汽车车身焊接工艺
汽车行业车辆铝车身连接工艺技术方法大全

汽车行业车辆铝车身连接工艺技术方法大全1. 点焊(Spot Welding)点焊是一种常用的车身连接方法,适用于铝合金车身板件的连接。
该方法通过施加电流和压力在连接部位产生高温,使两个板件在瞬间熔化并连接在一起。
2. 溶胶-凝胶焊(Sol-gel bonding)溶胶-凝胶焊是一种将两个铝合金板件通过涂覆溶胶和凝胶剂的方式进行连接的方法。
通过烘烤,溶胶和凝胶剂在高温下熔化和固化,使两个板件牢固连接。
3. 拉铆(Pull Riveting)拉铆是一种将两个板件通过铆钉进行连接的方法。
铆钉在板件两侧通过应用力拉伸,从而将两个板件牢固地固定在一起。
4. 锁缝铆接(Hemming)锁缝铆接是一种常用的车身板件连接方法,适用于铝合金材料的连接。
通过将一片较薄的铝合金板件卷曲成锁缝造型,然后将其与另一片板件铆接在一起,形成一个强大的连接。
5. 螺柱焊接(Stud Welding)螺柱焊接是一种通过将螺柱焊接在车身板件上,并通过螺母固定来进行连接的方法。
螺柱焊接通常用于连接较大的板件或需要承受较大力的连接。
6. 点胶(Adhesive Bonding)点胶是一种使用特殊的胶粘剂将两个铝合金板件连接在一起的方法。
胶粘剂通过固化,使两个板件在连接处形成牢固的结合。
7. 气动铆接(Pneumatic Riveting)气动铆接是一种使用气动工具将铆钉通过压力连接在板件上的方法。
该方法适用于较大规模的连接,能够提供快速且牢固的连接。
8. 控制变砂(Controlled Torsion Sanding)控制变砂是一种通过表面修整和抛光来准备板件连接部位的方法。
通过控制砂纸的旋转和移动,可以准确地对连接部位进行加工,以确保连接的质量和稳定性。
9. 冲压(Stamping)冲压是一种常用的金属板件加工方法,适用于铝合金板件的制造和加工。
通过冲压工艺,可以将平板变形成需求的形状,并准备好进行连接。
10. 铆螺母焊接(Nutsert Welding)铆螺母焊接是一种将螺母通过铆钉焊接在车身板件上的方法,以便固定其他组件。
汽车车身焊装工艺的发展

汽车车身焊装工艺的发展随着汽车工业的发展,汽车车身焊装工艺也在不断革新与改进。
从最初的手工焊接到现在的自动化焊接,车身焊装工艺的发展经历了一个漫长的历程。
本文将从历史的角度出发,介绍汽车车身焊装工艺的发展过程,并探讨目前的趋势和未来的发展方向。
一、手工焊接时代汽车车身焊装工艺最早是由工匠们用手工焊接的方式完成的。
在这个时代,焊接工艺主要依靠人工操作,因此生产效率低,质量难以保证。
工匠们需要通过不断的实践和研究,才能掌握焊接的技巧和经验。
而且手工焊接存在焊接强度难以保证、焊接质量不稳定等问题,这种工艺方式已经无法适应当时汽车产量的增长和市场的需求。
二、半自动焊接时代20世纪50年代,汽车行业开始引入半自动焊接技术。
该技术主要是利用半自动焊接设备辅助工人完成焊接作业,提高了焊接质量和效率。
半自动焊接技术的引入大大改善了汽车车身的质量和生产效率,同时也为汽车行业带来了精密化、标准化的生产方式,为汽车工业的进一步发展奠定了基础。
三、自动化焊接时代自动化焊接作为目前主流的汽车车身焊装工艺,采用机器人等自动化设备完成焊接作业。
自动化焊接技术不仅能够大幅提高焊接的质量和效率,还可以实现连续化、批量化的生产。
此外,自动化焊接还能减少劳动力成本和工人的劳动强度,提高了生产效率和生产效果。
目前,大多数汽车制造厂商都已经引入自动化焊接技术,成为汽车车身焊装工艺的主要发展方向。
四、未来发展趋势未来汽车车身焊装工艺的发展趋势主要有以下几个方向:1.智能化:随着人工智能技术的不断成熟,汽车车身焊装工艺将会实现智能化操作。
未来的焊接设备将会具备自我学习、自我诊断和自我修复的功能,大幅提高生产效率和焊接质量。
2.绿色化:未来汽车行业将更加注重环保和可持续发展,汽车车身焊装工艺也将朝着绿色化方向发展。
采用环保材料、绿色工艺和节能技术,减少废气、废水和废渣的排放。
3.柔性化:未来汽车市场将会更加趋向个性化和定制化,汽车车身焊装工艺也将朝着柔性化方向发展。
汽车车身焊装工艺技术(DOCX 51页)

汽车车身焊装工艺技术(DOCX 51页)汽车车身焊装工艺汽车车身装配主要采用焊接方式,在汽车车身结构设计时就必须考虑零部件的装配工艺性。
焊装工艺设计与车身产品设计及冲压工艺设计是互相联系、互相制约的,必须进行综合考虑,它是影响车身制造质量的重要因素。
第一节焊装工艺分析工艺性好坏的客观评价标准就是在一定的生产条件和规模下,能否保证以最少的原材料和加工劳动量,最经济地获得高质量的产品。
影响车身焊装工艺性的主要因素有生产批量、车身产品分块、焊接结构、焊点布置等。
一.生产批量车身的焊装工艺主要由生产批量的大小确定的。
一般来说,批量越小,夹具的数量越少,自动化程度越低,每台夹具上所焊的车身产品件数量越多;反之,批量越大,焊装工位越多,夹具数量越多,自动化程度越高,每台夹具上所焊的车身产品件数量越少。
1.生产节拍的计算生产节拍是指设备正常运行过程中,单位产品生产所需要的时间。
假设某车年生产纲领是30000辆份 / 年工作制:双班,250个工作日,每个工作日时间为8小时设备开工率:85%则生产节拍的计算为:2.时序图设计时序图(TIME CHART)是指一个工位从零部件上料到焊好后合件取料的整个过程中所有动作顺序、时间分配以及相互间互锁关系,这些动作包括上下料(手动或自动),夹具夹紧松开,自动焊枪到位、焊接、退回以及传送装置的运动等。
生产线上每个工位的时序图设计总时间以满足生产节拍为依据,同时时序图也是焊装线电气控制设计的技术文件和依据,是机电的交互接口。
如图4-1所示为一张时序图,它的内容包括:(1)设备名称,它是以完成动作的单元来划分。
例如移动装置,夹具单元1,焊接,车身零部件名称等。
其中车身零件名称表示上料动作,组件名称表示取料动作。
2)相应设备的动作名称,它是以动力源的动作来划分的。
例如移动装置是由气缸驱动上下运动和电机驱动工位间前后运动组成,它的动作名称分别为上升,下降,前进,后退;再例如夹具是由夹紧气缸驱动夹紧,它的动作名称分为夹紧,打开等。
车身焊接工艺

CO2气体保护焊,在汽车制造业中,主要用于车身骨架焊接, 如图3-30所示。
图3-30
二、焊接规范的选择
焊接工艺参数主要包括:焊丝直径、焊接电流Iw、电弧电压、 焊接速度v 和焊丝伸出长度等。
合理选择焊接工艺参数有利于:稳定焊接、焊接质量↑和生产率 ↑等。
3-4 点焊设备
不论什么类型的点焊机,都由电源(供电系统)和电器控制、 加压机构和焊具等辅件(包括冷却系统等)组成。
书中列举了固定式点焊机、悬挂式点焊机和多点焊机。
图3-23
表3-5
图3-24
图3-25
图3-26
图3-27
图3-28
2-5 CO2保护焊
一、概述
人们采用非常低廉的CO2气体(用前需经过干燥和过滤杂质) 来保护那些要求稍低的焊接过程,主要用于低碳钢的焊接。 气体在高温电弧作用下发生分解: CO2 ← →CO↑+ [O]
3)固定点焊工艺的选择 通用类固定点焊机,用不同的机臂和焊接辅具来进行各种大小 件焊接。
如图3-21所示。
4)悬点焊工艺的选择 图3-22所示,利用不同形式的焊钳,对大的合件或总成随行焊 接,尽量选用双面点焊工艺。
5)表面质量要求高的点焊工艺
图3-21
补2-21-1
补2-21-2
图3-22
3、电弧电压
电弧电压与焊接电弧长度有关。
车身骨架都为薄板件─→常采用低电弧电压的方式焊接。 一般选用电弧电压为20V左右。
4、焊接速度
半自动化焊接时,常选择15-40 m/h 。
三、CO2气体保护焊在车身焊接 中的应用示例
客车车身骨架、顶盖等,大多采用异型钢材或板料冲压的零件 组成。 常见的接头形式有: 图 3-31 十字接头(在各接缝处都需焊接─→大多数为角焊) , 常用于客车的前、后或侧围等。
汽车车身焊接工艺

汽车车身焊接工艺引言汽车车身焊接工艺是汽车制造中非常重要的一个环节。
良好的焊接工艺能够保证汽车车身的结构牢固、安全可靠。
本文将介绍汽车车身焊接工艺的一般步骤和注意事项。
步骤汽车车身焊接工艺的步骤通常包括以下几个阶段:1. 准备工作:在进行焊接前,需要做好车身的准备工作,包括清洁车身表面、去除锈蚀、修复损坏部位等。
2. 焊接设备设置:根据具体的焊接要求,设置焊接设备的参数,如电流、电压等。
3. 焊接位置固定:将车身要焊接的部位固定在焊接台上,确保焊接过程中的稳定性。
4. 焊接工艺选择:根据焊接材料的不同,选择适合的焊接工艺,如氩弧焊、电阻焊等。
5. 焊接执行:进行焊接操作,保持良好的焊接姿势和焊接速度,确保焊接质量。
6. 检测和修补:对焊接后的车身进行检测,如X射线检测、超声波检测等,如果有缺陷,则进行修补。
7. 焊接后处理:焊接完成后,对焊缝进行后处理,如研磨、除渣等,以保证焊接部位的平整和美观。
注意事项在进行汽车车身焊接工艺时,需要注意以下几个方面:1. 安全措施:在进行焊接操作前,要穿戴好防护装备,如焊接面罩、耳塞、防火服等,以确保自身安全。
2. 质量控制:严格按照焊接工艺规范进行操作,确保焊接质量符合要求。
3. 关注环境保护:焊接过程中产生的废气和废渣要进行有效处理,以减少环境污染。
4. 进行培训:焊工需要经过专业的培训,并获得相应的焊工证书,以保证其具备正确的焊接技术和知识。
结论汽车车身焊接工艺对汽车的品质和安全性起着至关重要的作用。
通过严格的步骤和注意事项,我们能够保证汽车车身的焊接工艺符合标准,从而提高汽车的质量和可靠性。
汽车车身冲压、焊接工艺

汽车车身冲压、焊接工艺
汽车车身冲压工艺:
(1)激光切割:激光切割是一种先进的车身冲压工艺,它可以对薄壁
金属进行高速切割。
在生产过程中,激光切割技术可以实现高精度、
高效率的车身冲压加工。
(2)剪切:剪切是最常见的车身冲压工艺,它可以将金属板材按照需
要尺寸切割。
剪切工艺技术比较成熟,可以在保证精度的情况下快速
完成车身板件的冲压加工。
(3)液压拉伸:液压拉伸工艺是一种基于液压力的车身冲压工艺,它
可以通过液压装置对金属板材施加拉力,实现车身板件的形变。
液压
拉伸工艺具有高精度、高变形率、无残留应力等优点。
汽车车身焊接工艺:
(1)点焊:点焊是最常见的车身焊接工艺,它能够快速将两个或多个
金属板件连接在一起。
点焊工艺具有高效率、高精度、低成本等优点,并且不会影响车身板件的机械性能。
(2)激光焊接:激光焊接技术是一种先进的车身焊接工艺,它可以通
过高能量激光对金属板件进行快速、高精度的焊接。
激光焊接工艺具
有低热影响区、高品质、高效率等优点。
(3)无缝焊接:无缝焊接工艺可以使车身焊缝更为紧密、坚固,提高
车身的抗拉强度。
无缝焊接技术通常采用激光焊接或制丝焊接等技术,具有高精度、高强度等特点。
以上就是汽车车身冲压、焊接工艺常见的几种工艺方法,不同的工艺
方法有不同的优缺点,汽车制造企业在选择车身生产工艺的时候,应
综合考虑生产效率、工艺精度和成本等因素,选择最佳的生产工艺方法。
汽车车身焊接技术讲课资料

对焊
分为:电阻对焊和闪光对焊。
2.1.4、电阻焊的优缺点
电阻焊与其它焊接方法比较有一些显著优缺点:
优点:
(1)、焊接质量好;
(2)、生产率高;
(3)、省材料,成本低;
(4)、劳动条件好,不放出有害气体和强光;
(5)、操作简单容易实现机械化和自动化; 缺点: (1)、焊接设备费用较高,投资大; (2)、需要电力网供电功率大,一般电阻焊机的功率为几十甚至 几百千伏安; (3)、焊件的尺寸、形状和厚度受到设备的限制,厚度一般在2毫 米以下;长安公司焊件厚度一般为0.8mm ~ 1.2mm;
焊接所需的平均热功率q,即单位时间内所产生的热量为:
q=
平均功率越大,加热越快,焊接时间就短。因此可以得出结论如下
采用大功率焊机,焊接时间可以缩短,生产效率可以提高,这就是强规范
或硬规范焊接。采用小功率焊机,则因焊接电流小,必须延长焊接时间, 这就是所谓弱范,也叫软规范;如果焊机功率太小,尽管延长通电时间,
2、
电阻焊
2.1、电阻焊及其特点
2.1.1、电阻焊概念(又称接触焊)
将置于两电极之间的工件加压,并在焊接处
通以电流,利用电流通过工件本身的电阻产生的
热量来加热而形成局部熔化,断电冷却时,在压
力继续作用下而形成牢固接头,这种工艺过程称为电阻焊。
2.1.2、电阻焊特点
(1)、利用电流通过工件焊接处的电阻而产生的热量对工件加热,即
焊接加热过程中,随着焊件温度的逐渐升高,接触点金属的压溃 强 度逐渐下降,接触点的面积和数目必然增加,接触电阻随之下降。
接触电阻的作用:
在焊接开始瞬间对热量的产生有一定影响,在形成焊点的总热量中, 所占比重不大,(不超过10%),
汽车车身焊接工艺

汽车车身焊装工艺汽车车身装配主要采用焊接方式,在汽车车身结构设计时就必须考虑零部件的装配工艺性。
焊装工艺设计与车身产品设计及冲压工艺设计是互相联系、互相制约的,必须进行综合考虑,它是影响车身制造质量的重要因素。
第一节焊装工艺分析工艺性好坏的客观评价标准就是在一定的生产条件和规模下,能否保证以最少的原材料和加工劳动量,最经济地获得高质量的产品。
影响车身焊装工艺性的主要因素有生产批量、车身产品分块、焊接结构、焊点布置等。
一.生产批量车身的焊装工艺主要由生产批量的大小确定的。
一般来说,批量越小,夹具的数量越少,自动化程度越低,每台夹具上所焊的车身产品件数量越多;反之,批量越大,焊装工位越多,夹具数量越多,自动化程度越高,每台夹具上所焊的车身产品件数量越少。
1.生产节拍的计算生产节拍是指设备正常运行过程中,单位产品生产所需要的时间。
假设某车年生产纲领是30000辆份/ 年工作制:双班,250个工作日,每个工作日时间为8小时设备开工率:85%则生产节拍的计算为:2.时序图设计时序图(TIME CHART)是指一个工位从零部件上料到焊好后合件取料的整个过程中所有动作顺序、时间分配以及相互间互锁关系,这些动作包括上下料(手动或自动),夹具夹紧松开,自动焊枪到位、焊接、退回以及传送装置的运动等。
生产线上每个工位的时序图设计总时间以满足生产节拍为依据,同时时序图也是焊装线电气控制设计的技术文件和依据,是机电的交互接口。
如图4-1所示为一张时序图,它的内容包括:(1)设备名称,它是以完成动作的单元来划分。
例如移动装置,夹具单元1,焊接,车身零部件名称等。
其中车身零件名称表示上料动作,组件名称表示取料动作。
2)相应设备的动作名称,它是以动力源的动作来划分的。
例如移动装置是由气缸驱动上下运动和电机驱动工位间前后运动组成,它的动作名称分别为上升,下降,前进,后退;再例如夹具是由夹紧气缸驱动夹紧,它的动作名称分为夹紧,打开等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车车身焊装工艺汽车车身装配主要采用焊接方式,在汽车车身结构设计时就必须考虑零部件的装配工艺性。
焊装工艺设计与车身产品设计及冲压工艺设计是互相联系、互相制约的,必须进行综合考虑,它是影响车身制造质量的重要因素。
第一节焊装工艺分析工艺性好坏的客观评价标准就是在一定的生产条件和规模下,能否保证以最少的原材料和加工劳动量,最经济地获得高质量的产品。
影响车身焊装工艺性的主要因素有生产批量、车身产品分块、焊接结构、焊点布置等。
一.生产批量车身的焊装工艺主要由生产批量的大小确定的。
一般来说,批量越小,夹具的数量越少,自动化程度越低,每台夹具上所焊的车身产品件数量越多;反之,批量越大,焊装工位越多,夹具数量越多,自动化程度越高,每台夹具上所焊的车身产品件数量越少。
1.生产节拍的计算生产节拍是指设备正常运行过程中,单位产品生产所需要的时间。
假设某车年生产纲领是30000辆份/ 年工作制:双班,250个工作日,每个工作日时间为8小时设备开工率:85%则生产节拍的计算为:2.时序图设计时序图(TIME CHART)是指一个工位从零部件上料到焊好后合件取料的整个过程中所有动作顺序、时间分配以及相互间互锁关系,这些动作包括上下料(手动或自动),夹具夹紧松开,自动焊枪到位、焊接、退回以及传送装置的运动等。
生产线上每个工位的时序图设计总时间以满足生产节拍为依据,同时时序图也是焊装线电气控制设计的技术文件和依据,是机电的交互接口。
如图4-1所示为一张时序图,它的内容包括:(1)设备名称,它是以完成动作的单元来划分。
例如移动装置,夹具单元1,焊接,车身零部件名称等。
其中车身零件名称表示上料动作,组件名称表示取料动作。
2)相应设备的动作名称,它是以动力源的动作来划分的。
例如移动装置是由气缸驱动上下运动和电机驱动工位间前后运动组成,它的动作名称分别为上升,下降,前进,后退;再例如夹具是由夹紧气缸驱动夹紧,它的动作名称分为夹紧,打开等。
(3)各动作顺序及时间分配,动作时间表分配是以坐标网格的形式标记,每格单位为5秒,一个循环总时间为生产节拍,各动作之间的前后顺序关系图用箭头线标识。
一般气缸夹紧动作时间为2~3秒;焊接时间与焊点的数量有关,常以一个焊点3秒的时间估算。
合理分配调整各个动作的时间,满足生产节拍要求是车身焊装工艺设计的关键。
(4)行程开关(L/S)和电磁控制阀(V/V)编号,它标明了各个动作之间的顺序及互锁关系,其编号与相应气路控制图上的编号应该一致。
时序图的设计在工艺方案总设计完成后就可以进行,通过计算各动作的顺序时间,可以得出本工位的时间节奏,比较能否满足生产节拍和生产纲领要求,并作相应调整,甚至改变工艺设计。
由于每个车身装焊的零部件数量一定,焊点数量一定,焊接时间一定,要达到一定生产节拍内完成所有焊接,就必须将工序分开,分工位上料、焊接。
二.车身产品分块分块是将车身外壳体分成若干块便于冲压和焊装的零部件、组合件、分总成和总成。
合理的分块不仅有利于形成良好的装配质量,并可有效地简化和优化制造工艺。
汽车白车身是一个尺寸很大的复杂的焊接结构件,设计制造时常常是将车身总成合理地划分为若干个部件和组合件,分别进行装配焊接成分总成件,然后再装配焊接成总成结构,这样化复杂为简单,化大为小,可以大大提高劳动生产率,改善结构的焊接工艺性。
1.结构分离面将白车身总成分解为若干个分总成,相邻两个分总成的结合面称为分离面。
分离面可以分为两类:(1)设计分离面根据使用上和构造上的特点,将汽车车身分成为可以单独进行装配的分总成,如发动机罩、行李厢盖、车门、车身本体等,这些分总成之间的结合面,称为设计分离面。
设计分离面一般采用可拆卸的连接,如铰链连接,以便在使用和维修过程中迅速拆卸和重新安装,而不损坏整体结构。
(2)工艺分离面在生产制造过程中,为了适应制造装配的工艺要求,需要进一步将上级分总成分解为下一级分总成,甚至小组件,进行单独装配焊接,这些下一级分总成或组件之间的结合面,称为工艺分离面。
例如车身本体总成分解为前围、后围、地板、左/右侧围、顶盖六大分总成,这六大分总成分别平行进行单独装焊,而后总装在一起进行焊接,这些分总成之间的结合面就是工艺分离面。
工艺分离面一般采用不可拆卸的连接方法,如焊接、铆接等。
它们最终构成一个统一的刚性整体。
2.装配焊接方法根据工艺分离面的划分情况,将汽车车身装配焊接方法分为两类:(1)集中装配焊接法将车身产品的装配焊接工作集中在较少的工位上,使用较少的工装夹具来完成装焊工作,称为集中装配焊接法2)分散装配焊接法将车身产品的装配焊接工作,分散在较多的工位和工装夹具上来完成,称为分散装配焊接法。
它分散的依据是工艺分离面的确定。
如表4-1为某一轿车车身侧围总成分散焊装流程图。
3.分散装配焊接法的优越性在车身制造中,要根据生产纲领、工厂的设备情况和技术水平,合理地划分组合件,分总成进行装配焊接,这种方法有很多优点:(1)可以提高焊装质量,改善工人的劳动条件把整体车身结构划分成若干组合件、分总成后,它们就变得重量较轻、尺寸较小、形状结构简单,容易保证焊装精度。
因为有很多尺寸、形状和技术要求等在部件上保证比在整车上保证要容易的多。
例如侧围窗框尺寸及外轮廓曲线的形状等都是在侧围总成的焊装线上得到保证。
从焊接角度来讲,分散装配焊接可以把一些需要全位置操作的工序改变为在正常位置的操作,使焊点尽量处于有利于焊接的位置,可尽量避免立焊、仰焊、横焊,这样有利于提高装配焊接质量,改善劳动条件,也提高了劳动生产率。
例如车身的顶盖、侧围及前、后围在整车总成焊装中分别为仰焊和立焊,而在分总成焊装中可变成俯焊。
随着零件分散程度提高,操作工人分工更加细化和专一,更容易掌握操作技术和提高技术的熟练程度,从而迅速提高劳动生产率和焊装质量(2)缩短产品的制造周期组合件、分总成的焊装生产可以并行进行,扩大了工作面,增加了同时工作的人数,避免各工序之间的相互影响和等待。
有的组合件或分总成具有相同或相似的形状和尺寸,可以组织连续性流水作业以缩短制造时间。
例如车身左右侧围焊装线的布置。
(3)容易控制和减少焊接应力和焊接变形焊接应力和焊接变形与焊缝在结构中所处的位置及数量有着密切的关系。
在划分组合件时,要充分地考虑到将组合件的焊接应力与焊接变形控制到最小,使总成装配时的焊接量减少到最小,以减少可能引起的焊接变形。
而且,在组合件焊装时,结构刚性降低,可以比较容易地采用夹具或其他措施来防止变形。
即使已经产生了较大的变形,也比较容易修整和矫正。
(4)可以降低焊装夹具的成本分组件装配焊接法以后可以大大简化焊装夹具的复杂程度,有利于夹具的设计和制造,从而使焊装夹具的成本降低。
(5)可以提高生产面积的利用率分组件装配焊接可以减少和简化总装时的工位数,增加平行进行作业的地点,大大扩大了装配焊接的工作面,提高了生产面积的利用率。
4.工艺分离面确定原则工艺分离面的合理确定是发挥上述优越性的关键。
划分组件进行装配焊接时应从以下几个方面来综合考虑:(1)尽可能使各组件本身的结构形式是一个完整的构件要考虑到结构特点,便于组件、分总成的最后总装和结构尺寸精度的保证。
工艺分离面要避开结构上应力最大的地方,保证不因划分工艺组件而损害结构的强度。
(2)保证组件的强度和刚度所划分的组件、分总成结构要有一定的刚度和强度,即在白车身重量的作用下,不能产生永久性变形,同时也要考虑吊装方便。
(3)工艺上的合理性工艺上主要考虑划分组件后焊点数量和位置的合理布置,要有利于采用自动化和机械化设备,也有利于减小焊接变形,可以提高产品质量和劳动生产率。
(4)现场生产能力和条件的限制分组件装配焊接中,由于采用较多的专用夹具,生产准备周期较长,各工序之间的协调关系复杂,给生产管理带来困难。
同时随着焊装工位数量的增加,要求有较大的生产面积和较多的技术工人。
(5)生产节拍的要求在大批量的生产中,采用分组件装配焊接法进行生产,能显著地提高劳动生产率和产品质量,缩短生产周期,降低产品成本。
虽然此时由于分组件装配焊接增加了工序及专用夹具的数量,使其费用增多,但产量大而分摊到每个产品上的费用不会增加,仍然可以得到显著的经济效果。
当单件生产、试制和少量生产时,为了缩短生产准备周期,减少专用夹具费用,减少工件在夹具上的装卸次数,减少辅助工时,宜采用集中装配焊接的方法。
三.焊接结构由于汽车车身除某些加强构件外,主要都是由低碳钢薄板冲压零件焊接而成,其厚度在0.6mm~1.5mm范围之内。
采用最多的焊接方法是电阻点焊,它将工件(PANEL)以200~300kgf程度加压至焊枪的铜电极,并瞬间(0.16~0.2秒)通过大约1万安培的高电流,以电极接触点发生的电阻热熔融结合的焊接方法。
在一辆小车的车体中大约有3000个焊点,其大部分为两层焊,根据结构也有3~4层焊。
当生产批量不大和具有密封要求的连接处,以及开敞性差的焊缝,一般采用二氧化碳气体保护焊。
1.焊接接头型式焊接连接处称为焊接接头。
因电阻点焊的要求,车身结构的基本焊接接头型式主要是搭接接头和弯边接头,如图4-2所示。
其中4-2(a)(b)为搭接接头,4-2(c)(d)(e)为弯边角接,4-2(f)为弯边对接。
弯边接头的焊点操作性优于搭接接头,因为弯边接头焊点直接暴露在操作台面一侧,选用小型“X”(a) (d)型焊钳就能很方便地进行焊接。
考虑焊接强度,弯边接头起到相当于加强梁的作用,可增大结构强度,但翻边因受冲压工艺的限制,导致贴合不理想,易产生焊接缺陷,而且弯边接头的(b) (e)焊点抗正应力能力比抗剪切能力差,总的对焊接强度增大不大。
考虑焊接精度,搭接接头焊点质量主要决定于工(c) (f)装的精度。
而弯边接头焊接质量除了与工装精度有关图4-2 焊接接头型式外,还与零件翻边精度有关,而受冲压工艺和储运方式的影响,翻边是零件质量最不稳定的地方,它容易导致两零件因贴合不好产生焊接变形,而且弯边接头的零件不利于利用工艺孔对零件作精确定位。
2.接头开敞性封闭接头是不可能用作点焊的,半封闭接头如车身底部和内部接头也会给制造带来一定麻烦。
如图4-2(b)所示为封闭断面结构,不易直接采用点焊。
因为下电极无法设置,需要采取间接导电型式或改用其它焊接方法来解决。
由于车身各连接部位不同,组成零件的形状不一样,虽然都采用搭接或弯边接头,但其结构的断面形状有很大差别。
如图4-3为车身侧围典型断面示意图。
其中(a)与(e)中焊点A的开敞性差,结构设计不合理,如果将(a)断面形状改为图(b)的型式,就大大提高了焊点的可达性;同样(e)结构也是如此。
若在结构设计上不能避免封闭式断面,则可以通过结构分解来实现焊点的焊接,如将(a)中结构分解为件1和件2的组合件,先焊完点A后,再装焊件3,这样不仅达到了结构设计要求,而且改善了结构的开敞性。