模拟信号与数字信号之间的转换
1、模拟信号到数字信号的转换

模拟信号到数字信号的转换(A/D转换)(胥永刚)现在大部分传感器输出的信号都是模拟信号,主要包括电压信号和电流信号两种,当然也有直接输出数字信号的传感器。
对于传感器输出的模拟信号,除了一些简单的仪表直接进行显示之外,大部分都需要转换成数字信号,以便在网络上进行传输,并保存在硬盘、CF卡等存储介质上,用于后续的分析和处理,如此,就需要用专门的器件将模拟信号转换成数字信号。
对于部分技术人员来说,了解模数转换的原理,对深入了解测试仪器,开发测试系统,修正仪器的技术参数等有着很大的帮助。
对于一个完整的带反馈控制的监控系统来说,大体可以用图1这个框图来描述,从图中可以看出来,一般而言,模数转换(A/D)大多在数模转换(D/A)之前,但在很多教材上,往往是先讲数模转换(D/A),再讲模数转换(A/D),因为模数转换电路里要用到数模转换。
当然这是从理论上来讲的,对于现在工程中实际应用的数模转换究竟基于什么原理,我也不是很清楚,但并不妨碍我们对模数转换的理解。
.因此,我们尝试着讲解数模转换原理,因为从对应关系上来说,这两者是一样的,只是转换电路不同而已。
图1 典型的监控系统(带反馈控制)1、数模转换原理图2是很多教材上给出的数模转换电路,要想讲清楚这个,需要用到电工电子方面的知识,这里我们就不详细展开了。
(原谅我一次一次提到教材二字,因为在高校里工作,养成习惯了,^_^)图2 数模转换电路图1是一个4位的数模转换电路,意思是将一个4位的二进制数转换成对应的电压。
4位的二进制数可以表示成3210d d d d ,翻译成十进制数,就是321032102*+2*+2*+2*d d d d (1)式(1)中的四位二进制数,每个位上要么是0,要么是1,不可能是其它数字。
因此,四位二进制数最大可表示十进制的15,最小可表示十进制的0。
若我们任意给一个四位的二进制数,可以按照如下公式进行数字和电压之间的换算。
321043210=(2+2+2+2)32F R o R U U d d d d R (2)比如,我们假设这个四位的数模转换器参考电压=10R U V ,=3F R R ,若输入的四位二进制数是0000(对应的十进制数是0),则输出的电压为:3210410=(2*0+2*0+2*0+2*0)=032F o R U V R 若输入的四位二进制数是1101(对应的十进制数是13),则输出的电压为: 321041010130=(2*1+2*1+2*0+2*1)=(8+4+0+1)=321616F o R U V R 也就是说,要是输入的十进制数是0,则输出电压0V,若输入的十进制数是13,则输出的电压为13016V ,如此类推,我们就可以得知,输入任意一个四位二进制数(对应的十进制数在0~15之间),就可以按照式(2)得到一个对应的电压值。
模拟信号与数字信号

模拟信号与数字信号(1)模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。
当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。
当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。
(2)模拟信号与数字信号之间的相互转换模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。
计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。
但是更具应用发展前景的是数字信号。
信号数据可用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归结为两类:模拟信号和数字信号。
模拟信号与数字信号的区别可根据幅度取什是否离散来确定。
模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。
时间上连续的模拟信号连续变化的图像(电视、传真)信号等,如图1-1(a)所示。
时间上离散的模拟信号是一种抽样信号,如图1-1(b)所示,它是对图1-1(a)的模拟信号每隔时间T抽样一次所得到的信号,虽然其波形在时间上是不连续的,但其幅度取值是连续的,所以仍是模拟信号,称之为脉冲幅度调制(PAM,简称脉幅调制)信号。
pwm同步调制和异步调制

pwm同步调制和异步调制
PWM(Pulse Width Modulation,脉宽调制)是一种常见的调制技术,用于在模拟信号和数字信号之间进行转换。
在PWM中,信号的周期固定,通过调整脉冲的宽度来改变信号的幅度。
同步调制和异步调制是两种不同的PWM调制方法。
1. 同步调制(Synchronous PWM Modulation):
-定义:在同步调制中,PWM信号的产生与系统的时钟同步。
-优势:由于同步调制与系统时钟同步,能够减小系统中的时钟抖动,提高精度。
-应用:适用于对时钟同步要求较高的应用场景,如精密控制系统。
2. 异步调制(Asynchronous PWM Modulation):
-定义:在异步调制中,PWM信号的产生与系统的时钟无关。
-优势:由于不依赖于系统时钟,更加灵活,适用于一些对时钟同步要求不高的场景。
-应用:适用于一些对精度要求不是特别高的场合,同时可以减小对系统时钟的依赖性。
在实际应用中,选择同步调制还是异步调制取决于具体的需求和系统设计。
同步调制通常用于对信号精度要求较高的场景,而异步调制则更适用于对精度要求较低或系统资源受限的情况。
需要根据具体的工程要求和系统特点来选择适当的PWM调制方法。
模拟数据转换为数字信号的主要方法及转换过程

模拟数据转换为数字信号的主要方法及转换过程在当今数字化的世界中,模拟数据到数字信号的转换是至关重要的。
这个过程涉及到许多复杂的原理和方法,而这篇文章将对其进行全面的探讨。
在我们开始深入讨论之前,让我们首先了解一下什么是模拟数据和数字信号。
一、模拟数据和数字信号的基本概念1. 模拟数据模拟数据是连续变化的信号,它可以在一定范围内取任意数值。
声音信号、光信号和温度信号都属于模拟数据。
模拟数据可以用一个连续的函数来表示,其取值可以是实数,因此在处理模拟数据时会受到各种噪音的影响。
2. 数字信号数字信号是离散的信号,它只能取有限个数值中的一个。
数字信号是通过对模拟数据进行采样和量化获得的,然后经过编码传输和解码再重现成模拟数据。
数字信号相对于模拟数据来说,更容易处理和传输,并且在传输过程中不易受到噪音的干扰。
二、模拟数据转换为数字信号的主要方法及转换过程在进行模拟数据到数字信号的转换时,主要有三个关键步骤:采样、量化和编码。
下面我们将对这些步骤进行详细的介绍:1. 采样采样是将连续的模拟数据在时间或空间上离散化的过程。
通过采样,模拟数据将被离散化为一系列的样本点。
在采样过程中,需要考虑到采样频率和信号的最大频率。
采样频率需要满足奈奎斯特采样定理,即采样频率至少是信号最大频率的两倍。
如果采样频率过低,会导致混叠现象,使得原始信号无法还原。
合理的采样频率对于保证原始信号的完整性至关重要。
2. 量化量化是将连续的模拟数据幅度范围限制在一定的离散值上的过程。
通过量化,模拟数据的幅度将被近似为最接近的离散值。
在量化过程中,要考虑到量化精度和信噪比。
量化精度越高,表示信号的每个样本点都可以被近似为更精细的离散值,但这也会增加存储和传输的成本。
而信噪比则是表示信号中所含信息与噪音的比例,量化精度的增加会使信号的动态范围变小,容易造成信噪比的降低。
3. 编码编码是将采样和量化后的离散信号转换为数字信号的过程。
常用的编码方式包括脉冲编码调制(PCM)、三角编码和循环编码等。
模拟信号与数字信号之间的转换

模拟信号与数字信号之间的转换
模拟信号与数字信号之间的转换是通过模数转换(ADC)和数模转换(DAC)来实现的。
模拟信号转换成数字信号,首先通过ADC将模拟信号进行采样,即将连续的模拟信号按照一定的频率进行离散化,得到一系列的模拟采样值。
然后将模拟采样值通过量化处理,转换成对应的数字信号,即根据一定的量化规则,将模拟采样值映射到一系列离散的数字量级上。
数字信号转换成模拟信号,首先通过DAC将数字信号进行反量化,即将数字信号的离散量级映射回模拟信号的值。
然后通过重构滤波器将反量化后的数字信号进行平滑处理,得到模拟信号。
最后,通过模拟电路对模拟信号进行放大、滤波等处理,使之符合要求。
需要注意的是,模拟信号转换成数字信号和数字信号转换成模拟信号都会引入一定的误差,即量化误差和重构误差。
因此,在进行模拟信号与数字信号之间的转换时,要选择合适的采样频率、量化精度和重构滤波器等参数,以保证转换的精度和准确性。
模拟信号和数字信号的转换

数字信号也存在一些缺点,如对设备和线路的同步要求较高、需要较大的带宽和功耗等。此外,在某些应用场景 下,数字信号可能无法完全替代模拟信号,如音频和视频等领域仍需要使用模拟信号来保证更好的音质和画质。
04 模拟信号与数字信号的转 换
模拟信号转换为数字信号的过程
采样
按照一定的时间间隔采集模拟信号的幅度值。
连续变化的物理量,如声音、温 度、压力等。
数字信号
离散的、不连续的物理量,如计 算机中的二进制数据。
02 模拟信号
模拟信号的定义与特点
模拟信号
连续变化的物理量,如电压、电流等 。
特点
幅度连续变化,时间连续变化,与真 实世界直接对应。
模拟信号的应用场景
音频信号
如语音、音乐等。
视频信号
如电视信号、电影等。
控制系统
如温度、压力等传感器传输的信号。
模拟信号的优缺点
优点
直观、易于理解,与真实世界直接对应,实时性好。
缺点
易受干扰,传输过程中易失真,不易存储、复制的定义与特点
定义
数字信号是一种离散的信号形式,其取值通常只有两个状态,即高电平和低电平,分别代表二进制数 中的1和0。
解决方案
可以采用适当的抗干扰技术和措施来减小干扰对信号的影响,如增加屏蔽、使用滤波器等。同时,在数 字信号传输过程中,也可以采用差分传输、低阻抗传输等措施来提高抗干扰能力。
06 模拟信号与数字信号转换 的未来发展
新技术与新方法的探索
神经网络与深度学习
利用神经网络和深度学习算法,实现更高效、准确的模拟信号到 数字信号的转换。
采样频率决定了信号的还原精度,采样频 率越高,还原的信号越接近原始信号。
量化位数决定了信号的动态范围和精度, 量化位数越高,表示的数值范围越大,信 号的动态范围和精度越高。
模拟信号与数字信号的优缺点及之间的转化

模拟信号与数字信号之间的优缺点及两者之间的转换概述:信号数据可用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归结为两类:模拟信号和数字信号。
模拟信号与数字信号的区别可根据幅度取值是否离散来确定。
模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。
数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。
目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。
模拟信号与数字信号:(1)模拟信号与数字信号:不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。
当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。
当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点数字信号,只要走了,则为有信号,不走则为无信号,走的时间越长则信号越强,脉冲宽度越短同样信号也越强。
模拟信号与数字信号的转换

模拟信号和数字信号可以实现相互转换。
模拟信号通常使用PCM(脉冲编码调制)方法量化并转换为数字信号。
PCM方法是使不同范围的模拟信号对应不同的二进制值。
例如,如果使用8位代码,可以将模拟信号量化为2^8 = 256个数量级。
在实践中,经常使用24位或30位代码。
通常,数字信号通过载波相移转换为模拟信号。
计算机,局域网,城域网都使用二进制数字信号。
目前,广域网的实际传输既有二进制数字信号也有数字信号转换的模拟信号。
但由于其更广泛的应用前景,数字信号更常用。
控制板(像Micro:bit,Arduino)指定的ADC接口,用于模拟量到数字量的转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。
数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。
目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。
模拟信号与数字信号
(1)模拟信号与数字信号
不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。
当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。
当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。
(2)模拟信号与数字信号之间的相互转换
模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。
计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。
但是更具应用发展前景的是数字信号。