应用回归分析课后习题
《应用回归分析》课后习题部分答案-何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=(5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()ni i nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。
《应用回归分析》课后题标准答案

3
(5)由于 1
N
(1,
2 Lxx
)
t
1 1 2 / Lxx
(1
)
Lxx
服从自由度为 n-2 的 t 分布。因而
P
|
(
1
)
Lxx
|
t
/
2
(n
2)
1
也即: p(1 t /2
Lxx
1 1 t /2
) =1 Lxx
可得
ቤተ መጻሕፍቲ ባይዱ
1
的置信度为95%的置信区间为(7-2.353
1 3
33,7+2.353 1 3
1
第二章 一元线性回归
2.14 解答:(1)散点图为:
(2)x 与 y 之间大致呈线性关系。
(3)设回归方程为 y 0 1 x
n
xi yi n x y
1=
i 1 n
7
xi2 n(x)2
i 1
0 y 1 x 20 7 3 1
可得回归方程为 y 1 7x
2
(4)
1 n-2
1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题? 答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判 断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。应注意 的问题有:在选择变量时要注意与一些专门领域的专家合作,不要认为一个回归 模型所涉及的变量越多越好,回归变量的确定工作并不能一次完成,需要反复试 算,最终找出最合适的一些变量。
t /2
0
0
1 n
( x)2 Lxx
t
/
2
)
1
可得 1的置信度为95%的置信区间为( 7.77,5.77)
应用回归分析-第9章课后习题答案

应⽤回归分析-第9章课后习题答案第9章含定性变量的回归模型思考与练习参考答案9.1 ⼀个学⽣使⽤含有季节定性⾃变量的回归模型,对春夏秋冬四个季节引⼊4个0-1型⾃变量,⽤SPSS 软件计算的结果中总是⾃动删除了其中的⼀个⾃变量,他为此感到困惑不解。
出现这种情况的原因是什么?答:假如这个含有季节定性⾃变量的回归模型为:tt t t kt k t t D D D X X Y µαααβββ++++++=332211110其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引⼊4个0-1型⾃变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到⼀次观测值,则样本设计矩阵为:=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,显然,(X,D)中的第1列可表⽰成后4列的线性组合,从⽽(X,D)不满秩,参数⽆法唯⼀求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某⾃变量x j 对其余p-1个⾃变量的复判定系数2j R 超过⼀定界限时,SPSS 软件将拒绝这个⾃变量x j 进⼊回归模型。
称Tol j =1-2j R 为⾃变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,⾃变量x j 将被⾃动拒绝在回归⽅程之外,除⾮我们修改容忍度的默认值。
=k βββ 10β=4321ααααα⽽在这个模型中出现了完全共线性,所以SPSS软件计算的结果中总是⾃动删除了其中的⼀个定性⾃变量。
9.2对⾃变量中含有定性变量的问题,为什么不对同⼀属性分别建⽴回归模型,⽽采取设虚拟变量的⽅法建⽴回归模型?答:原因有两个,以例9.1说明。
⼀是因为模型假设对每类家庭具有相同的斜率和误差⽅差,把两类家庭放在⼀起可以对公共斜率做出最佳估计;⼆是对于其他统计推断,⽤⼀个带有虚拟变量的回归模型来进⾏也会更加准确,这是均⽅误差的⾃由度更9.3 研究者想研究采取某项保险⾰新措施的速度y对保险公司的规模x1和保险公司类型的关系(参见参考⽂献【3】)。
应用回归分析第四版课后习题答案-全-何晓群-刘文卿

实用回归分析第四版 第一章 回归分析概述1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与x1,x2…..xp 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp 是非随机的,观测值xi1.xi2…..xip 是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。
证明:其中:∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ01ˆˆˆˆi i i i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
应用回归分析第四版课后习题答案_全_何晓群_刘文卿

1 n
1 (Lxxnx)Co( yi ,n
2
n
i1
(xi
Lxx
n
i1
x)2
的无偏估计量
E(ei2 )
(xi x )2 ] 2 Lxx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
应用回归分析第四版课后习题答案全何晓群刘文卿

实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。
证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:01ˆˆˆˆi i i i iY X e Y Yββ=+=-0100ˆˆQ Qββ∂∂==∂∂即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xx i n i iY L X X X Y n E X Y E E ββ )] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X nL X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xx i ni i xx i ni X Var L X X X nY L X X X n Var Var εβββ++--=--=∑∑== 222212]1[])(2)1[(σσxxxx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 证明:(1)())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明2ˆ22-=∑neiσ是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章1.一个回归方程的复相关系数R=0.99,样本决定系数R2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
应用回归分析课后习题

#;
.
第四章 习题
4.1 试举例说明产生异常差的原因。 4.2 异常差性带来的后果有哪些? 4.3 阐述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。 4.4 阐述用加权最小二乘法消除多元线性回归中异常差性的思想与方法。 4.5 验证(4.5)式一元加权最小二乘回归系数估计公式。 4.6 验证(4.8)式多元加权最小二乘回归系数估计公式。 4.7 有同学认为当数据存在异常差时,加权最小二乘回归方程与普通最小二乘回归方程之间 必然有很大的差异,异常差越严重,两者之间的差异就越大。你是否同意这位同学的观点? 说明原因。
(8) 做回归系数 1 显著性的检验
(9) 做相关系数的显著性检验 (10) 对回归方程做残差图并作相应的分析
#;
. (11) 该公司预计下一周签发新保单 x0 1000 ,需要的加班时间是多少。 (12) 给出 y0 的置信度为 95%的精确预测区间和近似预测区间。 (13) 给出 Ey0 的置信度为 95%的区间估计。
3.9 证明 y 与自变量 x j 的偏决定系数与(3.42)式的偏 F 检验值 Fj 是的等价的。
3.10* 验证决定系数与 F 值之间的关系式
R2
F
n
F p
1
p
3.11 研究货运总量 y(万吨)与工业总产值 x1 (亿元)、农业总产值 x2 (亿元)、居民非商
品支出 x3 (亿元)的关系。数据见表 3.9。
2.16* 表 2.8 是 1985 年美国 50 个州和哥伦比亚特区公立学校中教师的人均年工资 y(美元) 和对学生的人均经费收入 x(美元)。 (1)绘制 y 对 x 的散点图,可以用直线回归描述两者之间的关系吗? (2)建立 y 对 x 的线性回归。 (3)用线性回归的 Plots 功能绘制标准残差的直方图和正态概率图,检验误差项的正态性假 设。
《应用回归分析》课后题答案[整理版]
![《应用回归分析》课后题答案[整理版]](https://img.taocdn.com/s3/m/603529c1f242336c1eb95eca.png)
《应用回归分析》课后题答案[整理版] 《应用回归分析》部分课后习题答案第一章回归分析概述 1.1 变量间统计关系和函数关系的区别是什么, 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。
1.2 回归分析与相关分析的联系与区别是什么, 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x 对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3 回归模型中随机误差项ε的意义是什么, 答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么,答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2….Cov(εi,εj)=,σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么,在回归变量设置时应注意哪些问题,答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y1 1 x11 x12 x1p 0 1
3.1 y2 1 x21 x22 x2p 1 + 2 即y=x +
yn 1 xn1 xn2 xnp p n
基本假定
(1)解释变量x1,x2…,xp 是确定性变量,不是随机变量,且要求
rank(X)=p+1<n,表明设计矩阵X中自变量列之间不相关,样本量的个数应大于解释变量的个数
(2)随机误差项具有零均值和等方差,即高斯马尔柯夫条件
(3)对于多元线性回归的正态分布假定条件的矩阵模型为
~N( 0,2I n) 随即向量y~N(X , 2I n)
3.2
当(X T X)1存在时,回归参数的最小二乘估计为&収)収丁丫,
要求出回归参数,即要求X T X是一个非奇异矩阵,|x T X 0,所以
可逆矩阵X T X为P+1阶的满秩矩阵,又根据两个矩阵乘积的秩不大于每一因子的秩rank(X) p+1,而X为n (p+1)阶矩阵,于是应有n p+1 结论说明,要想用最小二乘法估计多元线性回归模型的未知参数,样本量n必须大于模型自变量p的个数。
3.3
n
注 tr(H) h
1
3.4不能断定这个方程一定很理想,因为样本决定系数与回归方程中
自变量的数目以及样本量n 有关,当样本量个数n 太小,而自变量又较 多,使样本量与自变量的个数接近时, R 2易接近1,其中隐藏一些虚 假成分。
3.5当接受H o 时,认定在给定的显着性水平
下,自变量x1,x2, xp
对因变量y 无显着影响,于是通过x1,x2,
xp 去推断y 也就无多大意
义,在这种情况下,一方面可能这个问题本来应该用非线性模型去描 述,而误用了线性模型,使得自变量对因变量无显着影响;另一方面 可能是在考虑自变量时,把影响因变量y 的自变量漏掉了,可以重新 考虑建模问题。
当拒绝H o 时,我们也不能过于相信这个检验,认为这个回归模型 已经完美了,当拒绝H o 时,我们只能认为这个模型在一定程度上说明 了自变量x1,x2,
xp 与自变量y 的线性关系,这时仍不能排除排除我
们漏掉了一些重要的自变量。
3.6中心化经验回归方程的常数项为0,回归方程只包含p 个参数估计
值1, 2,
p
比一般的经验回归方程减少了一个未知参数,在变量较
SSE (y y)2
e12 e22
1
2
1 E( ) E( -
SSE*
n p 1 n p n
2 [D(e) (E(e))2]
1 n
(1
1 n
2
en
n
E( e
1
1
n p 1 1 n p 1
1
"1 1 n p 1
J (n
D(e)
1
(p 1))
1_ p 1 1
1 n p 1
2 2
n
E(e 2)
(1 h ) 2
1
多时,减少一个未知参数,计算的工作量会减少许多,对手工计算尤为重要。
在用多元线性回归方程描述某种经济现象时,由于自变量所用的
单位大都不同,数据的大小差异也往往很大,这就不利于在同一标准
上进行比较,为了消除量纲不同和数量级的差异带来的影响,就需要
化回归系数。
3.7
对y o 1X1 2x2 P X P进行中心化处理得
y y 1(x 1 X1)2(x 2 X2
)
p(x p X P)再将等式除以因变量的样
* y y 1
y 二一---------- (x1x1) V L yy V L yy
2
------ (X 2
L yy
X2
)
p
----- (x p x p)
L yy
1 . L ii (x 1 X1)
2 •. L22
(X 2 X2)
v L11 L yy L22 p . L pp (x p x p) i L yy L pp
2X2 p X p
所以
3.8 (j为相关阵(r j)p p第i行,第j列的代数余子式)
r
i2;3
12 11 ? 22
3.9
F j =
将样本数据标准化处理, 然后用最小二乘法估计未知参数,求得标准
1
SSE SSR SSE
SSR SSE SSE SST
空R 2
SST
SSE
3.11
SSR j) 1 SSE (n P 1)
SSR (j)
"SST
(n p
八
SSE (j) SSE
(n
1) (SSE (j)
(
SSE (j) SSE (j\ SSE (n P 1)
(n P 1) (SSE (j)
(
SSE (j)
SSE (j )
SSR j)
SSE (j)) (n P 1)
(r
:
TT
2
)
yj
2
r
yj
(n p 1) ( J)
1 r
yj
r y2小于i , F j 与
2 r
yj
对应, 所以F j 与r ;等价
3.10
SSR n
F (n P
1) P
SSR _P
n P 1
SSE
P 1 SSE
SSR SSR 证得
R 2
F (n P 1) P
SSE
1 回归方程为 y= -348.280+3.754x1+7.101x2+12.447x3 2复相关系数R=0.898,决定系数为0.806,拟合度较高。
3方差分析表,F=8.283 , P 值=0.015<0.05 ,表明回归方程高度显着, 说明x1,x2,x3,整体上对y
有高度显着的线性影响
X2农业总产值的P 值=0.049 X3居民非产品支出的 P 值=0.284
模型汇总
模型
R R 方 调整R 方 标准估计的误
差 1
.872 a
.761
.692
24.08112
⑵(3)( 4)( 5)( 6)
输入/移去的变量b
模型 输入的变量 移去的变量
方法 1
x2, x1 a
输入
a.已输入所有请求的变量。
b.因变量:y
在0.1的显着性水平上,
x3未通过检验,应将其剔除掉
4回归系数的显着性检验
x1工业总产值的P 值=0.100
a.预测变量:(常量),x2, x1
1 回归方程为y= -459.624+4.676x1+8.971x2
2复相关系数R=0.872,决定系数为0.761,由决定系数看回归方程接近高度相关
3方差分析表,F=11.117, P值=0.007,表明回归方程高度显着说明x1,x2,整体上对y有高度显着的线性影响
4回归系数的显着性检验x1工业总产值的P值=0.037
X2农业总产值的P值=0.008
在0.05的显着性水平上,自变量x1,x2对y均有显着影响
(8 )标准化回归方程y=0.479x1+0.676x2
(9)把x0仁75,x02=42 带入y= -459.624+4.676x1+8.971x2 得
y=267.86
y置信水平95%的区间估计为(211.09492,324.57506)
y置信水平95%的近似区间估计为(219.6978,316.0222)
E (y)置信水平95%的区间估计为(245.00541 ,290.66457)
(10)由于X3的回归系数显着性检验未通过,所以居民非商品支出对货运总量影响不大,但是回归方程整体对数据拟合较好。
3.12
b
a. 预测变量:(常量),x2, x1
表中第三行xO(常数项),x1,x2的系数分别为0.73,1.00,0.97 ,说明
x0(常数项),x1,x2之间存在多重共线性。
回归方程为y=2914.646+0.607x1+1.709x2,
第一产业的增加值x1的P® =0.065
第二产业的增加值x2的P t =0.000在0.05的显着性水平上x1对y无显着影响。