数据挖掘应用案例:RFM模型分析与客户细分
RFM模型下构建核心客户识别与分类的指标-客户关系管理论文-企业管理论文-管理学论文

RFM模型下构建核心客户识别与分类的指标-客户关系管理论文-企业管理论文-管理学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——一、引言2014 年中国保险业全年保费收入突破2 万亿元,行业总资产突破10 万亿元。
《外资保险公司在中国的未来发展方向(2014)》报告认为中国在未来7 年保费收入平均年增长率约17%, 寿险公司的年度保费增速将超过20%,2015年中国保险市场规模将进入世界前三甲。
和西方发达国家相比,不论是老百姓保险意识还是商业化参保比例,都存在明显的差距;保险公司的客户关系管理仍存在不足。
通过对发达国家和地区的保险公司的经验借鉴,能够为我国的保险业发展带来重要启示。
台湾地区的客户关系管理(CRM)最早应用于银行业(Call Center)、电信业、保险业等。
根据台湾地区经济部商业司对当前台湾企业的顾客关系管理应用状况调查,金融业占80%(其中银行业占40%,保险业占27%),其他行业占20%.其他行业包括的类别则涵盖电讯服务业、航空业、信息服务业、汽车销售业、酒店业、百货批发业和电子产业等。
目前台湾地区六大行业约89%的企业已建立CRM 系统。
本文根据保险业的客户管理实践,结合台湾地区的保险业调研数据,基于RFM 模型构建核心客户识别与分类的指标,提出保险企业核心客户关系管理的构建过程与策略。
二、核心客户识别与分类客户关系管理首先必须进行核心客户的识别和分类。
现有研究根据客户对企业的利润贡献、重要性等不同维度,将客户划分为核心客户、关键客户、重要客户的概念。
其中核心客户是对企业具有特殊性的重要客户,也是企业收入或利润的主要来源。
因此客户关系管理首先要对客户的类型进行划分,并识别出具有重要贡献的核心客户。
1. 基于RFM 模型的核心客户识别。
RFM 模型最早出现于Arthur 和Hughes(1994)的研究,其核心思想是通过三个重要的客户行为指标,即近度R(最近购买时间,Recen-cy)、频度F (购买频率,Frequency)和值度M (购买金额,Monetary Value)判断客户价值并对客户进行分类. 国内外很多的研究者和企业都采用了RFM 模型进行客户的分类和管理,针对本文的研究内容和保险公司的实践,根据客户购买保险的近度、频度和值度三个指标对客户进行识别和分类。
利用RFM模型进行客户价值分析

利用RFM模型进行客户价值分析随着企业的发展,客户管理越来越成为企业重要的一个方面。
客户价值分析是一种常用的客户管理方法,利用RFM模型进行客户价值分析无疑是一种有效的方法。
RFM模型基于客户的最近一次购买时间、购买频率和购买金额等指标,将客户分为不同的层级,从而帮助企业了解客户的实际价值,制定有针对性的营销策略。
首先,我们来了解一下RFM模型的三个指标。
R(Recency)最近一次购买时间最近一次购买时间是指客户最近一次进行购买的时间,这个指标很好理解,因为任何客户购买活动的最近一次发生时间都可以作为依据,以此来衡量客户对企业的忠诚度和购买意愿。
F(Frequency)购买频率购买频率是指客户在一段时间内购买产品的次数,这个指标是衡量客户活跃度和忠诚度的重要标志。
F指标可以帮助企业找到具有较高忠诚度的客户,从而加强对这些客户的关系管理。
M(Monetary)购买金额购买金额指的是客户在购买产品时花费的金额,通过这个指标,企业可以了解每个客户的购买能力和支付意愿,并制定有针对性的价格政策。
接下来,我们来了解一下如何利用RFM模型进行客户价值分析。
1. 筛选RFM数据首先,企业需要收集所需的RFM数据。
对于大型企业来说,数据量可能很大,所以需要先筛选数据,去掉不必要的部分,然后对筛选后的数据进行分类整理。
可以将数据划分为购买时间、购买次数和购买金额三个部分,再分别按照大小进行排序,得到类别数值。
2. 划分客户类别根据R、F、M指标数值的高低,将客户划分为不同的类别。
这里的分类方式可以根据实际情况来制定,如TOP客户、一般客户、低价值客户、潜在客户等类型。
这些分类可以根据客户对企业的贡献程度和价值大小来设定。
在制定分类方案时,还需要考虑与所设定的企业营销目标的相关性。
最后,确定每个客户所属的类别。
3. 制定针对性的营销策略了解每个客户所属的类别后,企业就可以针对性地制定相应的营销策略。
比如,在对TOP客户进行关系管理时,要重点加强与这些客户的沟通交流,提供优质的服务,增强客户体验,以便使这些客户对企业有更高的忠诚度。
数据挖掘第17讲-RFM分析

案例关键问题
哪些用户对网站的价值更大 优先考虑对哪些用户提供促销活动 高价值的用户具有哪些特点
什么是RFM模型
RFM模型是用来衡量客户价值和客户创利能 力的重要工具和手段。模型通过对客户近期 的购买行为、购买频率和消费额度三项指标 来描述该客户对企业的价值状况。RFM模型 在客户关系管理系统(CRM)中经常应用。
RFM模型基本指标
R(Recency)
• 客户最近一 次购买的时 间有多远
F(Frequency)
• 客户在最近 一段时间内 购买的次数
M(Monetary)
• 客户在最近 一段时间内 购买的金额
RFM模型作用
客户细提高转化 率
降低成本
RFM模型缺陷
FLA W
高交易用 户不断被 “骚扰”
严格意义上并不能算一个模型
无法对未 消费用户 进行分析
数据挖掘课程培训
案例背景
xx音乐网站通过向用户提供歌曲下载获取收入。 经过多年的经营,到目前积累了大量的歌迷用 户。随着音乐网站竞争越来越激烈,网站的用 户在不断降低,该网站也曾通过大打折扣的方 式,短期内获得大量的用户流量,但以这种方 式进行的“促销”大大降低了网站收入的利润。 显然,这并不是一个可以长期使用的方法。鉴 于这种情况,网站管理层决定作出一定改善。 首先,他们想到了对现有客户进行最大程度的 挽留,但又不能老是通过对全部用户进行相同 的方式进行,全部都实行打折,成本花费太大。
电商平台中的RFM模型分析与应用

电商平台中的RFM模型分析与应用随着网络技术的成熟和普及,电子商务越来越受到人们的欢迎,成为了人们经常使用的一种购物方式。
电商平台如天猫、京东、淘宝等巨头在市场上站稳了脚跟,同时也有很多小型电商平台涌现出来。
但如何更好地了解消费者需求、提升销售业绩,已经成为了所有电商平台必须面对的问题。
RFM模型作为一种较为成熟、可行的分析手段,在电商平台中的应用已经越来越受到重视。
一、RFM模型的简介RFM是英文表达:Recency(最近一次交易时间)、Frequency(订单频次)、Monetary(交易总金额)的缩写,是一种常用的消费者分层模型,能够帮助企业更好地了解顾客,提升客户价值。
其中,R 指数值越小表明最近一次交易时间越近,F指数值越大表明订单频次越高,M指数值越大表明交易总金额越高。
通过对RFM指标的分析,可以将顾客分为以下5类:1.重要价值用户(VIP): R值低、F值高、M值高;2.保持用户: R值低、F值高、M值中;3.潜力用户: R值低、F值中、M值低;4.流失用户: R值高、F值低、M值低;5.新客户: R值高、F值低、M值中。
通过将顾客分类,企业能够更准确地了解消费者需求,精准定位客户群体,有效进行市场营销活动,促进销售业绩提升。
二、RFM模型在电商平台中的应用电商平台的庞大用户群和海量的数据量,给RFM模型的应用提出了更高的要求,但也同时为RFM模型在电商平台中提供了更多的应用场景和维度。
1.效果评估在电商平台中,RFM模型通过对历史销售数据的分析,给出的客户分类结果可以用作评估市场营销活动的效果。
如一家电商平台在打折活动期间,对不同类别的用户发放不同的折扣券,比如在RFM指标高的顾客中发放高额优惠券,而在RFM指标低的顾客中发放低额优惠券,在活动结束后,可以通过对销售数据的分析评估其效果,并结合分类结果进行调整,从而提升下一次活动的效果。
2.客户细分通过RFM模型的分析,可以将电商平台的用户细分为不同的层级,根据不同层级的用户,制定不同的营销策略。
深入解读RFM算法模型-运营实战应用干货

深入解读RFM算法模型-运营实战应用干货从事用户运营多年,一直都是在不断摸索中成长。
从毕业后进入到国内知名化妆品公司-电商事业部,再到到国内top3坚果零食企业,一直都想花时间把自己对用户这一块的摸索积累记录下来,同时用自己的实践即使可以给大家一点点帮助也觉得很有意义。
今天想先谈谈传统企业和电商谈的较多的RFM模型,在众多的用户价值分析模型中,RFM模型是被广泛被应用的;RFM模型是衡量客户价值和客户创利能力的重要工具和手段。
一、RFM模型概述RFM模型是网点衡量当前用户价值和客户潜在价值的重要工具和手段。
RFM是Rencency(最近一次消费),Frequency(消费频率)、Monetary(消费金额),三个指标首字母组合,如图所示:RFM模型R值:最近一次消费(Recency)消费指的是客户在店铺消费最近一次和上一次的时间间隔,理论上R 值越小的客户是价值越高的客户,即对店铺的回购几次最有可能产生回应。
目前网购便利,顾客已经有了更多的购买选择和更低的购买成本,去除地域的限制因素,客户非常容易流失,因此CRM操盘手想要提高回购率和留存率,需要时刻警惕R值。
如下图,某零食网店用户最近一次消费R值分布图(时间截至2016年12月31日):1、客户R值呈规律性的“波浪形”分布,时间越长,波浪越小;2、最近一年内用户占比50%(真的很巧);数据分析:这个数据根据向行业内专业人员请教,已经是比较理想了的。
说明每引入2个客户,就有一位用户在持续购买。
说明店铺复购做的比较好,R值在不断的变为0。
F值:消费频率(Frequency)消费频率是客户在固定时间内的购买次数(一般是1年)。
但是如果实操中实际店铺由于受品类宽度的原因,比如卖3C产品,耐用品等即使是忠实粉丝用户也很难在1年内购买多次。
所以,一般店铺在运营RFM 模型时,会把F值的时间范围去掉,替换成累计购买次数。
如下图,某零食网店用户购买频次图(如1个客户在1天内购买多笔订单,则自动合并为1笔订单):1、购买1次(新客户)占比为65.5%,产生重复购买(老客户)的占比为34.4%;2、购买3次及以上(成熟客户)的占比为17%,购买5次及以上(忠实客户)的占比为6%。
数据分析-RFM模型用户分析

数据分析-RFM模型⽤户分析RFM模型根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标:最近⼀次消费 (Recency)消费频率 (Frequency)消费⾦额 (Monetary)上⾯的三个标签通过字⾯意思⽐较好理解,顾名思义RFM模型中的,R=Recency,F=Frequency,M=MonetaryRFM模型客户细分1.数据筛选分组为了得到客户最近⼀次消费(Recency)、消费频率(Frequency)、消费⾦额(Monetary)这三个指标的数值进⾏筛选分组(以下为⼀个⽰例)。
消费(Recency)——最近⼀次会员来店铺购买的时间A、⼀周以前B、2周以前C、3周以前D、⼀个⽉前消费频率(Frequency)——⼀年内在店铺购买的次数A、1次B、1-3次C、3-5次D、5次以上对于消费⾦额(Monetary)——单次消费⾦额A、50元以下B、50-150元C、150-300元D、300元以上2.数据处理处理步骤如下:①将所有客户按照Recency的值,由⼩到⼤排列,以50%为⼀群,依次给予2,1分。
②再将所有客⼾按照Frequency的值,由⼤到⼩排列;以50%为⼀群,依序给予2,1分。
③最后将所有客⼾按照Monetary的值,由⼤到⼩排列;以50%为⼀群,依序给予2,1分。
整合得到8种组合:2-2-2:⾼价值客户;2-1-2:重点发展客户1-2-2:重点保持客户;1-1-2:重点挽留客户;1-1-1:⽆价值客户;其余三种组合均属于⼀般客户。
现在我们来简单归纳⼀下,RFM模型中,我们重点研究的就是以上8种⽤户(⽤排列组合2*2*2=8种,很好理解)⾥⾯的有明显偏向的5种⽤户.前⾯的4种⽤户,⼊选研究对象,总概括的就是愿意掏钱的客户.这下就很好记了,RFM⾥⾯的M已经确定了,要选掏钱的,R,F各有两种选择,也就是总共4种类型然后再按R来分,打分⾼的先排2 2 2 这种客户"最近购买(r),⽽且经常购买(F),每次花钱的⾦额还挺⼤(M) 毫⽆疑问这个客户是⾼价值的2 1 2 此客户最近购买,买的次数不多,但每次花费的⾦额⽐较⼤;那么遇到这种客户,证明他对特定品牌产品感兴趣,要做的是怎么让他经常来买. 所以这种客户不难理解是应该重点发展的1 2 2 此客户可能不是⼀直关注产品,但是买的次数⽐较频繁,每次花费的⾦额也挺⼤.理解:证明这个客户是对产品的需求量⽐较⼤,也舍得掏钱,对品牌不是很关注的,也许今天到A品牌商家购买的,明天就到B品牌商家购买去了.因此我们要做的是,要让客户保留对我们品牌产品的兴趣.1 12 此客户⽐较明显就是那种⽐较懒惰型的客户,要⽤到的时候再买,⽽且⼀次性买⽐较多,平时就很少关注和购买了.对于这种客户,你不知道他下⼀次购买的还是不是本公司品牌的产品,可能需要在他购买⼀段时间后提醒他我们产品有优惠活动,来提起他的购买欲望.因此属于需要挽留型的客户1 1 1 就不多说了,是临时过客其他的客户没有明显的特征,主要是不怎么掏钱,是薅⽺⽑型的,你再怎么打主意都从他⾝上挣不到多少钱的,就归为⼀般客户.理解完后,就根据打分,把所有客户分类好,然后提取出来我们重点研究的这⼏种客户来做相应的措施;2 2 2⾼价值客户,基本上不⽤太担⼼,他会⾃⼰来购买2 1 2 重点发展型的客户想办法加⼤他的购买频率1 2 2重点保持型客户让他保持对我们品牌产品的兴趣1 1 2重点挽留客户发⼀些我们品牌的信息给他,等他想起来要购买类似产品的时候,第⼀时间想到的是我们品牌1 1 1 ⽆价值的客户不⽤花精⼒去跟进这种类型的客户,投⼊和产出⽐不值得.。
RFM分析步骤基于RFM模型的客户细分

RFM分析步骤基于RFM模型的客户细分RFM(Recency, Frequency, Monetary)分析是一种常用于客户细分的方法,它根据客户的购买行为来评估客户的价值,并将客户分成不同的组。
以下是RFM分析的基本步骤:步骤一:数据准备首先,需要收集客户的购买数据,包括每个客户的购买日期、购买频率以及购买金额。
这些数据可以从购买记录、交易日志或者其他相关数据库中获取。
步骤二:计算R值R值表示客户的最近一次购买的时间间隔。
计算每个客户最近一次购买与当前日期之间的时间间隔,并进行排名和分组。
通常情况下,R值越小,表示客户最近购买时间越近,价值越高。
步骤三:计算F值F值表示客户的购买频率,即在一定时间内的购买次数。
计算每个客户在一定时间内的购买次数,并进行排名和分组。
通常情况下,F值越大,表示客户购买频率越高,价值越高。
步骤四:计算M值M值表示客户的购买金额,即客户在一定时间内的总消费金额。
计算每个客户在一定时间内的购买总金额,并进行排名和分组。
通常情况下,M值越大,表示客户购买金额越高,价值越高。
步骤五:分组和细分将客户根据R、F和M的值进行分组和细分。
可以根据具体情况,将每个指标的排名分成几个等级,例如将R值分为五个等级(1为最近购买,5为最久购买),将F值和M值分别分为五个等级(1为最低频率或金额,5为最高频率或金额)。
然后,将每个客户的R、F和M值对应的等级组合起来,形成一个RFM等级,用于表示客户的综合价值。
步骤六:分析和行动分析每个RFM等级所代表的客户特征和行为,并根据细分结果制定相应的营销策略和行动计划。
例如,对于RFM等级为高的客户,可以开展定制化的促销活动,提供更高价值的服务和产品;对于RFM等级为低的客户,可以通过一些刺激措施来唤回流失客户。
总结:RFM分析是一种简单有效的客户细分方法,通过评估客户的购买行为和价值,可以帮助企业识别出不同价值的客户群体,并制定针对性的营销策略。
数据挖掘应用案例RFM模型分析与客户细分

数据挖掘应用案例RFM模型分析与客户细分RFM模型分析与客户细分是一种常见的数据挖掘应用案例,用于帮助企业理解其客户群体、挖掘潜在商机以及制定有效的市场推广策略。
RFM模型通过对客户最近一次购买时间(Recency)、购买频率(Frequency)以及购买金额(Monetary)进行分析,将客户分成不同的细分群组,以便企业可以有针对性地开展营销活动。
首先,我们来看看如何通过RFM模型分析对客户进行细分。
1. Recency(最近一次购买时间):根据客户最近一次购买时间的间隔,可以将客户分为活跃客户、不活跃客户以及休眠客户等不同群组。
活跃客户是指最近购买时间间隔较短的客户,他们对于企业来说非常有价值,因为他们可能是经常下单的忠实客户,或者是对新产品感兴趣的潜在客户。
不活跃客户是指最近购买时间间隔较长的客户,他们的购买意愿降低,可能需要通过一些特殊的优惠措施来刺激其再次购买。
休眠客户是指最近购买时间间隔很长的客户,他们已经很久没有购买了,通常需要采取一些激励举措才能重新激活他们的购买兴趣。
3. Monetary(购买金额):根据客户的购买金额,可以将客户分为高价值客户、中等价值客户以及低价值客户等不同群组。
高价值客户是指购买金额较大的客户,他们对于企业来说非常有价值,可以为企业带来较高的利润。
中等价值客户是指购买金额适中的客户,他们对于企业来说也是重要的资产,可以通过特殊的优惠措施来提升他们的购买金额。
低价值客户是指购买金额较小的客户,他们通常需要通过一些激励措施来提高其购买金额。
通过对客户的Recency、Frequency和Monetary进行综合分析,可以将客户分为不同的细分群组,例如:1.VIP客户群:最近购买时间较短、购买频率较高、购买金额较大的客户,是企业最重要的客户群体。
企业可以通过特殊的服务和优惠措施来保持他们的忠诚度,并提高他们的购买额。
3.潜力客户群:最近购买时间较短、购买频率较低、购买金额较大的客户,虽然购买频率较低,但购买金额较高,有很大的潜在商机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘应用案例:RFM模型分析与客户细分分茨:数据挖掘|标签:市场研尤数据挖掘RFM模型2012-01・2 1 21: 3 9 阅渎16854)评论(9 ) WB Insight 这里,我先给各位朋友拜年,祝大家新春快乐!兔年就要过去了,本命年的最后一天再不更新博客有点对不住大家!正好刚帮某电信行业完成一个数据挖掘工作,苴中的RFM模型还是有一泄代表性,就再把数据挖掘RFM模型的建模思路细肖与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模型的交易数据要求。
根据美国数拯库营销研究所Arthur Hug h e s的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(F requen cy)、消费金额(Monetary)o我早期两篇博文已详述了RFM思想和IBM Modele r操作过程,有兴趣的朋友可以阅读!RFM模型:R(R e cency)表示客户最近一次购买的时间有多远,F (Frequ ency) 表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额。
一般原始数据为3个字段:客户ID、购买时间(日期格式)、购买金额,用数据挖掘软件处理,加权(考虑权重)得到RFM得分,进而可以进行客户细分,客户等级分类,C u st o mer Leve I Valu e得分排序等,实现数据库营销!本次分析用的的软件工具:IBN4 SPSS Statist i cs 1 9 , IBM SPSS Modeled 4.1, T a b I eau 7 o 0 , E XCEL 和PPT因为RFM分析仅是项目的一个小部分分析,但也而临海量数据的处理能力,这一点对计算机的内存和硬盘容量都有要求。
先说说对海量数据挖掘和数据处理的一点体会:(仅指个人电脑操作平台而言)・一般我们拿到的数拯都是压缩格式的文本文件,需要解压缩,都在G字节以上存储单位,一般最好在外巻电源移动硬盘存储:如果客户不告知,你大槪是不知道有多少记录和字段的;・Modeler挖掘软件默认安装一般都需要与C盘进行数据交换,至少需要100G空间预留,否则读取数据过程中将造成空间不足・海量数据处理要有耐心,等待3 0分钟以上运行出结果是常有的现象,特别是在进行抽样、合并数据、数据重构、神经网络建模过程中,要有韧性,否则差一分钟中断就悲剧了,呵呵:・数据挖掘的准备阶段和数据预处理时间占整个项目的70%,我这里说如果是超大数据集可能时间要占到90%以上。
一方而是处理费时,一方面可能就只能这台电脑处理,不能几台电脑同时操作;・多带来不同,这是我一直强调的体验•所以海量数据需要用到抽样技术,用来査看数据和预操作,记住:有时候即使样本数据正常,也可能全部数据有问题。
建议数据分隔符采用T存储;•如何强调一个数据挖掘项目和挖掘工程师对行业的理解和业务的洞察都不为过,好 的数据挖掘一泄是市场导向的,当然也需要1T 人员与市场人员有好的沟通机制;・ 数据挖掘会面临数据字典和语义层含义理解,在Met a Dat a 元数据管理和理解上下 功夫会事半功倍,否则等数据重构完成发现问题又要推倒重来,悲剧;・每次海量大数据挖掘工作时都是我上微博最多的时侯,它真的没我算的快,只好上微 博等它,哈哈!传统RFM 分析转换为电信业务R FM 分析主要思考:模型R(fiS) F (确 M(fM®茗户最近一次茗户一定时期 言户一定时期 传统的RFM 模型购买距离分析 内购买该企业 内购买该企业点的时间产品的次数 产品的总金额客户最后一次客户一定时期 客户一定时期 电信业RFM 模型交费距离分析 内交费的次数内的交费总额点的时间http ;//Uy.SDhlLLDHJ这里的R F M 模型和进而细分客户仅是数据挖掘项目的一个小部分,假宦我们拿到一个月 的客户充值行为数据集(实际上有六个月的数据),我们们先用1 BM Mod e ler 软件构建 一个分析流:全满足RFM 分析要求,一个月的数据就有3千万条交易记录!dmjopup.201106.txt TableTypeijctpi/yjhoy-3 uh 山数据纟吉构兄Tobk {4 10.000 reccrde)刘Tatsle Arnotaions Q Fie 二 Ed«t O Generate 30402097 记录dn2195435X83 2011-06-01 recharoe 1000矶3 21934935694 229血瓶。
5 2ni2V294 0 2295W/704 7 219618^264 8 21953M295 9 2198149326 10 219® 驱 2 11 2141799119 12 2183SM651 13 2197059121 14 2151174629 15 2292217714 16 2293052923 仃21MMW992182191555676 19 2197132802 20 21955112292121954)3548 2221 頸2M262 23 _____ 2295775465 24 21 <)41^848 2626 2191145732 272295235 姑 6 28 210622666029 2193315169 302192675086 31 2193449695 32 2292378554 33 2194OS1194 2291%)也6 2011-0C-O1 2011-OC-O1 2O11-W-O1 2011-0C-01 2Q11-00-01 2011-M-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01 n Vo o o 300需 00E E E EE E E E EE EE E E E E .2011-06-01 10002011-06.01 1000 皿2011-06-01 1000(si 白 2011-06-01 1300 :2 20110601 1000 isi Ei 2011-06-01 10002011-06-01 1000 :0 £ 2011-06-01 1300 :彳$ 2011-06-01 1000 ⑻E! 1000 isi E<2011-06-01 1000 2011-06-01 2011-06-01 2011-06-01 2011-06-01 2011-06-01艸F 我们先用挖掘工具的RF 何模型的RFM 汇总卩•点和 RFM 分析节点产生 R (Recen cy)> F ( F requency) > M (Monetary);d 化!ODUQ_201106:W2011X)7-01'a Table (4 Gelds. 10,000 r^cordv *2【耳 回dn;R ♦wr o F r9<x»enqr' 12191846 M2 1 4 8CO3Z 一21916从 303 3$32191646M5 1 u fiCODO 4 2101G4G30Q 10 22CODO 52 2代躬打0 14 1 [C 回4工一 21916463*1 t5 1250^0 72191WWW 1 221916453T8 1 33 37030 g 2191646320 4 4 4CODOia 7佃丸17 1it2191645323 7 2 2830 仃2191G463?4 ? 4 3503013 2191646327 ta2CO3014 219i€4$331 174503015 2i9朮妨妁6 1畑)0 1G 2191646338 i*i 2 12030 17 115is 7191C4-:17 3330 w 219164SM5 1 24 1紳02dKHU 畑 92ZttOOs 轴CMhirpi/ /-h^rj?J^Dl^D-hj-hlug ;-Li?JLLrr J rrj接着我们采用R F M 分析肖点就完成了 RFM 模型基础数拯重构和整理:现在我们得到了 RFM 模型的 Recency_Score> Fre q u e n c y _S c ore 、Mone t a ry_Score 和R FM_Sco r e :这里对RFM 得分进行了五等分切割,采用10 0、1 0、1加权 得到RFM得分表明了 125个RFM 魔方块。
传统的RFM 模型到此也就完成了,但125个细分市场太多啦无法针对性营销也需要识别 客户特征和行为,有必要进一步细分客户群;另外:RFM 模型其实仅仅是一种数据处理方法,采用数据重构技术同样可以完成,只是 这里固化了 RFM 模块更简单直接,但我们可以采用RFM 构建数据的方式不为RFM 也可 用该模块进行数据重构.我们可以将得到的数据导入到Tableau 软件进行描述性分析:(数据挖掘软件在描 述性和制表输岀方而非常弱智,哈哈)am 上少仆•詁U JRigg0fWScd•4・・4TXrtCRTU Arahwhitp :/ /sfjpnd 乡kTc^ijLkd DyigJiULinjJJJ我们也可以进行不同块的对比分析:均值分析、块类别分析等等Columns Frequency ScoreRows Recency Score J I、Monetary Score I FiltersMarksAbe Automatic ▼Text-(AVG(Monet・・)Colors(AVG(vouch・.)Size I I Level ofDetail Recency Sc.. Monetary Sc.. 1 2 3 4 5F 1 7.243C, t2 19.651】t jO I I 1 Q| 1^(I6r^13 28.93927.3S726.55425.3924 -« .30上4C.23E40,27842.3505 1C5.155107.036106.436132.C9795,5012 192982 ^.Cl 1•' ―Vq WX W I7,18£15.56216x553 2BC0128,92427,82526,78525/444 «/« ww w39.95E41,51242.6475 1C5.729103,1919C.8S482.95489.704312v 3牙?〔9 EOGw L/f&42217,62516,68215.E673 28.9B^27,75626.875厶V . WW4 4$ 978&239.6&C41.37742,7385 105.83110)8^187.92278,60788?3104 1 9.13*17 440Frequency Score2 J7.59C-ib.oo l5t8S13 25W2 28,90727,74627,09725f522.4 49991 43,OM39,68641,16842.8705 105.337 1G0.65287.76977.93093.6851J J7.7» w• 1 Wkr•/ e £7仁2 19521 18,331 1 7T3OC16,6073 26.033 2&93227,79327,14925.M24 49990 43.43739.71741.19942.6135这时候我们就可以看出T a blea u可视化工具的方便性接下来,我们继续采用挖掘工具对R 、F 、M 三个字段进行聚类分析,聚类分析主要采用:K o ho n en^ K-m e a n s >fIJ T wo-step 算法:这时候我们要考虑是直接用R (Recency)、F(Frequ ency 〉、M (Monetary)三个变量还是要进行变换,因为R 、F 、M 三个字段的测虽:尺度不同最好对三个变量进行标准化,例如:Z 得分(实际情况可以选择线性插值法,比较法,对标法等标准化)!另外一个 考虑:就是FL F 、M 三个指标的权重该如何考虑,在现实营销中这三个指标重要性显然不有资料研究表明:对RFM 各变量的指标权重问题,Hu g hes , Arth ur 认为RFM 在衡量一个问题上的权重是一致的,因而并没有给予不同的划分。