复变函数第三版习题
复变函数论第三版课后习题答案[1]
![复变函数论第三版课后习题答案[1]](https://img.taocdn.com/s3/m/03de2b78a26925c52cc5bf62.png)
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3iz e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数习题三参考答案

习题三 3.1计算积分2Cz dz ⎰,其中C 是:(1)原点到()2i +的直线段; (2)原点到2再到()2i +的折线; (3)原点到i 再沿水平到()2i +的折线。
解:(1)C 的参数方程为()()22201z t i t tit =+=+≤≤()2dz i dt =+于是()()()2221222113Ci i d z d t i z t +++==⎰(2)12C C C =+,1C 参数方程为()02z tt =≤≤,2C 参数方程为()201z itt =+≤≤()()122212222122113CC C z dz z dz z dz t dt id it i t +=+=+=+⎰⎰⎰⎰⎰ (3)12C C C =+,1C 参数方程为()01z itt =≤≤,2C 参数方程为()02z t it =+≤≤()()()12212222212113CC C z dz z dz z dz it idt dt t i i +=+++==⎰⎰⎰⎰⎰ 3.2设C 是,i z e θθ=是从π-到π的一周,计算: (1)()Re Cz dz ⎰;(2)()Im Cz dz ⎰;(3)Czdz ⎰解:cos sin i z e i θθθ==+,()sin cos dz i d θθθ=-+(1)()()Re cos sin cos Cz dz i d i ππθθθθπ-=-+=⎰⎰;(2)()()Im sin sin cos Cz dz i d ππθθθθπ-=-+=-⎰⎰;(3)()()cos sin sin cos 2Czdz i i d i ππθθθθθπ-=--+=⎰⎰3.3计算积分Cz zdz ⎰,其中C 是由直线段11,0x y -≤≤=及上半单位圆周组成的正向闭曲线。
解:12C C C =+,1C 表示为z x iy =+,()11,0x y -≤≤=;2C 表示为()cos sin 0z x iy i θθθπ=+=+≤≤,()sin cos dz i d θθθ=-+,()()1211cos sin sin cos CC C z zdz z zdz z zdzx xdx i i d iπθθθθθπ-=+=+--+=⎰⎰⎰⎰⎰3.5沿下列指定曲线的正向计算积分()21C dzz z +⎰ 的值:(1)1:2C z =;(2)3:2C z =;(3)1:2C z i +=;(4)3:2C z i -=。
复变函数论_钟玉泉_第三版_高教_答案_清晰版

z0
, 因此总可以选取 Argzn 的一个值 arg z n . 当
n N 时,有 arg z n 0 ( ) ,因 0 时, ( ) 0 .因而, 总可以选取 ,
使 ( ) 小于任何给定的 0 , 即总有 arg z arg z 0 . 因此 f ( z ) 在 z 0 连 续. 综上讨论得知, f ( z ) 除原点及负实轴上的点外处处连续. 14. 证 明 : 由 于 f ( z ) 的 表 达 式 都 是 x, y 的 有 理 式 , 所 以 除 去 分 母 为 零 的 点
y 0 y x 1 0 arg( z 1) 0 arctan (4)由 4 得 x 1 4 即 2 x3 2 x3 2 Re z 3
可知 z 点的轨迹是一梯形(不包括上,下边界);不是区域. (5) z 点的轨迹是以原点为圆心,2 为半径以及(3,0)为圆心,1 为半径得两闭圆的 外部.是区域. (6) z 点的轨迹的图形位于直线 Im z 1 的上方(不包括直线 Im z 1 )且在以原点 为圆心,2 为半径的圆内部分(不包括圆弧);是区域. (7) z 点的轨迹是 arg z
2
2
z1 z 2 z1 z 2
2
2
2( z1 z 2 )
2
2
几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第 4 题知 z1 z 2 z1 z 2 由题目条件
2 2
2( z1 z 2 )
2
2
z1 z 2 z 3 0 知 z1 z 2 z 3
z 0 , f ( z ) 是连续的,因而只须讨论 f ( z ) 在 z 0 的情况.
复变函数与积分变换(第三版)答案

A.可去奇点B本性奇点
C.极点D奇点但非孤立奇点
二、填空题(4×5ቤተ መጻሕፍቲ ባይዱ20)
1. 的解析区域是_____.
2.若 ,则
3.函数 的傅立叶变换是_____.
4.调和函数 的共轭调和函数是_________.
5.设 ,则
三.计算题(12×4=48)
1.计算 。
2.求函数 在 的泰勒展式,并表明泰勒级数的收敛圆盘。
复变函数
习题1
习题二
习题三
习题四
习题五
习题八
习题九
2.
3.
8.
常考习题附录
一.选择题(4×5=20)
1.下列点集是复平面单连通区域的是:
A. B. C. D.
2.下列函数在整个z平面解析的是:
A. B. C. D.
3..函数项级数 收敛半径是:
A.0 B. 1 C. D.
4.已知函数 的Laplace变换是 ,那么 的Laplace逆变换是
3.计算积分 ,其中C: 。
4.求积分 。
四.证明题(12分)
1.设幂级数 在 条件收敛,则级数的收敛半径为
复变函数论第三版课后习题答案

第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版课后习题答案

第一章习题解答〔一〕1.设z =z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数第三版习题

第二章 解析函数习题课1. 试问函数211z +在圆盘1||<z (称为单位圆盘)内是否连续?是否一致连续?2. 证明函数2||)(z z f =除去在0=z 外,处处不可微。
3. 设函数)(z f 在区域D 内解析。
证明:如果对每一点D z ∈,有0)('=z f ,那么)(z f 在D 内为常数。
4. 设函数)(z f 在区域D 内解析。
证明:如果)(z f 满足下列条件之一,那么它在D 内为常数:(1) )(Re z f 或)(Im z f 在D 内为常数;(2)|)(|z f 在D 内为常数。
5. 证明:若函数)(z f 在上半平面解析,则函数)(z f 在下半平面解析。
6. 试用柯西-黎曼条件,证明下列函数在复平面解析:z z e z z cos ,sin ,,2而下列函数不解析:z z e z z cos ,sin ,,2。
7. 证明在极坐标下的柯西-黎曼条件是:rv r u v r r u ∂∂-=∂∂∂∂=∂∂θθ,1。
8. 已知任何区域D 内的解析函数)(z f 一定有任意阶导数。
证明:(1) )(z f 的实部和虚部在D 内也有任意阶导数,并且满足拉普拉斯方程:02222=∂∂+∂∂y U x U (2) 在D 内,222222|)('|4|)(|)(z f z f yx =∂∂+∂∂ 9. 试求出的i e +2、)1(Ln i +、i i 、21、2)2(-值。
10. 由w z sin =及w z cos =所定义w 的函数分别称为的反正弦函数和反余弦函数,利用对数函数求出它们的解析表达式。
11. 由2sinh z z e e z --=及2cosh z z e e z -+= 所定义w 的函数分别称为的双曲正弦函数和双曲余弦函数,证明:,cos cosh ,sin sinh iz z iz i z =-=由此从关于三角函数的有关公式导出:1sinh cosh 22=-z z ,212121sinh cosh cosh sinh )sinh(z z z z z z +=+,212121sinh sinh cosh cosh )cosh(z z z z z z +=+,y x i y x iy x sinh cos cosh sin )sin(+=+,y x i y x iy x sinh sin cosh cos )cos(-=+,z zz z z z sinh d cos d ,cosh d sinh d ==。
[VIP专享]复变函数论第三版课后习题答案[1]46
![[VIP专享]复变函数论第三版课后习题答案[1]46](https://img.taocdn.com/s3/m/372b8e816c175f0e7dd13733.png)
第一章习题解答(一)1.设,求及。
z z Arcz 解:由于3z e π-==所以,。
1z =2,0,1,3Arcz k kππ=-+=± 2.设,试用指数形式表示及。
121z z ==12z z 12z z 解:由于6412,2i i z e z i e ππ-====所以()64641212222i i iiz z e eeeπππππ--===。
54()146122611222ii i i z e ee z e πππππ+-===3.解二项方程。
440,(0)z a a +=>解:。
12444(),0,1,2,3k i za e aek πππ+====4.证明,并说明其几何意义。
2221212122()z z z z z z ++-=+证明:由于2221212122Re()z z z z z z +=++ 2221212122Re()z z z z z z -=+- 所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z ,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又 )())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z 故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数第三版习题
第二章解析函数习题课1. 试问函数11?z2在圆盘|z|?1内是否连续?是否一致连续? 2. 证明函数f(z)?|z|2除去在z?0外,处处不可微。
3. 设函数f(z)在区域D内解析。
证明:如果对每一点z?D,有f’(z)?0,那么f(z)在D内为常数。
4. 设函数f(z)在区域D内解析。
证明:如果f(z)满足下列条件之一,那么它在D内为常数:Ref(z)或Imf(z)在D内为常数;|f(z)|在D内为常数。
5. 证明:若函数f(z)在上半平面解析,则函数f(z)在下半平面解析。
6. 试用柯西-黎曼条件,证明下列函数在复平面解析:z,e,sinz,cosz 2z而下列函数不解析:z,e,sinz,cosz。
7. 证明在极坐标下的柯西-黎曼条件是:?u1?v?u?v。
?,??r?rr?????r2z
8. 已知任何区域D内的解析函数f(z)一
定有任意阶导数。
证明:f(z)的实部和虚部在D内也有任意阶导数,并且满足拉普拉斯方程:22?U?x2??U?y2?0 在D内,(?i22?x??22 )|f(z)|?4|f’(z)|222?y29. 试求出的e2?i、Ln(1?i)、i、1、(?2)值。
10. z?sinw及z?cosw所定义w的函数分别称为的反正弦函数和反余弦函数,利用对数函数求出它们的解析表达式。
11. sinhz?e?e2z?z及coshz?e?e2z?z 所定义w的函数分别称为的双曲正弦函数和双曲余弦函数,证明:sinhz??isiniz,coshz?cosiz, 此从关于三角函数的有关公式导出:cosh2z?sinh2z?1,sinh(z1?z2)?sinhz1coshz2?coshz1sinhz2,cosh(z1?z2)?coshz1coshz2?sinhz1sinhz2,sin(x?iy)?sinxcoshy?icosxsinhy,cos(x?iy)?cosxcoshy?isinxsinhy,dsinhzdzdcoszdz。
?sinhz?coshz, 12. 设两个实变数的函数u(x,y)有偏导数。
这一个函数可以写成z?x?iy及z的
函数:u?u(证明:z?zz?z。
,)22i ?u1?u?u?u1?u?u ?(?i),?(?i),?z2?x?y?z2?x?y设复变函数f(z)的实部及虚部分别是u(x,y)及v(x,y),并且它们都有偏导数,求证,对于f(z),柯西-黎曼条件可以写成?f?z?u?z?v?z。
?0??i 13. 设函数1在z?0解析,那么我们说ff()z(z)在z??解析。
下列函数中,哪些在无穷远点解析?e,Ln(zz?1z?11?),z,zmna0?a1z?...?amzb0?b1z?...?bnz 。
14. 在复平面上取上半虚轴作割线。
试在所得的区域内分别取定函数z和Lnz 在正实轴取正实值的一个解析分支,并求它们在上半虚轴左沿的点及右沿的点z?i处的值。
15. 在复平面上取正实轴作割线。
试在所得的区域内:取定函数z?(?1???0)在正实轴上沿取正实值的一个解析分支,并求这个分支在z??1处的值;在正实轴下沿的值。
取定函数Lnz在正实轴上沿取实值的一
个解析分支,并求这个分支在z??1处的值;在正实轴下沿的值。
16. 求(1?z2)(1?k2z2)(0?k?1)函数的支点,证明它在线段1k1k,??x??1,1?x?的外部,能求在z 17. 研究函数?0取正值的那个分支。
(z?1)(z?1)(z?2) zw?3如果规定z?3时,w?0。
任作两种适当的割线,求这函数的一个解析分支在z?i 的值。
18. 找出下列推理的错误:因为(?z)2?z2,所以2Ln(?z)?2Lnz,因此Ln(?z)?Lnz。