应用回归分析第6章课后习题答案

合集下载

应用回归分析课后习题参考答案

应用回归分析课后习题参考答案

第4章违背根本假设的情况思考及练习参考答案4.1 试举例说明产生异方差的原因。

答:例:截面资料下研究居民家庭的储蓄行为Y i=β0+β1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。

由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额那么更有规律性,差异较小,所以εi的方差呈现单调递增型变化。

例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A iβ1K iβ2L iβ3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。

由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。

这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。

4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生以下不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。

4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想及方法。

答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。

其中每个平方项的权数一样,是普通最小二乘回归参数估计方法。

在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。

然而在异方差的条件下,平方和中的每一项的地位是不一样的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。

由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。

所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。

最新应用回归分析-第6章课后习题参考答案

最新应用回归分析-第6章课后习题参考答案

第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。

如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

应用回归分析课后习题

应用回归分析课后习题
2.16* 表 2.8 是 1985 年美国 50 个州和哥伦比亚特区公立学校中教师的人均年工资 y(美元) 和对学生的人均经费收入 x(美元)。 (1)绘制 y 对 x 的散点图,可以用直线回归描述两者之间的关系吗? (2)建立 y 对 x 的线性回归。 (3)用线性回归的 Plots 功能绘制标准残差的直方图和正态概率图,检验误差项的正态性假 设。
使用其中的一个。
2.12* 如果把自变量观测值都乘以 2,回归参数的最小二乘估计 ˆ0 和 ˆ1 会发生什么变化?
#;
.
如果把自变量观测值都加上 2,回归参数的最小二乘估计 ˆ0 和 ˆ1 会发生什么变化?
2.13 如果回归方程 yˆ ˆ0 ˆ1x 相应的相关系数 r 很大,则用它预测时,预测误差一定较小。
#;
.
第三章 习题
3.1 写出多元线性回归模型的矩阵表示形式,并给出多元线性回归模型的基本假设。 3.2 讨论样本量 n 与自变量个数 p 的关系,它们对模型的参数估计有何影响?
3.3 证明ˆ 2 1 SSE 是误差项方差 2 的无偏估计。 n p 1
3.4 一个回归方程的复相关系数 R=0.99,样本决定系数 R2 0.9801 ,我们能判断这个回归
2.15 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经过 10
周时间,收集了每周加班工作时间的数据和签发的新保单数目,x 为每周签发的新保单数目,
y 为每周加班工作时间(小时)。见表
周序 1
2
3
4
5
6
7
8
9
10

X
825 215 1070 550 480 920 1350 325 670 1215

《应用回归分析》课后习题部分答案-何晓群版

《应用回归分析》课后习题部分答案-何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=(5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()ni i nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

第6章 相关与回归分析习题解答

第6章 相关与回归分析习题解答

第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。

答:错。

应是相关关系。

单位成本与产量间不存在确定的数值对应关系。

2.相关系数为0表明两个变量之间不存在任何关系。

答:.错。

相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。

3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。

答:对,因果关系的判断还有赖于实质性科学的理论分析。

4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。

答:错。

两者是精确的函数关系。

5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。

答:对。

6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。

答:对。

因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。

二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。

答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。

然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。

应用回归分析第四版课后答案

应用回归分析第四版课后答案

假设 3、随机误差项ε与解释变量 X 之间不相关:
Cov(Xi, εi)=0
i=1,2, …,n
假设 4、ε服从零均值、同方差、零协方差的正态分布
εi~N(0, 2 )
i=1,2, …,n
2.3 证明(2.27 式),ei =0 ,eiXi=0 。
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i ))2
方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平 方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的 条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。然而在异方差 的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差 平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方 差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由 OLS
X 2n

X kn
量的观测值矩阵; β(k 1)1


0 1

2
k




为总体回归参数向量;
μ
n1



1 2 n

为随机误差项向量。
多元回归线性模型基本假定:课本 P57
第四章
4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与
法。
答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回
归的类似。多元线性回归加权最小二乘法是在平方和中加入一个适当的权数 wi ,
以调整各项在平方和中的作用,加权最小二乘的离差平方和为:

统计学原理-第六章--相关与回归分析习题

统计学原理-第六章--相关与回归分析习题

第六章相关与回归分析习题一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。

2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。

3.相关系数的取值范围是。

4.完全相关即是关系,其相关系数为。

5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。

6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。

7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。

8.回归方程y=a+bx中的参数a是,b是。

在统计中估计待定参数的常用方法是。

9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。

10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。

11.用来说明回归方程代表性大小的统计分析指标是。

二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系B圆周的长度决定于它的半径C家庭的收入和消费的关系D数学成绩与统计学成绩的关系2.相关系数r的取值范围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元B减少70元C增加80元D减少80元4.假设要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程y =a+b x。

应用回归分析整理课后习题参考答案

应用回归分析整理课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =021112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=0)ˆ(2ˆ111=--=∂∂∑=ii ni i eX X Y Q ββ)()(ˆ1211∑∑===ni i ni ii X Y X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、参数估计量经济含义不合理;3、变量的显著性检验失去意义;4、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

将所得结果与逐步回归法所得的选元结果相比较。

5.9在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源交通重点建设收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等。

为了建立国家财政收入回归模型,我们以财政收入y(亿元)为因变量,自变量如下:x1为农业增加值(亿元),x2为工业增加值(亿元),x 3为建筑业增加值(亿元),x 4为人口数(万人),x 5为社会消费总额(亿元),x 6为受灾面积(万公顷)。

据《中国统计年鉴》获得1978—1998年共21个年份的统计数据,见表5.4(P167)。

由定性分析知,所有自变量都与y 有较强的相关性,分别用后退法和逐步回归法作自变量选元。

解:逐步回归法Coefficients a715.30990.5747.898.000.179.004.99440.739.0001010.840136.0277.431.000.308.048 1.706 6.367.000-.405.152-.714-2.665.016865.929103.7258.348.000.639.086 3.5417.439.000-.601.119-1.059-5.057.000-.361.086-1.493-4.216.001(Constant)x5(Constant)x5x1(Constant)x5x1x2Model 123B Std. Error UnstandardizedCoefficients BetaStandardizedCoefficients tSig.Dependent Variable: ya.回归方程为:y=865.929—0.601x1-0.361x2+0.639x5但是回归系数的解释不合理。

解:(1)分析数据的多重共线性。

直接进行Y 与四个变量的线性回归方程,并做多重共线性的诊断,由SPSS 分析得相应输出结果如下: a 方差扩大因子法,由表1中VIF 值, 可知x1,x2,x3,x5的方差扩大因子远大于10,这几个自变量之间存在很高的线性相关性,即回归方程存在严重的多重共线性。

b.特征根和条件数判定法。

输出结果如表2:表1表2其中最大的条件数k 7=290.443,说明自变量间存在严重的多重共线性,这与方差扩大因子法的结果一致。

其中x0,x2,x4,x5在第五行同时较大,表明其间存在多重共线性。

(2)消除多重共线性。

下面根据多重共线性剔除变量。

先剔除VIF 值最大的自变量2x ,得:Coefficients a-1503.1751546.931-.972.347-.717.163-1.264-4.391.001.004268.990-.801.467-.526-1.713.107.003305.769.029.017.102 1.695.111.08511.701.487.078 2.701 6.238.000.002609.067-.010.008-.026-1.177.258.6161.624(Constant)x1x3x4x5x6Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.从上表可以看出,VIF 的值中,除了6x 以外,其余的均大于10,故回归方程依然存在严重的多重共线性。

继续剔除VIF 值最大的自变量5x ,得:Coefficients a-3011.2042804.617-1.074.299-.075.233-.131-.321.753.006161.9881.515.521.995 2.909.010.009112.777.040.031.141 1.286.217.08611.573.002.015.007.167.869.6521.533(Constant)x 1x 3x 4x 6Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.从上表可以看出,VIF 的值中,除了6x 以外,其余的均大于10,故回归方程还存在严重的多重共线性。

继续剔除VIF 值最大的自变量1x ,得:Coefficients a-2349.3381848.340-1.271.2211.351.096.88714.119.000.2494.018.032.019.113 1.705.106.222 4.509.003.014.009.234.818.6731.485(Constant)x3x4x6Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.由上表可以看出,所有自变量的VIF 值都小于10,故回归方程的多重共线性已经被消除。

但自变量6x 没有通过T 检验,说明不显著,剔除6x 后再做回归分析得:Coefficients a-2358.8091798.722-1.311.2061.351.093.88714.505.000.2494.018.034.017.1191.939.068.2494.018(Constant)x 3x 4Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.从上表可以看出,得到的回归方程为34ˆ 1.3510.0342358.809yx x =+- 回归方程的多重共线性虽然被消除,但是模型的自变量4x 的t 检验P 值为0.068>0.05,说明在95%的置信度下4x 对y 的线性影响不显著。

模型只剩下x 3,Coefficients a1123.404112.01710.029.0001.508.050.99030.316.000(Constant)x 3Model 1B Std. Error Unstandardized Coefficients BetaStandardizedCoefficients tSig.Dependent Variable: ya.(3)所得结果与逐步回归结果比较。

对逐步回归选出的三个自变量做多重共线性的分析,得到:Coefficients a865.929103.7258.348.000-.601.119-1.059-5.057.000.005188.019-.361.086-1.493-4.216.001.002537.151.639.0863.5417.439.000.001971.012(Constant)x 1x 2x 5Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.从上表可以看出,尽管用逐步回归的方法选出的自变量为125,,x x x ,但是回归方程还是存在多重共线性。

但是根据多重共线性剔除变量后,模型只剩下x 3,损失了很多信息,得到的模型 国家财政收入只与x 3建筑业增加值有关,显然不符合建模的初衷。

相关文档
最新文档