎨<⎩的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所有可能的整数对(,)a b 的个数有 ( )A 2 对B 4对C 6对D 8对9.如图所示,在直角坐标系中,A 点坐标为(﹣3,﹣2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( ) A .(﹣4,0) B .(﹣2,0)C .(﹣4,0)或(﹣2,0)D .(﹣3,0)10、已知关于x 的方程029|3|)2(62=-+--+-a x a x x 有两个不同的实数根,则实数a 的取值范围是( )A 、a >0或a =-2B 、a =-2C 、 a ≥0D 、a =0二、填空题(每小题3分,共18分)11.从-2,-1,2这三个数中任取两个不同的数作为点的坐标, 该点在第四象限的概率是 .12.如图,AC =BC ,AC ⊥BC 于点C ,AB =AD =BD ,CD =CE =DE ,若AB =2,则BE = 。
湖北省黄冈市2025届高三上学期9月调研考试(一模)数学试题含答案

黄冈市2024年高三年级9月调研考试数学(答案在最后)本试卷共4页,19题.全卷满分150分.注意事项:1.答题前,先将自己的姓名、准考证号,考场号,座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷,草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷,草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将答题卡上交.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.若集合{}{}2|280,,|A x x x x B y y x =--<==∈∈Z R,则A B =()A.{}0,1,2,3 B.{}1,2,3 C.{}0,1 D.{}0【答案】A 【解析】【分析】解二次不等式得出集合A ,利用函数的值域得出集合B ,再由交集的定义得出答案.【详解】∵2280x x --<,∴()()420x x -+<,∴24-<<x ,又∵Z x ∈,∴{}1,0,1,2,3A =-,0y x =≥,∴0y ≥,即{}0B y y =≥,∴{}0,1,2,3A B ⋂=.故选:A 2.复数i 21iz -=+,则z 的虚部为()A.3i 2 B.32C.32-D.3i2-【答案】B 【解析】【分析】根据复数的除法运算,化简复数z ,进而可求虚部.【详解】()()()()i 21i i 213i 13i 1i 1i 1i 222z ----+====-+++-,故z 的虚部为32,故选:B3.若3sin 3cos 022ππαα⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,则tan2α=()A.43-B.43C.34-D.34【答案】D 【解析】【分析】由诱导公式计算出tan α,在代入正切二倍角公式即可.【详解】原方程可化为1cos 3sin 0tan 3ααα-+=⇒=,故222tan 33tan 211tan 419ααα===--.故选:D4.若向量()()2,0,3,1a b == ,则向量a在向量b 上的投影向量为()A.5B.93,55⎛⎫ ⎪⎝⎭C.,55⎛ ⎝⎭D.()5,1【答案】B 【解析】【分析】按照投影向量的计算公式求解即可.【详解】解:因为向量()()2,0,3,1a b ==,则向量a在向量b 上的投影向量为:2693||cos ,(3,1)(,)1055||||||||b a b b a b a a b b b b b b ⋅⋅⋅<>⋅=⋅=⋅=⋅=.故选:B5.若0,0m n >>,且3210m n +-=,则32m n+的最小值为()A.20B.12C.16D.25【答案】D 【解析】【分析】利用3232()(32)m n m n m n+=++,结合基本不等式可求和的最小值.【详解】因为3210m n +-=,所以321m n +=,所以32323266(1()(32)94n m m n m n m n m n m n+=+⨯=++=+++13131225≥+=+=,当且仅当66n m m n =,即15m n ==时取等号,所以32m n+的最小值为25.故选:D.6.已知ABC V 的内角,,A B C 所对的边分别为,,a b c ,π,33A b ==,下面可使得ABC V 有两组解的a 的值为()A.332B.3C.4D.e【答案】D 【解析】【分析】根据sin b A a b <<,即可得到答案.【详解】要使得ABC V 有两组解,则sin b A a b <<,又π,33A b ==,得到32a <<,故选:D.7.设()(),h x g x 是定义在R 上的两个函数,若1212,,x x x x ∀∈≠R ,有()()()()1212h x h x g x g x -≥-恒成立,下列四个命题正确的是()A.若ℎ是奇函数,则()g x 也一定是奇函数B.若()g x 是偶函数,则ℎ也一定是偶函数C.若ℎ是周期函数,则()g x 也一定是周期函数D.若ℎ是R 上的增函数,则()()()H x h x g x =-在R 上一定是减函数【答案】C 【解析】【分析】根据已知条件,依据函数的奇偶性,通过反例,可判断AB ;根据周期性的定义可判断C ,根据函数单调性的定义,结合不等式的性质可判断D【详解】对于A ,令(),()1h x x g x ==,对1212,,x x x x ∀∈≠R 可得()()12121211()()h x h x x x g x g x -=-≥-=-;而此时()g x 不是奇函数,故错误;对于B ,令(),()1h x x g x ==,()g x 是偶函数,对1212,,x x x x ∀∈≠R 可得()()12121211()()h x h x x x g x g x -=-≥-=-,此时ℎ为奇函数,故错误;对于C ,设ℎ的周期为T ,若1212,,x x x x ∀∈≠R ,有()()()()1212h x h x g x g x -≥-恒成立,令1x x T =+,2x x =,则()()()()h x T h x g x T g x +-≥+-,因为()()h x T h x +=,所以()()0g x T g x +-≤,所以()()g x T g x +=,所以函数=也是周期函数,故正确;对于D ,设12x x <,ℎ是上的增函数,所以()()12h x h x <,又()()()()1212h x h x g x g x -≥-即为121221()()()()()()h x h x g x g x h x h x -<-<-即为1122()()()()h x g x h x g x -<-,所以函数()()y h x g x =-也都是上的单调递增函数,故错误.故选:C8.已知向量4,8,2a b a b a b c +==⋅=-= ,且1n c -= ,则n 与c 夹角的最大值为()A.π6B.π4C.π3D.5π12【答案】A 【解析】【分析】先得到,a b 的夹角为2π3θ=,设()4,0a =,(b =-,故(c = ,设(),n x y = ,由1n c -= 得到()(2211x y -+=,设1cos ,sin x y ββ=+=+,设,n c 夹角为α,表达出cos α=,换元后得到3cos 44q qα=+,由对勾函数性质得到其值域,从而确定cos 2α⎤∈⎢⎥⎣⎦,得到夹角最大值.【详解】因为cos a b a b θ⋅=⋅ ,所以16cos 8θ=-,解得1cos 2θ=-,故2π3θ=,设()4,0a =,(b =-,则(2a bc +== ,设(),n x y =,则(1,n c x y -=-- ,则1n c -=,即()(2211x y -+=,设1cos ,sin x y ββ=+=+,设,n c夹角为α,则cos n c n c α⋅==⋅ ,令cos t ββ+=,则[]π2sin 2,26t β⎛⎫=+∈- ⎪⎝⎭,则cosα=[]1,3q =∈,则252q t -=,则2254332cos 2444q q q q q q α-++====+,其中344q y q=+在q ⎡∈⎣上单调递减,在q ⎤∈⎦上单调递增,当q =344q y q =+取得最小值,最小值为2,当1q =或3时,344qy q=+取得最大值,最大值为1,故3cos ,1442q q α⎤=+∈⎥⎣⎦,由于cos y α=在[]0,π上单调递减,故π0,6α⎡⎤∈⎢⎥⎣⎦,n 与c夹角的最大值为π6.故选:A【点睛】平面向量解决几何最值问题,通常有两种思路:①形化,即用平面向量的几何意义将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行求解;②数化,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域,不等式的解集,方程有解等问题,然后利用函数,不等式,方程的有关知识进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.已知0c b a <<<,则()A.ac b bc a +<+B.333b c a +<C.a c ab c b +<+ D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c a b c b +==+,此时a c a b c b +>+,故C 错误;因为0c b a <<<0>>⇒<>,故D 正确.故选:ABD10.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的图象过点()0,1A 和()()00,20B x x ->,且满足min AB =,则下列结论正确的是()A.π6ϕ=B.π3ω=C.当1,14x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 值域为[]0,1 D.函数()y x f x =-有三个零点【答案】AD 【解析】【分析】A 选项,把()0,1A 代入解析式,得到π6ϕ=;B 选项,根据()()00,20B x x ->为函数的最低点及min AB =,由勾股定理得到方程,求出02x =,从而得到13224T T <<,把()2,2B -代入解析式,得到2π3ω=;C 选项,整体法求出函数值域;D 选项,画出()f x 与y x =的函数图象,根据交点个数得到零点个数.【详解】A 选项,把()0,1A 代入得2sin 1=ϕ,1sin 2ϕ=,因为π2ϕ<,所以π6ϕ=,A 正确;B 选项,()()00,20B x x ->为函数的最低点,min AB ==02x =,负值舍去,则13224T T <<,其中2πT ω=,故π3π24ω<<,故π2sin 226ω⎛⎫+=- ⎪⎝⎭,πsin 216ω⎛⎫+=- ⎪⎝⎭,由于π3π24ω<<,所以7ππ5π2663ω<+<,故π3π622ω+=,解得2π3ω=,B 错误;C 选项,()2ππ2sin 36f x x ⎛⎫=+⎪⎝⎭,1,14x ⎡⎤∈-⎢⎥⎣⎦时,2ππ5π0,366x ⎡⎤+∈⎢⎥⎣⎦,故2ππ1sin ,1362x ⎛⎫⎡⎤+∈-⎪⎢⎥⎝⎭⎣⎦,()[]2ππ2sin 1,236f x x ⎛⎫=+∈- ⎪⎝⎭,C 错误;D 选项,画出()f x 与y x =的函数图象,如下:两函数有3个交点,故()y x f x =-有三个零点,D 正确.故选:AD11.已知()()32231f x x x a x b =-+-+,则下列结论正确的是()A.当1a =时,若()f x 有三个零点,则b 的取值范围是()0,1B.当1a =且()0,πx ∈时,()()2sin sin f x f x<C.若()f x 满足()()12f x f x -=-,则22a b -=D.若()f x 存在极值点0x ,且()()01f x f x =,其中10x x ≠,则01322x x +=【答案】ABD 【解析】【分析】对于A ,将1a =代入求导求极值,有三个零点,则令极大值大于零,极小值小于零即可;对于B ,利用sin y x =的性质,得到20<sin 1,0<sin 1x x <<且2sin sin x x >,再利用()f x 在区间()0,1上的单调性,即可求解;对于C ,根据()()12f x f x -=-,推断函数的对称性,进而可以求得22b a -=,即可判断结果;对于D ,利用导数在函数单调性中的应用,得到12a >-,进而可得200661a x x =-+,令012x x t +=,结合()()01f x f x =,再化简即可得到答案.【详解】对于选项A ,当1a =时,()3223f x x x b =-+,()2666(1)f x x x x x '=-=-,由()6(1)0f x x x '=->,得到0x <或1x >,由()6(1)0f x x x '=-<,得到01x <<,所以()3223f x x x b =-+单调递增区间为(),0-∞,()1,+∞;减区间为()0,1,故()f x 在0x =处取到极大值,在1x =处取到极小值,若()f x 有三个零点,则(0)0(1)10f b f b =>⎧⎨=-<⎩,得到01b <<,故选项A 正确,对于选项B ,当()0,πx ∈时,20<sin 1,0<sin 1x x <<,又2sin sin sin (1sin )0x x x x -=->,即2sin sin x x >,由选项A 知,()f x 在区间()0,1上单调递减,所以()()2sin sin f x f x <,故选项B 正确,对于选项C ,因为()()12f x f x -=-,即()()12f x f x -+=,所以()f x 关于点1,12⎛⎫⎪⎝⎭中心对称,又()()32231f x x x a x b =-+-+的定义域为R ,所以()111123112842f a b =⨯-⨯+⎛⎫⎝⨯-+⎭=⎪,整理得到22b a -=,所以选项C 错误,对于选项D ,因为()()32231f x x x a x b =-+-+,所以()2661f x x x a '=-+-,由题有3624(1)0a ∆=-->,即12a >-,由()20006610f x x x a '=-+-=,得到200661a x x =-+,令012x x t +=,则102x t x =-,又()()01f x f x =,所以()()002=-fx f t x ,得到()()32320000002312(2)3(2)12()x x a x b t x t x a t x b -+-+=---+--+,整理得到220000(3)(626391)0x t x t tx t x a -+--++-=,又200661a x x =-+,代入化简得到20(3)(23)0x t t --+=,又012x x t +=,10x x ≠,所以00130x t x x -=-≠,得到230t -+=,即01322x x t +==,所以选项D 正确,故选:ABD.【点睛】关键点点晴:本题的关键在于选项D ,利用导数在函数单调性中的应用,得到12a >-,进而可得200661a x x =-+,再通过令012x x t +=,结合条件得到()()002=-f x f t x ,再代入()()32231f x x x a x b =-+-+,化简得到20(3)(23)0x t t --+=,从而解决问题.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}22|log ,|14x A x x m B x x -⎧⎫=<=≤⎨⎬-⎩⎭,若“x A ∈”是“x B ∈”的充分不必要条件,则实数m 的取值范围是______.【答案】(],2-∞【解析】【分析】根据“x A ∈”是“x B ∈”的充分不必要条件,明确集合A ,B 的关系,列不等式求解实数m 的取值范围.【详解】由2log x m <⇒02m x <<.所以()0,2mA =;由214x x -≤-⇒2104x x --≤-⇒2404x x x --+≤-⇒204x ≤-⇒4x <.所以(),4B ∞=-.因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B ⊆且A B ≠.所以24m ≤⇒2m ≤.故答案为:(],2-∞13.已知()f x 是定义在R 上的奇函数,()2f x +为偶函数.当02x <<时,()()2log 1f x x =+,则()101f =______.【答案】1-【解析】【分析】根据函数的奇偶性确定函数的周期,再利用对数运算计算即可.【详解】由题意可知()()()(),22f x f x f x f x =--+=-+,所以()()()()()()()22248f x f x f x f x f x f x f x -+=--=+⇒+=-⇒+=,所以()f x 的一个正周期为8,即()()()()()2101511log 111f f f f ==-=-=-+=-.故答案为:1-14.已知函数()sin 1f x x x =-+,若关于x 的不等式()()e e22xxf ax f a x +--+>的解集中有且仅有2个正整数,则实数a 的取值范围为________.【答案】54324e 3e a ≤<【解析】【分析】原不等式的解集有且只有两个整数解等价于()11e 32x x x x a-<≥-的解集中有且仅有两个正整数,利用导数讨论后者的单调性后可求参数的取值范围.【详解】设()()1sin g x f x x x =-=-,则()()()1sin g x f x x x g x -=--=-+=-,而()g x 的定义域为R ,故()g x 为R 上的奇函数,()cos 10g x x =-≤'(不恒为零),故()g x 为R 上的单调减函数,又()()e1e210xxf ax f a x -+--+->即为:()()e e 20x x g ax g a x +--+>,也就是()()ee2xxg ax g a x >+-,故e e 2x x ax a x <+-,故()1e 2xa x x -<-的解集中有且仅有两个正整数,若0a ≤,则当3x ≥时,()1e 012xa x x -≤<≤-,此时不等式的解集中有无数个正整数解,不合题意;若0a >,因为()111e 12a ->-,()221e 22a ->-,故()1e 2xa x x -<-的解集中不会有1,2,其解集中的正整数解必定大于等于3,不妨设3x ≥,则11e 2x x x a-<-的解集中有且仅有两个正整数,设()1e ,32x x s x x x -=≥-,()()()22231991e e 022x x x s x x x ≥-+-+=-'>-,故()s x 在[)3,+∞上为增函数,由题设可得45411e 42511e 52a a -⎧<⎪⎪-⎨-⎪≥⎪-⎩,故54324e 3e a ≤<,故答案为:54324e 3e a ≤<.【点睛】思路点睛:不等式解集中的正整数解的个数问题,可通过参变分离转化水平的动直线与确定函数图像的位置关系来处理.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.设n S 为数列{}n a 的前n 项和,满足()*1n n S a n =-∈N.(1)求证:1(2n n a =;(2)记22212n n T S S S =+++ ,求n T .【答案】(1)证明见解析(2)1235111()(3232n n n --+-⋅【解析】【分析】(1)根据题意,得到2n ≥时,可得111n n S a --=-,两式相减得12n n a a -=,得到数列{}n a 为等比数列,即可得证;(2)由(1)求得21111()()24n n n S --+=,结合等比数列的求和公式,即可求解.【小问1详解】解:因为数列{}n a 的前n 项和,满足1n n S a =-,当2n ≥时,可得111n n S a --=-,两式相减得1n n n a a a -=-,即12n n a a -=,所以112n n a a -=,令1n =,可得1111S a a =-=,解得112a =,所以数列{}n a 构成首项为12,公比为12的等比数列,所以{}n a 的图象公式为1111(()222n n n a -=⋅=.【小问2详解】解:由(1)知1()2n n a =,可得11()2n n S =-,所以222111111()]12()()1()(22224[1n n n n n n S -=-⋅=+=-+-,则222121111()[1()]244(111)111124n n n n T S S S -⋅-=+++=+++--- 1235111()()3232n n n --=+-⋅.16.函数()2sin cos cos ,0f x x x x ωωωω=⋅+>,函数()f x 的最小正周期为π.(1)求函数()f x 的单调递增区间以及对称中心;(2)将函数()f x 的图象先向右平移π8个单位,再向下平移12个单位,得到函数()g x 的图象,在函数()g x 图象上从左到右依次取点122024,,,A A A ⋯,该点列的横坐标依次为122024,,,x x x ⋯,其中1π4x =,()*1π3n n x x n +-=∈N ,求()()()122024g x g x g x ++⋯+.【答案】(1)增区间为3πππ,π,88k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,对称中心为为ππ1,,282l l ⎛⎫-∈ ⎪⎝⎭Z .(2)4【解析】【分析】(1)利用三角变换可得()12πsin 2224f x x ω⎛⎫=++ ⎪⎝⎭,结合周期可求1ω=,再利用整体法可求单调增区间和对称中心.(2)根据图象变换可得()sin 22g x x =,根据其周期性和特殊角的三角函数值可求()()()122024g x g x g x ++⋯+的值.【小问1详解】()11cos 212πsin 2222224x f x x x ωωω+⎛⎫=+=++ ⎪⎝⎭,因为()f x 的最小正周期为π,故2ππ2ω=,即1ω=,所以()12πsin 2224f x x ⎛⎫=++ ⎪⎝⎭,令πππ2π22π,242k x k k -≤+≤+∈Z ,故3ππππ,88k x k k -≤≤+∈Z ,故()f x 的增区间为3πππ,π,88k k k ⎡⎤-+∈⎢⎥⎣⎦Z .令π2π,Z 4x l l +=∈,则ππ,28l x l =-∈Z ,故()f x 图象的对称中心为ππ1,,282l l ⎛⎫-∈ ⎪⎝⎭Z .【小问2详解】由题设有()11ππsin 22222442g x x x ⎛⎫=-+-+= ⎪⎝⎭,则()g x 的周期为π,而3π3π3n n x x +-=⨯=,故()()3n n g x g x +=,而()()12πππ2π,2432234g x g x g ⎛⎫⎛⎫==+=+=- ⎪ ⎪⎝⎭⎝⎭,()3π2ππ4πsin 432234g x g ⎛⎫⎛⎫=+=+=- ⎪ ⎝⎭⎝⎭,故()()()()()()()()12202412123674g x g x g x g x g x g x g x g x ⎡⎤++⋯+=++++⎣⎦222222674242444⎛⎫=-+--= ⎪ ⎪⎝⎭17.已知函数()()()232ln 34f x a x x a x a =+-+∈R ,(1)若曲线()y f x =在点()()1,1f 处的切线方程为()f x x b =-+,求a 和b 的值;(2)讨论()f x 的单调性.【答案】(1)12a =,74b =-(2)答案见解析【解析】【分析】(1)先对函数求导,结合导数的几何意义与斜率关系即可求解;(2)结合导数与单调性关系对a 的范围进行分类讨论即可求解.【小问1详解】()()232ln 34f x a x x a x =+-+,则23()32a f x x a x '=+--.曲线()y f x =在点()()1,1f 处的切线方程为()f x x b =-+,则()3112f a '=-=-,解得12a =,由()9114f ab =--=-+,解得74b =-,【小问2详解】()()232ln 34f x a x x a x =+-+,函数定义域为()0,∞+,则()()32223()322x a x a f x x a x x --'=+--=,令()0f x '=,解得2x =或23a x =,若0a ≤,则当(0,2)x ∈时,()0f x '<,()f x 单调递减,当(2,)x ∈+∞时,()0f x '>,()f x 单调递增,若0<<3a ,则当2,23a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减,当20,3a x ⎛⎫∈ ⎪⎝⎭和(2,)x ∈+∞时,()0f x '>,()f x 单调递增,若3a =,则()0f x '≥在(0,)+∞上恒成立,()f x 单调递增,若3a >,则当232,x a ∈⎛⎫ ⎪⎝⎭时,()0f x '<,()f x 单调递减,当(0,2)x ∈和,23x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增,综上所述,当0a ≤时,()f x 的单调递增区间为(2,)+∞,单调递减区间为(0,2),当0<<3a 时,()f x 的单调递增区间为20,3a ⎛⎫ ⎪⎝⎭和(2,)+∞,单调递减区间为2,23a ⎛⎫ ⎪⎝⎭,当3a =时,()f x 的单调递增区间为(0,)+∞,无单调递减区间,当3a >时,()f x 的单调递增区间为(0,2)和2,3a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为2,23a ⎛⎫ ⎪⎝⎭.18.在ABC V 中,角,,A B C 所对的边分别为,,a b c .(1)证明:1cos sin tan 2sin 1cos A A A A A-==+;(2)若,,a b c 成等比数列.(i )设b q a=,求q 的取值范围;(ii )求tantan 22A C 的取值范围.【答案】(1)证明见解析(2)(i)11,22⎛⎫ ⎪ ⎪⎝⎭;(ii)13,32⎡⎫⎪⎢⎪⎣⎭【解析】【分析】(1)利用二倍角公式及同角三角函数的平方关系证明即可;(2)(i )利用三角形三边关系建立不等式组解不等式即可;(ii )利用第一问及第二问第一小问的结论,结合正余弦定理、对勾函数的单调性计算即可.【小问1详解】易知(),,0,πA B C ∈,所以sin 0,sin 0,cos 0,1cos 0,1cos 022A A A A A ≠≠≠-≠+≠,则对于2112sin 1cos 2tan sin 22sin cos 22A A A A A A ⎛⎫-- ⎪-⎝⎭==,即左侧等式成立,又()()22sin 1cos 1cos 1cos A A A A =-=-+,两侧同时除以()1cos sin A A +,所以1cos sin sin 1cos A A A A-=+,即右侧等式成立,证毕;【小问2详解】(i )由题意,设公比为q ,知2,b aq c aq ==,根据三角形三边关系知:22222201110q q q a aq aq q q a aq aq q q aq aq a q >⎧+>⎧⎪⎪+>+>⎪⎪⇒⎨⎨+>+>⎪⎪⎪⎪+>>⎩⎩,解之得11,22q ⎛⎫∈ ⎪ ⎪⎝⎭(ii )由(1)及正弦定理、余弦定理知:222222221sin 1cos 2tan tan 221cos sin 12a b c A C A C a a c b a aq aq ab c b a A C c a c b a aq aq bc+---+-+-=⋅=⋅==+-++-+++222122111111q q q q q q q q q+-==-=-++++++,由对勾函数的性质知:()11f q q q =++在51,12⎛⎫- ⎪ ⎪⎝⎭上单调递减,在511,2⎛⎫ ⎪ ⎪⎝⎭上单调递增,所以())111f q q q ⎡=++∈⎣,则2131,1321q q ⎡⎫-∈⎪⎢⎪⎣⎭++,即tan tan 22A C 的取值范围为13,32⎡⎫⎪⎢⎪⎣⎭.19.已知定义在()0,∞+的两个函数,()()()1sin sin,0a f x x g x x a x=⋅=>.(1)证明:()sin 0x x x <>;(2)若()sin a h x x x =-.证明:当1a >时,存在()00,1x ∈,使得()00h x >;(3)若()()f x g x <恒成立,求a 的取值范围.【答案】(1)证明见解析(2)证明见解析(3)(]0,1【解析】【分析】(1)当1x ≥显然成立,当01x <<,构造函数利用导数证明sin x x <即可;(2)先求得()h x '在0,1单调递减,且()010h '=>,()010h '=>即可得;(3)sin x 与1sin x 异号,1x ≥时,()()f x g x <显然成立,只考虑∈0,1时,1sin sin a x x x ⋅<,()0a >,根据01a <≤,1a >分类利用(1)(2)结论判断即可.【小问1详解】当1x ≥时,sin x x <显然成立,当01x <<时,sin sin x x =.即证()sin ,0,1x x x <∈,设()()sin ,0,1x x x x ϕ=-∈,()1cos 0x x ϕ'=-≥,所以在0,1上单调递增,()()00x ϕϕ>=,故()sin ,0,1x x x <∈,综上可知:()sin 0x x x <>;【小问2详解】当1a >时,()sin a h x x x =-,()1cos a h x x ax --'=,当∈0,1时,cos x 单调递减,1a ax -单调递增,故()h x '在0,1单调递减,又()010h '=>,()010h '=>,所以()h x '在0,1存在唯一零点,记为0x ,所以ℎ在()00,x 单调递增,在()0,1x 单调递减,所以()00h x >,证毕.【小问3详解】由()()f x g x <,0x >,即1sin sin,0a x x x x ⋅<>,若sin x 与1sin x 异号,显然成立,只考虑sin x 与1sin x 同号,又1x =时,2sin 1命题成立;1x >时,11sin sin a x x x >≥⋅,命题成立,故只需考虑∈0,1时,1sin sin a x x x ⋅<,()0a >①,若01a <≤,11sin sin sin sin sin a x x x x x x x⋅=⋅≤<<,(用(1)的结论)①式成立,若1a >,取*N m ∈,01m x >,取()1010,12π2x x m =∈⎛⎫+ ⎪⎝⎭,则:1111111sin sin sin sin 2π=sin 2a x x m x x x ⎛⎫⋅=⋅+> ⎪⎝⎭,(用(2)的结论)故①不成立,综上:a 的取值范围为:(]0,1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈市 高三年级调研考试文 科 数 学一、选择题:本大题共10小题,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案涂在答题卡对应题号.......的位置上,答错位置不得分. 1.已知R 为实数集,集合{}2x -4y y ==M ,}1{-==x y x N ,则=)(N C M R I ( )A.{x|0≤x <1}B.{x|-2≤x <1}C.{x|0≤x ≤2}D.{x|x <1} 2.已知i 为虚数单位,则复数2-i i在复平面内对应的点的坐标为( ) A.(15 ,25 ) B.(- 15 , - 25 ) C.(- 15 ,25 ) D.(15 ,- 25 ) 3.命题“)0(∞+∈∀,x ,01313>+-x x ”的否定是( ) A.)0(0∞+∉∃,x ,0131030≤+-x x B.)0(0∞+∈∃,x ,0131030≤+-x xC.)0(∞+∉∀,x ,01313≤+-x x D.)0(∞+∈∀,x ,01313<+-x x 4.已知变量x ,y 满足⎪⎩⎪⎨⎧≥-+≤+-≥-,,,0920340y x y x y x 则-2x+y 的最大值为( )A.-1B.-3C.-8D.-95.书架上有语文书,数学书各三本,从中任取两本,取出的恰好都是数学书的概率为 ( ) A.13 B.14 C.15 D.166.在黄冈市青年歌手大赛中,七位评委为某选手打出的分数如下:91 89 91 96 94 95 94 去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A. 93, 2.8 B. 93, 2 C. 94, 2.8 D. 94, 27.设函数3()3f x ax x =+,其图象在点(1,(1))f 处的切线l 与直线036=-+-y x 垂直,则直线l 与坐标轴围成的三角形的面积为( ) A. 9 B. 6 C.3 D. 1 8.若某几何体的三视图如图所示,则此几何体的体积是( )A.6B.320C.322 D.323 9.定义在R 上的函数)(x f 满足),4()(,0)()(+==+-x f x f x f x f ,且)0,2(-∈x 时,,512)(+=x x f ,则=)20(log 2f ( ) A.1 B.45 C.1- D.45- 10. 定义在实数集R 上的函数)(x f y =的图像是连续不断的,若对任意的实数x ,存在不为0的常数τ使得)()(x f x f ττ-=+恒成立,则称)(x f 是一个“关于τ函数”.下列“关于τ函数”的结论正确的是( ) A. 0)(=x f 是常数函数中唯一一个“关于τ函数” B. 2)(x x f =是一个“关于τ函数” C. x x f πsin )(=不是一个“关于τ函数” D. “关于21函数”至少有一个零点 二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号.......的位置上,答错位置,书写不清,模棱两可均不得分.11.某产品在某零售摊位的零售价x (单位:元)与每天的销售量y (单位:个)的统计资料如下表所示:由下表可得回归直线方程为a x yˆ4ˆ+-=,据此模型预测零售价为15元时,每天的销售量为 . x 16 17 18 19 y5034413112.已知α为第四象限角,3cos sin =+a a ,则cos2α=___________. 13.平面向量(,3)a x =r -,(2,1)b =r -,(1,)c y =r,若()a b c ⊥-r r r , b r ∥()a c +r r,则a ρ在b r 方向上的投影为 .14.执行如图所示的程序框图,输出结果S= .15.已知圆1)sin 2()cos 2(:221=-+-θθy x C 与圆1:222=+y x C ,在下列说法中:①对于任意的θ,圆1C 与圆2C 始终相切;②对于任意的θ,圆1C 与圆2C 始终有四条公切线; ③当6πθ=时,圆1C 被直线013:=--y x l 截得的弦长为3;④Q P ,分别为圆1C 与圆2C 上的动点,则||PQ 的最大值为4.其中正确命题的序号为______.16.已知函数,4)(-=x x x f ,则不等式)1()(f x f ≥的解集为 .17.设抛物线x y 62=的焦点为F ,已知B A ,为抛物线上的两个动点,且满足ο60=∠AFB ,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||AB MN 的最大值为 . 三、解答题:本大题共5小题,共65分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分) 已知函数,21-)cosx 6sin(x 2)(π+=x f (Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)在△ABC 中,若23)(=A f ,∠B=4π,AC=2,求△ABC 的面积.19.(本小题满分12分)已知数列{}n a 是各项均不为0的等差数列,其前n 项和为{}n S ,且122-=n n S a ,数列{}n b 满足211-=b ,121-=+n n b b .(Ⅰ)求n a ,并证明数列{}1b +n 为等比数列;(Ⅱ)若)1(+=n n nb ac ,求数列{}n c 的前n 项和n T .20.(本小题满分13分)如图,在直三棱柱ABC-A 1B 1C 1中,已知D 点在直线A 1B 上,AD ⊥平面A 1BC.(Ⅰ)求证:BC ⊥AB;(Ⅱ)若BC=2,AB=4,AD=32,P 为AC 边的中点,求三棱锥P-A 1BC 的体积 .21.(本小题满分14分) 已知函数232x )(x x f +=(Ⅰ)求函数)(x f 的极大值和极小值;(Ⅱ)若不等式x x ax x f ln 4)(+≥恒成立,求实数a 的取值范围;(Ⅲ)证明:)1ln(4143413424124141142222+≥⨯+⨯+⋅⋅⋅+⨯+⨯+⨯+⨯+⨯+⨯n nn )(*∈N n .22.(本小题满分14分)已知曲线P :16122=-+-my m x (61<<m ) (Ⅰ)指出曲线P 表示的图形的形状;(Ⅱ)当5=m 时,过点M (1,0)的直线l 与曲线P 交于A,B 两点.①若MB MA 2-=,求直线l 的方程; ②求△OAB 面积的最大值.文 科 数 学 参考答案一、选择题1-5 ADBBC 6-10 ACBCD 二、填空题 11.49 12. 9142 13. -5 14.-2015 15.①③④ 16. [][)+∞+,7231Y ,17.1 三、解答题 18.解:(Ⅰ)f(x)=2(32sinx +12cosx)cosx -12 =3sinxcosx +cos 2x -12=32sin2x +12cos2x =sin(2x +π6)…………………………5分 令-π2+2k π≤2x +π6≤π2+2k π得x ∈[-π3+k π,π6+k π] (k ∈Z)即函数f(x)的单调递增区间为[-π3+k π,π6+k π] (k ∈Z)……………6分(Ⅱ)∵0<A <π ∴π6<2A +π6<136π , f(A)=sin(2A +π6)=32∴2A +π6=π3或2A +π6=23π,即A =π12或A=π4…………………………8分①当A =π12时,C =23π,a =22sinA =6-24·22=3-1 , S △ABC =12absinC =3-32………10分②当A =π4时,C =π2, S △ABC =12ab =2 …………………………………………12分19. 解:(Ⅰ)由a n 2=S 2n -1令n =1得a 12=S 1=a 1解a 1=1 令n =2得a 22=S 3=3a 2,得a 2=3∵{a n }为等差数列,∴a n =2n -1 ………………………………3分 证明:∵b n +1≠0, b n +1+1b n +1=12b n -12+1b n +1=12(b n +1)b n +1=12又b 1+1=12,故{b n +1}是以12为首项公比为12的等比数列.………………6分(Ⅱ)由(1)知,n n n c b )21)(12(,)21(1n n-=∴=+Θn n T )21)(12()21(5)21(3)21(321n -++⨯+⨯+=K 故=n 21T 132)21)(12()21)(32()21(3)21(+-+-++⨯+n n n n K14321n )21)(12()21()21()21()212)21(21+--⎥⎦⎤⎢⎣⎡+++++=∴n n n T K ( =131(21)1()()2222n nn ---- n n T )21)(32(3n +-=∴ ………………………………………12分20. (Ⅰ)证明:由AD ⊥平面ABC ,BC ⊂平面ABC 得 AD ⊥BC ①又AA 1⊥平面ABC ⇒AA 1⊥BC ② AA 1∩AD =A ③由①②③得BC ⊥平面A 1AB ⇒BC ⊥AB …………………… 6分(Ⅱ)Rt △ADB 中,sin ∠ABD =234=32, 故∠ABD =π3Rt △AA 1B 中,AA 1=ABtan ∠ABD =4 3 故V P —A 1BC =V A 1—PBC=12V A 1—ABC =12×13×12×2×4×43=833即三棱锥P -A 1BC 的体积为833. ……………………………………13分 21.(1)∵f '(x)=3x 2+4x=x(3x+4)f(x)在(-∞,-43)和(0,+∞)上递增,在(-43,0)上递减∴ f(x)的极大值为f(-43)=3227f(x)的极小值为f(0)=0. …………………………………………4分 (2) f(x)≥ax+4xlnx 恒成立 ,即x 3+2x 2-4xlnx ≥ax 对∀x ∈(0,+∞)恒成立.也即a ≤x 2+2x -4lnx 对x ∈(0,+∞)恒成立. 令g(x)= x 2+2x -4lnx, 只需a ≤g(x)min 即可 . g '(x)= 2x+2-4x =2(x -1)( x+2)x , x ∈(0,+∞), y= g(x)在(0,1)上递减, (1,+∞)上递增g(x)min =g(1)=3 , ∴ a ≤3 .…………………………………………9分 (3)由(2)知x >0时,x 2+2x -4lnx ≥3恒成立. 即(x -1)(x+3)≥4lnx 即(x -1)( x+3)4≥lnx 恒成立.令x=1+1n 得4n+14n 2≥ln(1+1n ), 即4n+14n 2≥ln(n+1)-lnn故4(n -1)+14(n -1)2≥lnn -ln(n -1) …4⨯2+14⨯22≥ln3-ln24 ⨯1+14⨯12≥ln2-ln1 把以上n 个式子相加得4 ⨯1+14⨯12+4⨯2+14⨯22+…+4n+14n2≥ln(n+1).……………………………14分 22. (Ⅰ) 当1<m <72时,曲线P 表示焦点在y 轴上的椭圆当m =72时,曲线P 表示圆当72<m <6时,曲线P 表示焦点在x 轴上的椭圆……………………4分(Ⅱ)当m =5时,曲线P 为x 24+y 2=1,表示椭圆① 依题意可知直线l 的斜率存在且不为0,设直线l :x =λy +1,A(x 1,y 1) B(x 2,y 2) 由x 24+y 2=1消去x 得(λ2+4)y 2+2λy -3=0 △>0,由韦达定理得⎩⎪⎨⎪⎧y 1+y 2=-2λλ2+4①y 1y 2=-3λ2+4 ②由MB MA 2-=得,y 1=-2y 2代入①②得⎩⎪⎨⎪⎧-y 2=-2λλ2+4-2y 22=-3λ2+4…………………7分故8λ2( λ2+4)2=3λ2+4⇒ λ2=125 ⇒λ=±2155即直线l 的方程为x ±2155y -1=0 . ……………………………………9分②S △OAB =S △OMA +S △OMB =12|OM|·|y 1-y 2|=12|y 1-y 2|=12(y 1+y 2)-4y 1y 2=16λ2+482(λ2+4)=2λ2+3 λ2+4=2λ2+3( λ2+3)+1令λ2+3=t (t ≥3) S(t)=2tt 2+1当t ∈[3,+∞)时,S ’ (t)=2(t 2+1)-2t ·2t (t 2+1)2=2-2t(t 2+1)2<0故y =S(t)在t ∈[3,+∞)时单调递减当t =3, 即λ=0时,S △ABO 有最大值为32 .…………………14分。