温室大棚智能监控系统的研究方案(推荐文档)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温室大棚智能监控系统的研究方案

我国是一农业大国,农业是国家的重要经济命脉。提高单位面积的作物的产量、生产优质农产品是现阶段农业发展的迫切要求,而温室大棚是实现高产、优质农业的一个重要的组成部分。温室大棚是一种可以改变植物生长环境,根据作物生的最佳生长条件,调节温室气候使之一年四季满足植物生长需要,不受气候和土壤条件的影响,能够避免外界四变化和恶劣气候对其影响的场所,并且能在有限的土地上周年地生产各种不同的蔬菜、鲜花等反季节作物的一种温室设施。温室生产以达到调节作物生长过程中的产期,促进在不同时期作物的发育提高作物品质、产量等为目的。温室棚依照不同的屋架、采光材料又可分为很多种类,如玻璃温室、塑料温室等。温室结构的建造标准是既能密封保温,便于通风降温。但是作物要想现高产、优质、仅仅靠温室保温是不行的,需要对农作物的生长环境进行多方位多的精确采集和实时的控制。目前国家提出要狠抓农业科技革命的新型农业道路,实施数字化精准农业温室大棚是现代农业发展改革的一大措施。数字化精准农业温室大棚技术是从生产理念、经营主体、农业装备、先进科技成果转化、提高农业生产力等方面进行农业的改革,应用先进的技术调控差异,科学利用资源,采用信息化经营管理和组织方式进行农业生产,实现农业生产的目标管理。

与普通的温室大棚相比,数字化精准农业温室大棚不仅能够种植优质高产反季作物而且将电子、计算机、通信和自动控制等信息技术引入到本领域中,朝着精细农业、数字农业的方向发展。数字化精准农业温室大棚系统,可以定量获取和分析农业环境的多种参数 ,实现对环境的多点检测,其检测目标可以是温度、湿度、光照、振动、压力、水/土壤/空气成分等,能对大棚内个环境参数达到良好的检测,进而协调控制大棚内的环境参数,使大棚内的环境条件能够适宜作物的成长。对温室大棚内的内的环境因子进行多点多参数的采集,一般需要在土壤中铺设大量的线缆,使得对作物的耕作造成了一定的困难,采用无线的方式进行数据的采集可以解决上述问题;根据所采集的数据,需对温室大棚的环境进

行良好的控制,有效地控制大棚内作物在生长过程中需要的水分、通风以及温度等,高度有效地利用各种资源以求得到最大的产出。大棚内高温高湿的环境对控制系统的可靠性控制要求很高,常用的单片机系统难以满足要求,而采用可编程逻辑控制器(PLC)作为大棚的主控制器,可大大提高系统的可靠性。本文所设计的基于ZigBee的温室大棚智能监控系统可很好地满足大棚的控制要求。

托普物联网作为物联网推进研发的主体,致力于温室大棚智能监控系统的研发,并制定多种方案,根据实际的具体情况,根据不同的情况,将温室大棚的系统研发力尽做到最好。

国外研现状和发展趋势

温室大棚智能监控系统的国外研究现状

在15~ 16世纪,法国、荷兰、日本就开始建造简易温室大棚。栽培过时令蔬菜或小水果。17世纪开始采用炉和热气加热以玻璃为材料的温室大棚。19世纪在法国、英格兰、荷兰出现了双面玻璃材料的温室大棚,这个时期的温室大棚主要种植葡萄、黄瓜、草莓等。在19世纪后期,温室大棚种植技术从欧洲传到美洲及其世界各地。在1860年美国就建立了世界上第一个温室大棚试验站,到20世纪初美国已有1000多个温室大棚用于各季蔬菜种植。20世纪50年代,美国、加拿大的温室大棚生产达到高峰,荷兰、德国的温室大棚工业化生产业已兴起。温室调控技术至今经历了几十年的发展过程。初期是使用传感仪表对温室设施中的光照、温度等参数进行测量,再使用手动或电动执行机构(如幕帘、通风设备等)施行简单控制。欧美等国家在30年代就相继建立了人工气候室,这些气候室就是在人工的调解下进行的。在温室大棚中人工对农作物的环境参数的控制还不是太准确,大部分的控制属于经验控制。

随着传感仪器仪表及执行器技术的进步,温室大棚逐步可以实现分别对植物所需的环境参数如对温度、湿度、光照等几乎所有室内环境参数进行动控制的智能监控系统。从80年代开始,根据不同作物、不同生长阶段及外界环境变化对温室环境进行综合调节控制的技术得到了快速的发展。荷兰、日本、以色列、美

国、韩国、加拿大等国家是设施农业十分发达的国家,大棚以大型温室棚为主。这些高水平大型温室大棚的环境控制系统能够根据传感器采集室温、地湿、室内湿度、叶湿、二氧化碳浓度、溶液浓度、风速、风向、土壤含水量等植物生长状态所需的环境相关参数,结合作物生长环境所需的适宜条件,有效调节有关设备装置,将室内温、湿、光、水、肥、气等诸因素综合协调调节到最佳状态。

随后在温室大棚智能控制技术方面,借鉴了工业领域的先进成果,技术水平不断提高,除了对温室大棚进行监控外,计算机优化环境参数、节能、节水及设施装备的可靠性等很多方面都取得了不错的技术成果,根据传感器的检测可以实现对相应各个执行机构的自动控制,如湿帘与风扇配套的降温系统、由热水锅炉或热风机组成的加温系统、无级调节的天窗通风系统、二氧化碳自动施肥系统、定时喷灌或者滴灌的自动灌溉系统等。大棚智能监控系统方面,如美国开发的适宜冬天保温用的双层充气膜、高压雾化降温加湿系统以及适宜夏季降温用的湿帘降温系统处于世界领先水平;荷兰的顶面涂层隔热、加热系统、人工补光等方面有较高的水平;韩国的换气、灌溉、CO2 浓控制等方面比较先进。

温室大棚智能监控系统的国内研究现状

我国温室大棚智能监控系统研究领域起步较晚。20 世纪50年代末,我国在华北地区曾经建造过大型温室大棚,手动控制是在温室大棚技术发展初期所采取的控制手段。温室大棚的种植者既是温室大棚内的各种环境的传感器,又要作为对大棚作物进行管理控制的执行机构,他们成为了温室大棚环境控制的核心。通过对温室大棚内外的气候环境状况和对作物生长状况的观测,凭借长期积累的种植经验对大棚内的农作物需要的环境状况进行推测及判断,采用手动方式调节温室内环境,使其适宜农作物的生长。种植者采用的手动控制方式,这种方式的劳动生产率较低,不适合对农作物生产环境进行精确采集和控制,而且对种植者的素质要求较高。

随着我国单片机电子技术、自动化技术的进步,在80年代中后期,研究出了基于自动控制的温室大棚控制技术。这种控制系统需要种植者输入温室作物生长所需环境的

相关文档
最新文档