机械设计基础第五版复习提纲(杨可桢)
杨可桢《机械设计基础》(第5版)笔记和课后习题(轮系)

图 5-3 解:这是一个定轴轮系,由题意可得:
1 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
反转原理:给周转轮系施以附加的公共角速度 H 后,不改变轮系中各构件之间的相
对运动,原轮系将转化成为一假想的定轴轮系,由此可按定轴轮系的公式计算该新轮系的传
动比。
设周转轮系中两个太阳轮分别为 G、K,行星架为 H,则其转化轮系的传动比:
圣才电子书 十万种考研考证电子书、题库视频学习平台
第5章 轮 系
5.1 复习笔记
一、轮系的类型 轮系是指由一系列齿轮组成的传动系统。 根据轮系运转时各个齿轮轴线相对于机架位置是否固定,分为三类: 1.定轴轮系:轮系中各齿轮轴线相对于机架均为固定,又分为平面定轴轮系和空间定 轴轮系。 2.周转轮系:轮系中至少有一个齿轮轴线位置不固定,而是绕着其他齿轮的固定轴线 回转。周转轮系由太阳轮、行星轮、系杆及机架组成,又可分为差动轮系(自由度为 2)和 行星轮系(自由度为 1)。 3.复合轮系:既包含定轴轮系,又包含周转轮系,或者是由几部分周转轮系组成。 根据轮系中各轮几何轴线在空间的相对位置,分为两类:平面轮系和空间轮系。
图 5-2
5-2 在图 5-3 所示轮系中,已知 z1=15,z2=25, z2' =15,z3=30, z3' =15z4=30, z4' =2(右 旋),z5=60, z5' =20(m=4 mm),若 n1=500 r/min,求齿条 6 线速度 v 的大小和方向。
3 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台
(5)空间周转轮系中,由于角速度矢量与系杆的角速度矢量不平行,所以不能用代数 法相加减。但是不影响基本构件之间传动比的计算。
杨可桢《机械设计基础》(第5版)笔记和课后习题(轴)

第 14 章 轴
14.1 复习笔记 一、轴的功用和类型 轴是机器中的重要零件之一,用来支持旋转的机械零件和传递转矩。 (1)按承受载荷的不同分类 转轴:既传递转矩又承受弯矩的轴,如图 14-1(a)所示的齿轮轴; 传动轴:主要受扭矩而不受弯矩或弯矩很小的轴,如图 14-1(b)所示汽车的传动轴; 心轴:只承受弯矩而不传递转矩的轴,又分为转动心轴和固定心轴两种,如图 14-1(c) (d)所示。
图 14-6 ④轴端挡圈:固定轴端零件,可承受较大轴向力,如图 14-7 所示。
图 14-7 ⑤当轴向力较小时,也可采用弹性挡圈或紧定螺钉进行零件的轴向固定,分别如图 14-8 所示。
3 / 15
圣才电子书 十万种考研考证电子书、题库视频学习平台
弹性挡圈
紧定螺钉
图 14-8 (2)轴上零件的周向固定 常采用的周向固定的零件有:键、花键、销、过盈配合、紧定螺钉等。常见的几种结构 分别如图 14-9 所示。
圆角或加装隔离环;对于轴与轮毂的过盈配合,可在轮毂上或轴上采用过渡肩环或开减载槽。 分别如图 14-11 所示。
键连接
花键连接
销连接
过盈连接
弹性环连接
型面连接
图 14-9 其中,采用键连接时,应使各轴段键槽在同一母线上,如图 14-10 所示;紧定螺钉只用 在传力不大之处。
图 14-10 3.各轴段的直径和长度的确定 (1)轴径的确定 按轴所受的扭矩来初步估计轴所需的直径,将初步求出的直径作为承受扭矩的轴段的最 小直径,然后按轴上零件的装配方案和定位要求,逐步确定各段轴直径。其中,有配合要求 的轴段,应尽量采用标准直径。 (2)各轴段长度的确定 各轴段的长度尺寸,主要由轴上零件与轴配合部分的轴向尺寸、相邻零件之间的距离、 轴向定位以及轴上零件的装配和调整空间等因素决定。基本原则:保证零件所需装配空间的 同时应尽量使轴的结构紧凑。 4.提高轴强度的常用措施 (1)合理布置轴上的零件以减小轴的载荷。 措施:传动件应尽量靠近轴承,尽可能不采用悬臂的支承形式;力求缩短支承跨距及悬
杨可桢《机械设计基础》(第5版)笔记和课后习题(回转件的平衡)

第8章 回转件的平衡8.1 复习笔记一、回转件平衡的目的机械中有许多构件是绕固定轴线回转的,这类作回转运动的构件称为回转件(或称转子)。
1.不平衡的原因由于回转件的结构不对称、材质不均匀或是制造不准确等因素,使回转件在转动时产生离心力系的不平衡,使离心力系的合力和合力偶矩不等于零。
2.不平衡的危害(1)在运动副中产生附加的动压力,从而增大构件中的内应力和运动副中的摩擦,加剧运动副的磨损,降低机械效率和使用寿命;(2)使机械产生周期性振动,降低工作可靠性和精度、零件材料的疲劳损坏以及令人厌倦的噪声。
3.回转件平衡的目的调整回转件的质量分布,使转子工作时的离心力达到平衡,以消除附加动压力,尽可能减轻有害振动,改善机构工作性能。
二、回转件的平衡计算根据组成回转件各质量的不同分布,可分两种情况。
1.质量分布在同一回转面内轴向尺寸很小的回转件(B/D <0.2),将其质量看作是分布在同一平面内,如风扇叶轮、飞轮、砂轮等。
对于这类转子,利用在刚性转子上重心的另一侧加上一定的质量,或在重心同侧去掉一些质量,使质心位置落在回转轴线上,从而使离心惯性力达到平衡,即平衡条件为:b 0=+∑=i F F F式中,F 、b F 、i F ∑分别表示总离心力、平衡质量的离心力、原有质量的离心力。
写成质径积的形式为:b b 0=+∑=i i me m r m r特点:若重心不在回转轴线上,则在静止状态下,无论其重心初始在何位置,最终都会落在轴线的铅垂线的下方,这种不平衡现象在静止状态下就能表现出来,故称为静平衡。
静平衡的条件:分布于回转件上各个质量的质径积的向量和为零,即:b b 0+∑=i i m r m r2.质量分布不在同一回转面内 对于轴向尺寸较大(B/D ≥0.2)的回转件,如内燃机中的曲轴和凸轮轴、电机转子、机床主轴等,其质量的分布不能再近似地认为是位于同一回转面内,而应看作分布在垂直于轴线的许多互相平行的回转平面内,离心惯性力将形成一个不汇交空间力系,因此必须使各质量产生的离心力的合力和合力偶都等于零,才能达到平衡,即平衡条件为:0F ∑= 0M ∑=平衡方法:对于动不平衡的转子,无论其具有多少个偏心质量以及分布在多少个回转平面内,只要将各不平衡质量产生的惯性力分别分解到两个选定的平衡基面内,则动平衡即转化为在两平衡基面内的静平衡计算问题。
杨可桢《机械设计基础》(第5版)笔记和课后习题(间歇运动机构)

第6章 间歇运动机构6.1 复习笔记主动件连续运动(连续转动或连续往复运动)时,从动件做周期性时动、时停运动的机构成为间歇运动机构。
一、棘轮机构如图6-1所示,机构是由棘轮2、棘爪3、主动摆杆和机架组成的。
运动原理:主动棘爪作往复摆动,从动棘轮作单向间歇转动。
优点:结构简单、制造方便、运动可靠、棘轮轴每次转过角度的大小可以在较大范围内调节。
缺点:工作时有较大的冲击和噪音,运动精度较差。
因此棘轮机构适用于速度较低和载荷不大的场合。
棘轮机构按结构形式分:齿式棘轮机构和摩擦式棘轮机构;按啮合方式分:外啮合棘轮机构和内啮合机构;按运动形式分:单动式棘轮机构、双动式棘轮结构和双向式棘轮机构。
图6-1 棘轮机构1.棘爪工作条件在工作行程中,为了使棘爪能顺利进入棘轮的齿底,应满足:90αϕ>︒+-∑其中,α为棘齿的倾斜角,ϕ为摩擦角,∑为棘爪轴心和棘轮轴心与棘轮齿顶点的连线之间的夹角。
为了使传递相同的转矩时棘爪受力最小,一般取90∑=︒,为保证棘轮正常工作,使棘爪啮紧齿根,则有:αϕ>2.棘轮、棘爪的几何尺寸计算选定齿数z 和确定模数m 之后,棘轮和棘爪的主要几何尺寸计算公式如下: 顶圆直径 D m z =;齿高 0.75h m =;齿顶厚 a m =; 齿槽夹角6055θ=︒︒或;棘爪长度 2=L m π。
二、槽轮机构如图6-2中所示,该机构是由带圆销的主动拨盘1、带有径向槽的从动槽轮2以及机架组成的。
其中,拨盘和槽轮上都有锁止弧:槽轮上的凹圆弧、拨盘上的凸圆弧都是起锁定作用。
工作特点:拨盘连续回转,当两锁止弧接触时,槽轮静止;反之槽轮运动,实现了将连续回转变换为间歇转动。
特点:结构简单、制造容易、工作可靠、机械效率高,能平稳地、间歇地进行转位。
因槽轮运动过程中角速度有变化,存在柔性冲击,因此不适合高速运动场合。
图6-2 槽轮机构运动特性系数τ:槽轮每次运动的时间m t 对主动构件回转一周的时间t 之比,有:m 2=2-=t z t zτ 其中,z 为槽数,是槽轮机构的主要参数。
杨可桢《机械设计基础》(第5版)笔记和课后习题(机械运转速度波动的调节)

a
a
Aoa
(M M )d
0
0 M (y y)dx M [S1]
2 / 10
圣才电子书 十万种考研考证电子书、题库视频学习平台
依次分别求得各区间内的盈亏功,可作出该周期内的能量指示图,如图 7-2(b)所示。 若 M′>M″,则出现盈功,机器的动能增加,图(b)上标注正号;若 M′<M″,则出 现亏功,机器的动能减少,图(b)上标注负号。能量指示图(b)中最高点和最低点的距离
B
4m D2
3 / 10
圣才电子书 十万种考研考证电子书、题库视频学习平台
7.2 课后习题详解
7-1 图 7-4 所示为作用在多缸发动机曲轴上的驱动力矩 M′和阻力矩 M″的变化曲线, 其驱动力矩曲线与阻力矩曲线围成的面积顺次为
,该图的比例尺
,设曲
柄平均转速为 120 r/mm,其瞬时角速度不超过其平均角速度的±3%,求装在该曲柄轴上 的飞轮的转动惯量。
图 7-4 解:根据题意做出能量指示图,如图 7-5 所示,由图可知该机械系统的最大盈亏功:
Amax 520 190 390 720N m
平均角速度
,机械运转速度不均匀系数
。
由公式
可得,飞轮的转动惯量:
。
图 7-5 7-2 在电动机驱动的剪床中,已知作用在剪床主轴上的阻力矩 M″的变化规律如图 7-6 所示。设驱动力矩 M′等于常数,剪床主轴转速为 60 r/min,机械运转速度不均匀系数 δ=0.15。求:(1)驱动力矩 M′的数值;(2)安装在主轴上的飞轮转动惯量。
max min m
2.飞轮设计的基本原理 飞轮设计要解决的问题:已知作用在主轴上的驱动力矩和阻力矩的运动规律,要求在机 械运转速度不均匀系数δ的容许范围内,确定安装在主轴上的飞轮的转动惯量。 安装在主轴上的飞轮转动惯量为:
机械设计基础第5版杨可桢

工作原理:移动滑环,
设计:潘存云
通过杠杆作用,压紧
或放松磨擦片,来实
现两轴的结合与分离。
天津工业大学专用
作者: 潘存云教授
摩擦片材料:淬火钢片、压制石棉片。 摩擦片数量z↑传递扭矩T ↑
但z过大将使各层间压力不均匀,一般取: z=12~15
摩擦扭矩: 表面压强:
Tmax= z Fa f Rf
=
z
Fa
瓦块制动器已经规范ຫໍສະໝຸດ ,可根据所需的制动力矩选型。二、带式制动器
绞制孔螺栓
普通螺栓
对中榫
设计:潘存云
设计:潘存云
普通凸缘联轴器
天津工业大学专用
作者: 潘存云教授
制造与安装要求:半联轴器的凸缘端面应与轴线垂直, 安装时应使两轴精确对中。
材料:一般用铸铁、当重载或 V≥30 m/s时,用铸 钢或锻钢 。
特点:结构简单、使用方便、传递扭矩较大,但不能 缓冲减振 。
应用:用于载荷较平稳的两轴联接 。 90˚
设计:潘存云
轮一起旋转。
当外环反向转动时,则带动滚 柱克服弹簧力而滚到楔形空间 的宽敞位置,离合器处于分离 状态。
天津工业大学专用
作者: 潘存云教授
二、楔块式定向离合器
结构:由内环、外环、楔块、支撑环、拉簧等零件组成。 工作原理: 内外环工作面都为圆形,整圈拉簧压着楔块始终与内 环接触,并力图使楔块绕自身作逆时钟方向偏摆。当 外环顺时钟方向旋转时,楔块克服弹簧力而作顺时钟 方向摆动,从而在内外环间越楔越紧,离合器处于结 合状态。反向时斜块松开而成分离状态。
中碳合金钢:40Cr 、 45MnB。 表面淬火后牙面硬度:48~58 HRC;
天津工业大学专用
作者: 潘存云教授
机械设计基础复习资料杨可桢

The answer of schoolwork of MECHINE THEORY AND DESIGN (Just for reference)教材:杨可桢(第五版)教师:邓嵘时间:200809~200811目录Chapter 1 (1)Chapter 2 (4)2-1 (4)2-2 (4)2-3 (5)2-4 (5)2-5 (6)2-7 (6)2-10 (6)2-13 (6)Chapter3 (7)3-1 (7)3-2 (7)3-4(简单,略) (7)Chapter4 (8)4-1 (8)4-2 (8)4-3 (8)4-4 (8)4-5 (9)4-6 (9)4-8 (9)4-9 (10)4-10 (10)4-14 (11)Chapter5 (11)5-1 (11)5-2 (12)5-3 (12)5-4 (12)5-5 (13)5-6 (13)5-7 (13)5-8 (14)5-9 (14)5-10 (14)5-14 (15)5-15 (15)Chapter 13,4,0321L H L H n p p F n p p ====--=3,4,0321L H L H n p p F n p p ====--=3,4,0321L H L H n p p F n p p ====--=3,4,0321L H L H n p p F n p p ====--=1-11-21-31-41109,12,2,3(2)1L H L H n P P F n P P -====-+=、194,4,2,3(2)2L H L H n P P F n P P -====-+=、186,8,1,3(2)1L H L H n P P F n P P -====-+=、178,11,0,3(2)2L H L H n P P F n P P -====-+=、168,11,1,3(2)1L H L H n P P F n P P -====-+=、156,8,1,3(2)1L H L H n P P F n P P -====-+=、141221241232322423116c p p p p p v v v p p ωωω====-、A ω1B 341 2C1241222114122115p p r r p p ωω-==、3113141142/v p p m sω-==、13341313141134p p p p ωω-==、3(2)3L H L H F n P P =-+=1114,4,2,3(2)2L H L H n P P F n P P -====-+=、Chapter 22-1)401107090)))a b c d +<+∴Q 、,并且最短杆为机架,是双曲柄机构;、曲柄摇杆机构、双摇杆机构、双摇杆机构2-2转动导杆机构条件:AB BC l e l +≤2-4000018030 1.418030K +==-71),51.4t t ==、设空回行程需秒 2)75125+=、一转所需的时间是秒,一分钟曲柄转转。
杨可桢《机械设计基础》考点精讲及复习思路

∴K =1 2)偏置曲柄滑块机构
∵θ>0 故有急回特性
n个活动件 PL个低副 PH个高副
约束
2PL PH
计算公式:F =3n-2PL -PH
例题分析:
例 1 试计算下列机构的自由度。
自由度 3n
n =3、PL =4、PH =0 n =2、PL =2、PH =1
F=3n-2PL -PH F=3n -2PL -PH
c)设摇杆工作、空回过程的平均角速度分别为 ω1、ω1,则 ω1 = tψ1 ω2 = tψ2 ∴ω1 < ω2 摇杆的这种运动性质称为急回特性。显然 t1>t2 行程速比系数 K————摇杆工作、空回行程平均角速度之比。
(行程速度变化系数) 用来表明急回运动的程度。
K =ω2 ω1
=ψ/t2 ψ/t1
n =3,PL =3,PH =2 F =3n-2PL- PH=3 ×3-2 ×3-2 =1 行星轮系
虚约束的作用:改善构件的受力状态、强度、刚度等 虚约束常出现处:移动回转重现,高副接触定宽(共线),定长尺寸连件,对称结构多件。 3.局部自由度———某些不影响整个机构运动的自由度
n=2,PL=2,PH=1F =3×2-2×2-1=1 局部自由度的作用:将高副处的滑动摩擦变为滚动摩擦,从而减轻磨损。
2.虚约束———重复而且对机构运动不起限制作用的约束。 要除去 平面机构常在下列情况使用虚约束。 1)两构件之间形成多个运动副
— 2—
杨可桢《机械设计基础》考点精讲及复习思路 如果两构件在多处接触而构成移动副,且移动方向彼此平行(如右图)则只能算一个移动副。
如果两构件在多处相配合而构成转动副,且转动轴线重合(如下图),则只能算一个转动副。
— 10—
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械设计基础第五版复习提纲(杨可桢)第一部分课程重点内容网上找到的资料,然后改正了错误加注了页数一.运动副的概念和分类P6—7;运动副图形符号P8;能画出和认识机构运动简图P8—10。
平面机构自由度的计算公式P11;复合铰链、局部自由度及简单的虚约束P12—13;速度瞬心及三心定理P15-171.所以构件都在相互平行的平面内运动的机构称为平面机构;2.两构件直接接触并能产生一定相对运动的连接称为运动副。
两构件通过面接触组成的运动副称为低副,平面机构中的低副有移动副和转动副。
两构件通过点或线接触组成的运动副称为高副;3.绘制平面机构运动简图;4.机构自由度F=3n-2P l-P h,原动件数小于机构自由度,机构不具有确定的相对运动;原动件数大于机构自由度,机构中最弱的构件必将损坏;机构自由度等于零的构件组合,它的各构件之间不可能产生相对运动;5.计算平面机构自由度的注意事项:(1)复合铰链(图1-13)(2)局部自由度:凸轮小滚子焊为一体(3)虚约束(4)两个构件构成多个平面高副,各接触点的公共法线彼此重合时只算一个高副,各接触点的公共法线彼此不重合时相当于两个高副或一个低副,而不是虚约束;6.自由度的计算步骤要全:1)指出复合铰链、虚约束和局部自由度2)指出活动构件、低副、高副3)计算自由度4)指出构件有没有确定的运动。
二.铰链四杆机构的三种基本形式及运动特征P21—28;四杆机构类型判定准则P29;急回特性 P29;压力角与传动角P30;死点位置P31;四杆机构的设计(按给定的连杆位置或行程速度变化系数设计四杆机构,给定两连杆架与给定点的运动轨迹设计四杆机构不考)P32—34。
1.平面连杆机构是由若干构件用低副(转动副、移动副)连接组成的平面机构,又称平面低副机构;按所含移动副数目的不同,可分为:全转动副的铰链四杆机构、含一个移动副的四杆机构和含两个移动副的机构。
2.铰链四杆机构:机构的固定构件称为机架;与机架用转动副相连接的构件称为连架杆;不与机架直接相连的构件称为连杆;铰链四杆机构分为曲柄摇杆机构、双曲柄机构、双摇杆机构。
3.含一个移动副的四杆机构:曲柄滑块机构、转动导杆机构、摆动导杆机构、定块机构、摇块机构,及其相互之间的倒置。
4.铰链四杆机构有整转副的条件是最短杆和最长杆长度之和小于等于其余两杆长度之和;整转副是最短边及其邻边组成的;铰链四杆机构是否存在曲柄依据:1)取最短杆为机架时,机架上有两个整转副,故得双曲柄机构;2)取最短杆的邻边为机架时,机架上只有一个整转副,故得曲柄摇杆机构;3)取最短杆的对边为机架时,机架上没有整转副,故得双摇杆机构。
如果铰链四杆机构中的最短边和最长边长度之和大于其余两杆长度之和,则该机构中不存在整转副,无论取哪个构件作为机架都只能得到双摇杆机构。
5.极位角越大,机构的急回特性越明显。
急回运动特性可用行程速比系数K来表示:K=w2/w1=Ψ/t2/Ψ/t1=t1/t2=Ψ1/Ψ2=(180°+θ)/(180-θ);作用在从动件上的驱动力与该力作用点绝对速度之间所夹的锐角叫做压力角,压力角是作为判断机构传力性能的重要标志;压力角的余角叫做传动角,压力角越小,传动角越大,机构传力性能越好;压力角越大,传动角越小,机构的传力性能越差,传动效率越低。
作图题:极位角和最小传动角的位置。
机构中的这种传动角为零的位置称为死点位置。
三.凸轮机构的应用与类型P41;盘形凸轮基圆、升程、推程运动角、远休止角、回运动角、近休止角的概念P42。
从动件按等速运动、简谐运动、正弦加速度运动时,机构的动力特性及应用范围P43—44。
凸轮机构压力角与作用力和机构尺寸的关系P44-P55;图解法设计凸轮轮廓P45-49;解析法设计凸轮轮廓P50-511.凸轮机构的优点是:只需设计适当的齿轮轮廓,便可使从动件得到所需的运动规律,并且结构简单、紧凑,设计方便。
缺点是:凸轮轮廓与从动件之间为点接触或线接触,易磨损,所以通常用于传力不大的控制机构。
2.凸轮机构的从动件做等速运动时,造成强烈刚性冲击;做简谐运动时造成柔性冲击;做正弦加速度运动时没有冲击。
3.基圆半径越小,压力角越大,传动角越小,有害分力越大,传动效率越低,当压力角达到一定的程度,有用分力连摩擦力也克服不了。
4.平底从动件凸轮压力角为定值。
四.齿轮传动的特P53,齿廓渐开线形成特性P55-56。
渐开线齿轮正确啮合及连续传动的条件P59-61;渐开线齿轮成型法与范成法P61-62;根切与最少齿数P63;斜齿轮与锥齿轮机构P66-70.(内容较多,必须掌握计算公式与传动中心距的计算)1.两轴交错的齿轮机构:涡轮蜗杆机构。
2.渐开线:把先缠在圆上,展开,线端的轨迹极为渐开线;渐开线上任意一点的法线均与基圆相切;渐开线齿廓上某点的法线,与齿廓上该点速度方向线之间的夹角为压力角。
3.一对齿轮的传动比等于两轮的转动速度之比,等于两轮角速度之比,等于两轮基圆半径的反比,等于两轮节圆半径的反比。
4.渐开线齿轮传动的可分性:一对渐开线齿轮制成之后,其基圆半径是不能改变的,即使两轮的中心距稍有改变,其角速度比仍保持原值不变。
5.齿轮各部分名称:齿根圆、基圆、分度圆、齿顶圆、齿厚、齿槽宽、齿距、齿宽、齿顶高、齿根高、全齿高。
6.齿轮所有的几何尺寸都用模数的倍数来表示,所以齿数相同的齿轮,模数越大,齿轮的尺寸越大,其承载能力也就越高。
D=mz;p=mPai;分度圆是具有标准模数和标准压力角(20°)的圆。
模数越大,p越大,齿轮越大,齿轮抗弯能力越强,所以,模数是齿轮抗弯能力的重要标志。
H=ha+hf;ha=mha*;hf=(ha*+c*)m;ha*=1.0;c*=0.25;da=d+2ha;df=d-2hf;db=d*cos20°;标准齿轮:分度圆上齿厚和齿槽宽相等,且齿顶高和齿根高均为标准值的齿轮称为标准齿轮。
7渐开线齿轮的正确啮合条件是两轮的模数和压力角分别相等。
8分度圆和压力角是单个齿轮所具有的,而节圆和啮合角是两个齿轮相互啮合时才出现的。
标准齿轮传动只有在分度圆和节圆重合时,压力角和啮合角才相等,否则,啮合角大于压力角。
9实际啮合线段与两啮合点间距离之比称为重合度,因此,齿轮连续传动的条件是重合度大于等于1.重合度表示同时参加啮合的齿的对数,重合度越大,轮齿平均受力越小,传动越平稳。
10斜齿轮左旋右旋判断方法。
11一对斜齿轮正确啮合条件:模数相等,压力角相等,螺旋角大小相等方向相反(外啮合)。
12斜齿轮的法向模数和端面模数之间的关系:m n=m t*cosβ;国际规定,斜齿轮的法向参数取为标注值,而端面参数为非标准值。
13斜齿轮的优点:1)齿廓接触线是斜线,一对齿是逐渐进入啮合和逐渐脱离啮合的,故运转平稳,噪声小。
2)重合度大,并随齿宽和螺旋角的增大而增大,故承载能力高,运转平稳,适于高速传动。
3)斜齿轮不根切最少齿数小于直齿轮。
五. 定轴轮系传动比的计算公式(大小)、如何用箭头判断方向,P73-75;周转轮系传送比计算公式P75-78;复合轮系传动比计算P78;特殊行星齿轮系传动比的计算P811.轮系可以分为定轴轮系和周转轮系。
转动时每个齿轮的几何轴线都是固定的,这种轮系称为定轴轮系。
至少有一个轮系的几何轴线绕另一个轮系的几何轴线转动的轮系,称为周转轮系。
2.涡轮蜗杆的左右手定则:左旋用左手,右旋用右手,四指弯曲的方向是蜗杆的旋转方向,拇指的反向是涡轮的转动方向。
3.定轴轮系传动比的数值等于各对啮合齿轮中所有从动轮齿数的乘积与所有主动轮齿数乘积之比。
4.一个周转轮系包括:一个系杆,系杆上的行星轮,和行星轮直接接触的所有太阳轮。
周转轮系及其传动比的计算。
5.复合轮系及其传动比。
六、凸轮间歇运动机构内容较少1.止回棘爪,防止棘轮向相反方向运动。
2.槽轮机构的运动特性系数。
第九章机器零件设计概率1.塑性材料以屈服极限为极限应力,脆性材料以强度极限为极限应力;2.运动副中,摩擦表面物质不断损失的现象称为磨损;零件抗磨损的能力称为耐磨性;机械中磨损的主要类型:磨粒磨损、胶合、点蚀、腐蚀磨损。
胶合:摩擦表面受载时,实际上只有部分峰顶接触,接触处压强很高,能使材料产生塑性流动。
若接触处发生粘着,滑动时会使接触表面材料有一个表面转移到另一个表面,这种现象称为粘着磨损。
第十章连接1.螺纹的主要几何参数:大径(公称直径)、小径、中径、螺距、导程、螺纹升角、牙型角、牙侧角。
2.牙侧角越大,自锁性越好,效率越低。
3.把牙型角等于60度的三角形米制螺纹称为普通螺纹,以大径为公称直径。
同一公称直径可以有多种螺距的螺纹,其中螺距最大的称为粗牙螺纹,其余都称为细牙螺纹。
公称直径相同时,细牙螺纹的自锁性能好,但不耐磨、易滑扣。
4.M24:粗牙普通螺纹,公称直径24,螺距3;M24×1.5:细牙普通螺纹,公称直径24,螺距1.5。
5.螺纹连接的防松:摩擦防松、机械防松、铆冲粘合防松。
对顶螺母属于摩擦放松。
6.螺栓的主要失效形式:1)螺栓杆拉断;2)螺纹的压溃和剪断;3)经常装拆时会因磨损而发生滑扣现象。
7.螺栓螺纹部分的强度条件。
螺栓的总拉伸荷载为:工作荷载和残余预紧力。
8.计算压油缸上的螺栓连接和螺栓的分布圆直径。
第十一章齿轮传动1.按照工作条件,齿轮传动可分为闭式传动和开式传动。
2.轮齿的失效形式主要有:齿轮折断、齿面点蚀、齿面胶合、齿面磨损、齿面塑性变形。
在一般闭式齿轮传动中,齿轮的主要是小型是齿面解除疲劳点蚀和轮齿弯曲疲劳折断。
齿根部分靠近节线处最易发生点蚀,故常取节点处的接触应力为计算依据。
一般仅有一对齿啮合,即荷载由一对齿承担。
对于开式齿轮,主要的失效形式有:齿面点蚀和齿轮的弯曲疲劳强度破坏。
3.热处理:钢在固体状态下被加热到一定温度,保温,不同的冷却方法,改变钢的组织结构,得到所需性能。
退火:放在空气中缓慢降温。
正火:空气中对流冷却。
淬火:放在水中或油中冷却。
4.直齿圆柱齿轮传动的作用力及其各力的方向:圆周力及其方向,径向力及其方向。
5.齿面接触应力的验算公式。
两轮的接触应力是作用力和反作用力,大小相等方向相反,但两轮的许用应力不同,因为两轮的材料和热处理方式不同,计算中取两轮中较小者。
6.设计圆柱齿轮时设计准则:1)对闭式软齿面齿轮传动,主要失效形式为齿面点蚀,按齿面接触强度进行设计,按齿根的弯曲强度进行校核;2)对闭式硬齿面齿轮传动,主要失效形式为轮齿弯曲疲劳强度破坏,按齿根的弯曲强度进行设计,按齿面的接触强度进行校核;3)对开式齿轮传动,主要失效形式为齿面磨损和轮齿弯曲疲劳强度破坏,按轮齿的弯曲疲劳强度进行设计,将计算的模数适当修正。
7.斜齿圆柱齿轮传动,各分力的方向如下:圆周力的方向在主动轮上与运动方向相反,在从动轮上与运动方向相同;径向力的方向对两轮都是指向各自的轴心;轴向力的方向可由齿轮的工作面受压来决定。