温室大棚智能监控系统的研究方案(推荐文档)

合集下载

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》篇一一、引言随着现代科技的不断进步,农业科技作为支撑现代农业发展的重要支柱,也正在逐步升级与优化。

智能温室大棚监控系统是这一进步的体现之一,它不仅为农业种植提供了精准的环境控制,还能显著提高农作物的产量与品质。

本文旨在探讨智能温室大棚监控系统的设计与实现,通过对其系统架构、技术运用以及实施效果的研究,为现代农业的智能化发展提供一定的理论支持与实践指导。

二、系统架构设计1. 硬件架构智能温室大棚监控系统的硬件架构主要包括传感器网络、数据传输设备、中央处理单元和控制执行设备等部分。

传感器网络负责实时监测温室内的环境参数,如温度、湿度、光照强度等;数据传输设备将收集到的数据传输至中央处理单元;中央处理单元对数据进行处理与分析,并发出控制指令;控制执行设备则根据指令调整温室内的环境条件。

2. 软件架构软件架构则包括数据采集模块、数据处理与分析模块、控制指令输出模块以及用户交互界面等部分。

数据采集模块负责从传感器网络中获取数据;数据处理与分析模块对数据进行处理与存储,并运用算法进行环境预测与优化;控制指令输出模块根据分析结果发出控制指令;用户交互界面则提供友好的操作界面,方便用户进行系统操作与监控。

三、关键技术运用1. 传感器技术传感器技术是智能温室大棚监控系统的核心之一。

通过使用高精度的传感器,系统能够实时监测温室内的环境参数,如温度、湿度、光照强度等,为后续的数据处理与分析提供准确的数据支持。

2. 数据处理与分析技术数据处理与分析技术是智能温室大棚监控系统的关键环节。

通过对传感器收集到的数据进行处理与分析,系统能够实时掌握温室内的环境状况,并运用算法进行环境预测与优化,为控制指令的发出提供依据。

3. 控制执行技术控制执行技术是实现智能温室大棚监控系统精确控制的关键。

通过控制执行设备,系统能够根据中央处理单元发出的指令,调整温室内的环境条件,如开启或关闭通风口、调整遮阳设备等。

《温室大棚分布式监控系统设计与实现》范文

《温室大棚分布式监控系统设计与实现》范文

《温室大棚分布式监控系统设计与实现》篇一一、引言随着现代农业技术的快速发展,温室大棚种植技术已成为提高农作物产量和品质的重要手段。

为了更好地对温室大棚进行管理,提高生产效率,降低人力成本,本文提出了一种温室大棚分布式监控系统的设计与实现方案。

该系统通过物联网技术,实现对温室大棚内环境参数的实时监测与控制,提高了农作物的生长环境,从而提升了农作物的产量和品质。

二、系统设计1. 硬件设计温室大棚分布式监控系统的硬件部分主要包括传感器、数据采集器、传输模块、中央处理器和控制设备等。

传感器负责实时采集温室大棚内的环境参数,如温度、湿度、光照强度、二氧化碳浓度等;数据采集器负责将传感器采集的数据进行整理和初步处理;传输模块将处理后的数据通过无线网络传输到中央处理器;中央处理器对接收到的数据进行进一步处理和存储,并通过控制设备对温室大棚内的环境进行调节。

2. 软件设计软件部分主要包括数据采集与处理模块、通信模块、控制模块和用户界面模块等。

数据采集与处理模块负责从传感器中获取数据并进行初步处理;通信模块负责将处理后的数据传输到中央处理器;控制模块根据处理后的数据对温室大棚内的环境进行调节;用户界面模块则提供友好的人机交互界面,方便用户对系统进行操作和管理。

三、系统实现1. 传感器布置与数据采集根据温室大棚的实际情况,合理布置传感器,确保能够全面、准确地采集到温室大棚内的环境参数。

通过数据采集器对传感器采集的数据进行整理和初步处理,为后续的数据分析和控制提供支持。

2. 数据传输与处理通过无线网络将处理后的数据传输到中央处理器。

中央处理器对接收到的数据进行进一步处理和存储,包括数据分析和存储等。

同时,中央处理器根据处理后的数据判断温室大棚内的环境是否符合农作物的生长需求,如果不符合,则通过控制设备对温室大棚内的环境进行调节。

3. 控制策略与实现根据农作物的生长需求和温室大棚内的环境参数,制定合理的控制策略。

通过控制设备对温室大棚内的环境进行调节,如调整温度、湿度、光照强度等,以满足农作物的生长需求。

温室大棚智能监控系统研究专业技术方案

温室大棚智能监控系统研究专业技术方案

温室大棚智能监控系统的研究方案我国是一农业大国,农业是国家的重要经济命脉。

提高单位面积的作物的产量、生产优质农产品是现阶段农业发展的迫切要求,而温室大棚是实现高产、优质农业的一个重要的组成部分。

温室大棚是一种可以改变植物生长环境,根据作物生的最佳生长条件,调节温室气候使之一年四季满足植物生长需要,不受气候和土壤条件的影响,能够避免外界四变化和恶劣气候对其影响的场所,并且能在有限的土地上周年地生产各种不同的蔬菜、鲜花等反季节作物的一种温室设施。

温室生产以达到调节作物生长过程中的产期,促进在不同时期作物的发育提高作物品质、产量等为目的。

温室棚依照不同的屋架、采光材料又可分为很多种类,如玻璃温室、塑料温室等。

温室结构的建造标准是既能密封保温,便于通风降温。

但是作物要想现高产、优质、仅仅靠温室保温是不行的,需要对农作物的生长环境进行多方位多的精确采集和实时的控制。

目前国家提出要狠抓农业科技革命的新型农业道路,实施数字化精准农业温室大棚是现代农业发展改革的一大措施。

数字化精准农业温室大棚技术是从生产理念、经营主体、农业装备、先进科技成果转化、提高农业生产力等方面进行农业的改革,应用先进的技术调控差异,科学利用资源,采用信息化经营管理和组织方式进行农业生产,实现农业生产的目标管理。

与普通的温室大棚相比,数字化精准农业温室大棚不仅能够种植优质高产反季作物而且将电子、计算机、通信和自动控制等信息技术引入到本领域中,朝着精细农业、数字农业的方向发展。

数字化精准农业温室大棚系统,可以定量获取和分析农业环境的多种参数 ,实现对环境的多点检测,其检测目标可以是温度、湿度、光照、振动、压力、水/土壤/空气成分等,能对大棚内个环境参数达到良好的检测,进而协调控制大棚内的环境参数,使大棚内的环境条件能够适宜作物的成长。

对温室大棚内的内的环境因子进行多点多参数的采集,一般需要在土壤中铺设大量的线缆,使得对作物的耕作造成了一定的困难,采用无线的方式进行数据的采集可以解决上述问题;根据所采集的数据,需对温室大棚的环境进行良好的控制,有效地控制大棚内作物在生长过程中需要的水分、通风以及温度等,高度有效地利用各种资源以求得到最大的产出。

农村温室大棚智能监控系统新方向进展研究

农村温室大棚智能监控系统新方向进展研究

农村温室大棚智能监控系统新方向进展研究一、智能监控系统在温室大棚中的应用而随着人工智能和物联网技术的发展,温室大棚智能监控系统不仅能够监测环境参数,还可以实现自动化的控制和决策。

智能监控系统可以根据温室内外的气象预报数据、植物生长数据、土壤数据等多种信息,实现对温室环境的智能调控,提高温室生产效率、降低能耗、提高农产品质量。

1. 大数据与人工智能技术的应用大数据技术和人工智能技术的不断进步,为温室大棚智能监控系统的发展提供了新的动力。

利用大数据技术,可以对温室生产中的各项参数进行全面、深入的分析,帮助农户更好地了解植物生长环境和需求,优化温室环境控制策略。

人工智能技术的应用可以实现对温室生产过程的智能化管理和控制,提高生产效率和农产品质量。

2. 物联网技术的发展物联网技术的发展使得温室大棚智能监控系统可以实现更加全面、灵活的监控和控制。

通过将各个传感器和控制设备连接到互联网上,可以实现对温室环境的实时远程监控和控制,农户可以通过手机、平板等设备随时随地监控和调控温室环境,提高生产管理的便利性和智能化水平。

3. 多元数据融合分析随着温室大棚智能监控系统监测设备数量和种类的增多,温室内产生的数据量也在不断增加。

如何对这些数据进行有效分析和利用成为了研究的重点方向之一。

多元数据融合分析可以将温室生产中的各种数据进行有机地整合,提高数据的综合利用效率,为温室环境监控和控制提供更加全面、细致的支持。

仿生智能技术是一种借鉴生物体生物学特征、机理和行为的智能计算方法,能够很好地模拟生物体的智能行为和适应性。

在温室大棚智能监控系统中,可以利用仿生智能技术对温室环境进行智能调控,实现更加精准和有效的生产管理。

三、展望农村温室大棚智能监控系统正朝着更加智能化、自动化、智能化的方向不断发展。

未来,随着大数据、物联网、人工智能等技术的不断成熟和应用,农村温室大棚智能监控系统将会在温室环境监测、生产管理、决策支持等方面发挥越来越重要的作用,为农业生产提供更好的支持和保障。

温室大棚环境监控系统总方案(详细版)

温室大棚环境监控系统总方案(详细版)

温室大棚环境监控系统总方案(详细版)温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度、湿度等对生物生长的限制。

能使不同的农作物在不适合生长的季节产出,部分或完全的摆脱农作物对自然条件的依赖。

近年来,农业智能监控系统在温室大棚中的应用是越来越广泛,下面托普云农带大家了解一下整套的温室大棚环境监控系统解决方案。

一、方案概述我国是一个农业大国,农业是国家的重要经济命脉,提高单位面积的作物产量、生产优质产品是现阶段农业发展的迫切需求,而温室大棚是实现高产、优质农业的一个重要组成部分。

我司提供的农业智能监控系统通过网络技术与农业种植经验的结合,为用户提供一个可远程、自动化控制的大棚环境,能够帮助提高用户工作效率。

线上服务包括:大棚实时数据监测;大棚出入管理;大棚环境自动化控制;24小时远程值守;移动APP端告警信息日推送服务;系统告警信息周报分析推送服务;远程智能巡检服务。

线下服务包括:及时故障响应服务;主动现场维护服务;定期现场巡检服务。

二、系统架构对于规模化的温室大棚种植而言,单靠人工管理需要大量人手,耗力费时,并且存在难以避免的人工误差。

托普物联网系统采集温室内的空气温湿度、土壤水分、土壤温度、二氧化碳、光照强度等实时环境数据,传输到控制中心,由中心平台系统将最新监测数据与预先设定适合农作物生长的环境参数与进行比较,如发现传感器监测到的数据与预设数值有了偏差,计算机会自动发出指令,智能启动与系统相连接的通风机、遮阳、加湿、浇灌等设备进行工作,直到大棚内环境数据达到系统预设的数据范围之内,相关设备才会停止工作。

系统的结构图如下:三、系统功能1、实时监控通过电脑,手机端远程查看温室的实时环境数据,包括空气湿度,空气温度,土壤温度,土壤湿度,光照度,二氧化碳浓度,氧气浓度等与作物生长息息相关的环境信息。

通过电脑和手机端远程查看大棚实时视频,查看大棚门禁管理记录,并可以查看录像,随时随地了解大棚现状,防止被盗。

一种智能温室大棚监控系统的设计

一种智能温室大棚监控系统的设计

一种智能温室大棚监控系统的设计随着人们对环境的日益重视,为了保护地球资源,农业也在向着智能化、节能化、高效化的方向发展。

而智能温室大棚监控系统的出现,为农业生产提供了强大的保障。

本文将介绍一种智能温室大棚监控系统的设计方案。

一、引言智能温室大棚环境的控制对农产品质量、数量和价格有着巨大的影响。

传统的大棚监控系统主要靠人工巡视来进行监测和管理,这种方式繁琐耗时,效率不高。

而智能温室大棚监控系统则可以通过自动化、智能化的方式对温度、湿度、光照、二氧化碳浓度等环境参数进行精确地调控,从而提高生产效率和产品质量。

二、系统设计1.系统硬件设计智能温室大棚监控系统的硬件设计包括传感器模块、数据采集模块、控制模块和通信模块。

传感器模块:通过传感器模块对环境参数进行监测,例如:温度传感器、湿度传感器、光照传感器、二氧化碳传感器等。

数据采集模块:数据采集模块主要是对传感器采集到的数据进行采集,通过采集到的数据进行自动化调控。

控制模块:控制模块主要是对各个设备进行控制的模块,例如:空调、加湿器、灯光、通风等。

通信模块:通过通信模块将传感器采集到的数据上传到云端,方便农户远程管理大棚。

系统的软件设计主要包括上位机软件和云端软件两个部分。

上位机软件:运行在智能温室大棚内部的计算机上,该软件可以对温室内的参数进行实时监测,并通过控制模块对温室内的设备进行控制。

云端软件:运行在云服务平台上,该软件通过接收传感器上传的数据,对温室内的参数进行分析和处理,并将分析结果发送给农户进行管理和控制。

三、系统优势1. 自动化:通过系统硬件和软件的设计,大大提高了智能温室大棚的自动化程度,减少了人工巡视的工作量。

2. 精确度高:传感器模块采集到的数据可以精确地调控温度、湿度、光照等环境参数,从而提高了生产效率和产品质量。

3. 远程控制:云端软件的设计,可以对智能温室大棚进行远程控制,方便了农户的管理和及时处理问题。

4. 节能减排:通过精确调控温室大棚的环境参数,减少了资源的浪费,实现了节能减排的效果。

农业温室大棚智能环境监控系统解决方案

农业温室大棚智能环境监控系统解决方案

智能温室大棚环境监控系统1、系统简介该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。

同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。

本系统适用于各种类型的日光温室、连栋温室、智能温室。

2、系统组成该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。

(1)传感终端温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。

环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。

(2)通信终端及传感网络建设温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。

前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。

温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。

(3)控制终端温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。

根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

(4)视频监控系统作为数据信息的有效补充,基于网络技术和视频信号传输技术,对温室大棚内部作物生长状况进行全天候视频监控。

该系统由网络型视频服务器、高分辨率摄像头组成,网络型视频服务器主要用以提供视频信号的转换和传输,并实现远程的网络视频服务。

《基于物联网的设施农业温室大棚智能控制系统研究》

《基于物联网的设施农业温室大棚智能控制系统研究》

《基于物联网的设施农业温室大棚智能控制系统研究》篇一一、引言随着科技的进步与物联网技术的迅速发展,农业现代化逐渐展现出其全新的面貌。

设施农业作为现代农业的重要组成部分,其智能化、自动化水平已成为衡量一个国家农业现代化程度的重要标志。

而作为设施农业核心的温室大棚,其智能控制系统的研究与应用更是对农业生产效率、环境控制、作物生长等方面产生了深远的影响。

本文将重点研究基于物联网的设施农业温室大棚智能控制系统,旨在推动设施农业的进一步发展。

二、物联网在设施农业中的应用物联网技术以其独特的优势,为设施农业带来了革命性的变革。

物联网技术通过传感器、网络通信、云计算等技术手段,实现了对农业生产环境的实时监测、智能控制以及数据化管理。

在设施农业中,物联网技术的应用主要体现在温室大棚的智能控制系统中,通过对温室内环境因素的实时监测与调控,为作物生长提供最适宜的环境条件。

三、温室大棚智能控制系统的研究1. 系统架构设计基于物联网的温室大棚智能控制系统主要包括感知层、网络层和应用层。

感知层通过各类传感器实时采集温室内的温度、湿度、光照、CO2浓度等环境因素;网络层通过无线通信技术将感知层的数据传输至云端服务器;应用层则通过云计算技术对数据进行分析处理,并根据预设的算法对温室环境进行智能调控。

2. 环境因素监测与调控系统通过传感器实时监测温室内的环境因素,当环境因素超出预设的范围时,系统将自动启动调控设备,如加热器、湿帘、通风设备等,以调整温室内的环境条件。

同时,系统还可以根据作物的生长需求,自动调节灌溉系统,为作物提供适量的水分。

3. 智能决策与控制系统通过云计算技术对采集的数据进行分析处理,根据作物的生长需求以及环境因素的变化,自动生成智能决策。

系统可以根据决策结果自动调整温室环境,为作物提供最适宜的生长环境。

此外,系统还可以根据用户的需求,实现远程控制,方便用户随时随地对温室进行管理。

四、系统实现与优化1. 系统实现基于物联网的温室大棚智能控制系统需要结合硬件设备与软件系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温室大棚智能监控系统的研究方案我国是一农业大国,农业是国家的重要经济命脉。

提高单位面积的作物的产量、生产优质农产品是现阶段农业发展的迫切要求,而温室大棚是实现高产、优质农业的一个重要的组成部分。

温室大棚是一种可以改变植物生长环境,根据作物生的最佳生长条件,调节温室气候使之一年四季满足植物生长需要,不受气候和土壤条件的影响,能够避免外界四变化和恶劣气候对其影响的场所,并且能在有限的土地上周年地生产各种不同的蔬菜、鲜花等反季节作物的一种温室设施。

温室生产以达到调节作物生长过程中的产期,促进在不同时期作物的发育提高作物品质、产量等为目的。

温室棚依照不同的屋架、采光材料又可分为很多种类,如玻璃温室、塑料温室等。

温室结构的建造标准是既能密封保温,便于通风降温。

但是作物要想现高产、优质、仅仅靠温室保温是不行的,需要对农作物的生长环境进行多方位多的精确采集和实时的控制。

目前国家提出要狠抓农业科技革命的新型农业道路,实施数字化精准农业温室大棚是现代农业发展改革的一大措施。

数字化精准农业温室大棚技术是从生产理念、经营主体、农业装备、先进科技成果转化、提高农业生产力等方面进行农业的改革,应用先进的技术调控差异,科学利用资源,采用信息化经营管理和组织方式进行农业生产,实现农业生产的目标管理。

与普通的温室大棚相比,数字化精准农业温室大棚不仅能够种植优质高产反季作物而且将电子、计算机、通信和自动控制等信息技术引入到本领域中,朝着精细农业、数字农业的方向发展。

数字化精准农业温室大棚系统,可以定量获取和分析农业环境的多种参数 ,实现对环境的多点检测,其检测目标可以是温度、湿度、光照、振动、压力、水/土壤/空气成分等,能对大棚内个环境参数达到良好的检测,进而协调控制大棚内的环境参数,使大棚内的环境条件能够适宜作物的成长。

对温室大棚内的内的环境因子进行多点多参数的采集,一般需要在土壤中铺设大量的线缆,使得对作物的耕作造成了一定的困难,采用无线的方式进行数据的采集可以解决上述问题;根据所采集的数据,需对温室大棚的环境进行良好的控制,有效地控制大棚内作物在生长过程中需要的水分、通风以及温度等,高度有效地利用各种资源以求得到最大的产出。

大棚内高温高湿的环境对控制系统的可靠性控制要求很高,常用的单片机系统难以满足要求,而采用可编程逻辑控制器(PLC)作为大棚的主控制器,可大大提高系统的可靠性。

本文所设计的基于ZigBee的温室大棚智能监控系统可很好地满足大棚的控制要求。

托普物联网作为物联网推进研发的主体,致力于温室大棚智能监控系统的研发,并制定多种方案,根据实际的具体情况,根据不同的情况,将温室大棚的系统研发力尽做到最好。

国外研现状和发展趋势温室大棚智能监控系统的国外研究现状在15~ 16世纪,法国、荷兰、日本就开始建造简易温室大棚。

栽培过时令蔬菜或小水果。

17世纪开始采用炉和热气加热以玻璃为材料的温室大棚。

19世纪在法国、英格兰、荷兰出现了双面玻璃材料的温室大棚,这个时期的温室大棚主要种植葡萄、黄瓜、草莓等。

在19世纪后期,温室大棚种植技术从欧洲传到美洲及其世界各地。

在1860年美国就建立了世界上第一个温室大棚试验站,到20世纪初美国已有1000多个温室大棚用于各季蔬菜种植。

20世纪50年代,美国、加拿大的温室大棚生产达到高峰,荷兰、德国的温室大棚工业化生产业已兴起。

温室调控技术至今经历了几十年的发展过程。

初期是使用传感仪表对温室设施中的光照、温度等参数进行测量,再使用手动或电动执行机构(如幕帘、通风设备等)施行简单控制。

欧美等国家在30年代就相继建立了人工气候室,这些气候室就是在人工的调解下进行的。

在温室大棚中人工对农作物的环境参数的控制还不是太准确,大部分的控制属于经验控制。

随着传感仪器仪表及执行器技术的进步,温室大棚逐步可以实现分别对植物所需的环境参数如对温度、湿度、光照等几乎所有室内环境参数进行动控制的智能监控系统。

从80年代开始,根据不同作物、不同生长阶段及外界环境变化对温室环境进行综合调节控制的技术得到了快速的发展。

荷兰、日本、以色列、美国、韩国、加拿大等国家是设施农业十分发达的国家,大棚以大型温室棚为主。

这些高水平大型温室大棚的环境控制系统能够根据传感器采集室温、地湿、室内湿度、叶湿、二氧化碳浓度、溶液浓度、风速、风向、土壤含水量等植物生长状态所需的环境相关参数,结合作物生长环境所需的适宜条件,有效调节有关设备装置,将室内温、湿、光、水、肥、气等诸因素综合协调调节到最佳状态。

随后在温室大棚智能控制技术方面,借鉴了工业领域的先进成果,技术水平不断提高,除了对温室大棚进行监控外,计算机优化环境参数、节能、节水及设施装备的可靠性等很多方面都取得了不错的技术成果,根据传感器的检测可以实现对相应各个执行机构的自动控制,如湿帘与风扇配套的降温系统、由热水锅炉或热风机组成的加温系统、无级调节的天窗通风系统、二氧化碳自动施肥系统、定时喷灌或者滴灌的自动灌溉系统等。

大棚智能监控系统方面,如美国开发的适宜冬天保温用的双层充气膜、高压雾化降温加湿系统以及适宜夏季降温用的湿帘降温系统处于世界领先水平;荷兰的顶面涂层隔热、加热系统、人工补光等方面有较高的水平;韩国的换气、灌溉、CO2 浓控制等方面比较先进。

温室大棚智能监控系统的国内研究现状我国温室大棚智能监控系统研究领域起步较晚。

20 世纪50年代末,我国在华北地区曾经建造过大型温室大棚,手动控制是在温室大棚技术发展初期所采取的控制手段。

温室大棚的种植者既是温室大棚内的各种环境的传感器,又要作为对大棚作物进行管理控制的执行机构,他们成为了温室大棚环境控制的核心。

通过对温室大棚内外的气候环境状况和对作物生长状况的观测,凭借长期积累的种植经验对大棚内的农作物需要的环境状况进行推测及判断,采用手动方式调节温室内环境,使其适宜农作物的生长。

种植者采用的手动控制方式,这种方式的劳动生产率较低,不适合对农作物生产环境进行精确采集和控制,而且对种植者的素质要求较高。

随着我国单片机电子技术、自动化技术的进步,在80年代中后期,研究出了基于自动控制的温室大棚控制技术。

这种控制系统需要种植者输入温室作物生长所需环境的目标参数,单片机根据传感器的实际测量值与预先设定环境阈值进行比较,以决定对温室大棚内的的相应执行机构进行加热、降温和通风等控制操作。

基于单片机的自动控制的温室控制技术实现生产自动化,劳动生产率得到提高。

该系统以89C51为核心,能自动控制温室内100天的温湿度,用户以小时为单位设定温湿度值。

每个下位机与上位机之间采用RS-485通信,上位机为PC机,程序用VB 开发,用户根据作物长要求,在PC机上输入温湿度试验数据。

控制器对比室内温度、湿的测量值与设定值,调温室大棚的温湿度环境。

通过改变温室大棚不同农作物的成长环境需要的目标值,实现环境气候的自动调节,但是这种控制方式对作物生长状况的改变难以及时做出反应,难以介入作物生长的内在规律,而且方便对控制机构加入相应的控制算法。

随着智能化控制的发展,温室大棚的控制系统向着越来越先进、功能越来越完备的方向发展。

在1994年胡建东、肖建军等人运用模糊控制的原理设计了连栋温室控制系统,该系统结合了模糊控制技术使温室大棚环境达到最佳的生长状态。

在温室自动控制技术和生产实践的基础上,通过总结、收集农业领域知识、技术和各种试验数据构造专家系统,以建立植物生长的数学模型为理论依据,研究开发出的一种适合不同作物生长基于ZigBee的温室大棚智能监控系统的研究的温室专家智能控制系统技术。

在1996年江苏理工大学李萍萍等人研制的基于工控机温室自动控制系统,它可以利用各类传感器测量温室大棚的温度、湿度、光照强度等环境因子,并能对环境因进行控制,以基于作物和境信息的知识的专家决策系统为依托,实现利用智能化和信息化的温室大棚智能监控系统。

我国的温室大棚种类的蔬菜种类多,分布地域广,需要进行多点多参数测量,测控设施安装和维护工作量大,采用有线通信方式传输信号存在诸多不便。

目前,随着国内信息化产业的展和国家领导人的大力扶持,将物联网产业加入了十二五规划,根据《规划》智能农业作为九大流域之一将作为战略性新型产业给予大力推进,使我国的农业走向了一个新型的智能化阶段中。

因此实现无线通信和远程监控是现代农业的发展要求。

在我国的很多地方,都在大力发展和建设智能化业。

在我国南方城市无锡人多地少,人均耕地面积仅为0.4亩,在耕地有限的情况下,发展高效农业是无锡的选择。

而无锡又是我国网联网信的发源地,无锡政府重点启动实施4万亩具有现代化设施的市属蔬菜大棚基地建设。

比如在锡山区鹅湖镇今年就依托江省现代物理农业技术与装备创新中心,实施了“水产养殖物联网智能控制管理系统”农业物联网实用项目。

该物联网能控制管理系统具有水质监测、环境监测、视频监测、远程控制、短信通知等功能;在惠山区益家康无公害蔬菜基地,利用来自洋马农机的蔬菜移栽机和配套起垄覆膜设备,进行黄瓜苗移栽应用试验,效果良好,实现来高产、优质。

在温室大棚种植基地里,除了能种植农作物以外,种植稀有珍贵的经济型作物也是发展高效、经济农业的一大需求。

在福建省闽侯县白沙镇上寨村鼎天连坪洋农场上建有一个现代农业物联网科技示范种植铁皮石斛的基地,铁皮石斛是现在石斛属植物中经济价值最高的种类,药用及保健效果极好,生产的产品有“铁皮枫斗”,国际市场价格为每公斤1300-3600 美元。

农场各项数据用手机就能看到,从而实现工作人员对基地的远程无线遥控。

鼎天连坪洋农场占地约230亩,一期投资550万元,部署了农业物联网技设备,将建成78个标准种植大棚及部分机械化耕种设备。

在大棚里架设有一个农业多功能采集仪器,在这个仪器最顶端的太阳能设备是维持整个仪器的动力。

而从仪器中间引出的一些分支仪器,插入培土或悬挂着,可实时监测大棚内温度、湿度、光照条件、二氧化碳量、PH值等生长条件数据,最终通过仪器上的发射设备传输至在北京的终端服务器平台上,实时地对铁皮石斛进行监控。

只要计算机、手机、iPad 等接入该物联网平台,均可接收到该监测点传输来的实时数据实现对农业基地的远程遥控。

目前,国外现代化温室棚的内部设施己经发展到比较完备的程,并形成了一定的标准。

现代对温室大棚的控制己经不是独立的、简单的、静态的数字控制,而是基于环境模型上的智能控制,以及基于专家系统上的智能制,现在很多国家在实现自动化的基础上正朝着完全自动化、无人化的方向发展。

如日本、韩国开发了瓜类、茄果类蔬菜嫁接机器人。

日本开发了自动耕耘、育苗移栽、自动施肥移动机器人,可完成多项功能的多功能机器,能在温室大棚内完6 成各项作业的无人行走车,用于组织培养作用的机器人,柑橘、葡萄收获机器人等。

相关文档
最新文档