电子设计毕业设计-串联式多谐振荡器-之二

合集下载

多谐震荡电路课程设计报告报告

多谐震荡电路课程设计报告报告

多谐震荡电路一.设计过程:(1)由老师下发的课程设计资料先了解到要做的是什么,有一个明确的目标。

在通过图书馆和互联网查找相关资料文献等,对此设计的实验有一个理论知识上的铺垫与巩固。

(2)根据设计实验指导书了解实验所需的实验电子器件的功能和工作原理以及实验所用的电路原理图。

(3)设计电路图。

此设计实验主要由555定时器芯片和74LS90芯片构成。

通过参考文献的帮助,了解到555定时器芯片和74LS90芯片各引脚的功能与使用方法,并根据震荡频率公式f=1.4/( R1 +2R2)C及周期大小为1000Hz计算出所需的电容与电阻的阻值大小范围,选取适当的电子元件。

(4)根据实际试验操作,考虑到频率过大,因此要降低频率,要用一个分频器进行分频,使频率降低10倍。

(5)考虑到实验要求计数,因此还需要利用74LS90芯片设计出计数器。

(6)电路设计出后就是进行仿真实验。

在Multisim9上进行所设计的实验的仿真操作,在仿真过程中会反映出实验设计里的一些问题,针对所出问题一一进行调试改进。

(7)最后在数字电子实验室进行实际电路搭接。

通过数字电子电路实验箱搭接自己所设计的电路图,并调试,以输出所需要的正确结果。

二.EDA软件介绍和仿真过程(1)EDA软件介绍EDA在通信行业(电信)里的另一个解释是企业数据架构,EDA给出了一个企业级的数据架构的总体视图,并按照电信企业的特征,进行了框架和层级的划分。

EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪60年代中期从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的EDA工具软件可大致可分为芯片设计辅助软件、可编程芯片辅助设计软件、系统设计辅助软件等三类。

目前进入我国并具有广泛影响的EDA软件是系统设计软件辅助类和可编程芯片辅助设计软件:Protel、Altium Designer、PSPICE、multiSIM10(原EWB的最新版本)、OrCAD、PCAD、LSIIogic、MicroSim、ISE、modelsim、Matlab等等。

多谐振荡器电路

多谐振荡器电路

多谐振荡器电路多谐振荡器电路是一种基本电路,它可以产生多个频率的正弦波信号。

这个电路在许多电子设备中都有应用,比如射频通信、音频设备和电子乐器等。

在本文中,我们将深入探讨多谐振荡器电路的原理和应用。

多谐振荡器电路的原理是通过负反馈将输出信号反馈到输入端,从而使电路自激振荡。

具体来说,这个电路由一个放大器、一个带通滤波器和一个反馈回路组成。

放大器将输入信号放大,然后经过带通滤波器滤掉非所需频率的信号,反馈回路将一部分输出信号反馈到输入端,从而产生自激振荡。

多谐振荡器电路可以产生多个频率的正弦波信号,这是因为带通滤波器的通带宽度不同。

通带宽度越大,就能通过更多的频率信号,因此产生的正弦波信号频率也就越多。

当电路中有多个带通滤波器时,每个滤波器的通带宽度不同,就能产生更多的频率信号。

多谐振荡器电路的应用非常广泛。

在射频通信中,多谐振荡器电路可以产生多个频率的信号,用于调制和解调信号。

在音频设备中,多谐振荡器电路可以产生不同的音调,用于制作音乐。

在电子乐器中,多谐振荡器电路可以产生多种音效,用于增加音乐的表现力和创造性。

多谐振荡器电路不仅能产生正弦波信号,也可以产生其他波形的信号。

通过改变反馈回路中的元件,可以改变电路的振荡特性,从而产生不同的波形信号。

比如,当反馈回路中采用正反馈时,电路会产生方波信号;当反馈回路中采用反相器时,电路会产生方波信号等。

多谐振荡器电路的设计需要考虑许多因素,比如功率、频率、稳定性和噪声等。

在实际应用中,需要根据具体的需求进行设计和优化。

同时,需要注意电路中的元件选型和布局,以确保电路的性能和可靠性。

多谐振荡器电路是一种基本电路,它可以产生多个频率的正弦波信号,广泛应用于射频通信、音频设备和电子乐器等领域。

对于电子爱好者来说,深入了解多谐振荡器电路的原理和应用,有助于提高电路设计和调试的能力。

多谐振荡器电路的安装教学设计

多谐振荡器电路的安装教学设计

课题:多谐振荡器电路的安装【设计思路】《电子基本线路与安装》是电子电工专业的核心课程。

以实施项目教学法的要求进行编写。

该书是20XX年浙江省高职考试电子专业指定教材。

根据高职考试改革方案,从今年起,学生的高职考试增加了技能高考环节。

通过本课程的学习,旨在培养学生专业知识的应用能力。

使学生能学会应用电子基础、电子技术的相关理论知识进行电路创新实验,培养实践技能。

授课班级是高三年级电子专业高职考班级,该班学生的具有一定的理论学习能力和专业动手能力,但缺乏良好的学习习惯,专业知识学习不是很扎实,再加上动手操作方面,学生的个体差异较大,所以教学具有一定的难度。

针对教材的性质和学生学情特点,在教学过程中,我主要结合多媒体技术辅助教学。

在引入环节,通过生活中应用实例的讲解,激发学生兴趣;教学中,通过将教学内容细化成若干个教学任务,引导学生开展合作式学习。

学生则运用观察法、实验法和讨论法开展学习。

【教学目标】知识目标:1、了解多谐振荡器电路的结构、工作方式;能力目标:1、了解NE555集成电路芯片结构、功能;2、掌握多谐振荡器电路的正确安装、调试;情感目标:养成科学严谨的学习态度,学会与他人沟通、合作,提高学生的职业素养【教学任务】1、创设情景,引入新课2、讲授新课(1)NE555芯片功能介绍(2)认识多谐振荡器电路(3)多谐振荡器电路安装3、归纳总结4、作业布置【课时】3课时【教学流程】环节一:引入环节二:讲授新课一、NE555芯片结构、功能1地GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vc各脚功能:Pin 1 (接地) -地线(或共同接地) ,通常被连接到电路共同接地。

Pin 2 (触发点) -这个脚位是触发NE555使其启动它的时间周期。

触发信号上缘电压须大于2/3 VCC,下缘须低于1/3 VCC 。

Pin 3 (输出)-当时间周期开始555的输出输出脚位,移至比电源电压少1.7伏的高电位。

多谐振荡器设计报告

多谐振荡器设计报告

多谐振荡器设计报告一、实验要求产生矩形波的频率可以通过电压控制,实现压控振荡。

并且在电压调整的过程中波形不会出现振荡、过冲、毛刺等不稳定现象,能够稳定地产生方波。

设计报告中应该包括电路截图、仿真截图、仿真分析等实验数据。

二、多谐振荡器相关简介随着电子产业的发展以及要求,各种稳定的波形产生器成为不可缺少的一部分,而方波是其中比较有代表性的一个波形。

方波在各个行业及日常生活中得到了广泛的应用,如电路中的定时器、分频器、脉冲信号发生器等都需要方波产生电路。

而多谐振荡器则是一种在接通电源后,就能产生一定频率和一定幅值矩形波的自激振荡器,常作为脉冲信号源。

由于多谐振荡器在工作过程中没有稳定状态,故又称为无稳态电路。

尽管多谐振荡器有多种电路形式,但它们都具有以下结构特点:电路由开关器件和反馈延时环节组成。

开关器件可以是逻辑门、电压比较器、定时器等,其作用是产生脉冲信号的高、低电平。

反馈延时环节一般为RC电路,RC电路将输出电压延时后,恰当地反馈到开关器件输入端,以改变其输出状态。

三、实验方案确定本次实验是通过施密特触发器与晶体管来构成多谐振荡器电路的开关器件,RC电路来构成反馈延时环节,再加入电压控制部分实现振荡频率的控制。

四、实验内容1、施密特触发器的制作a、原理图简要分析。

电路主要部分为Q2管与Q3管两个导向器相连,再在输入与输出两个端口加上Q1管与Q4管构成的射极跟随器进行隔离,从而得到更好的频率特性,使输出的波形不会出现毛刺、过冲、振荡等不稳定现象,并且在压控电路中不会对其它部分有较大影响。

其电路图如下:b、施密特电路调试。

为了使电路能够很好地工作,分析原理图可知,电路的上下门限电压由电阻RC1、RC2、RE决定,而射极跟随器的射极电阻RE1与RE2主要影响电路的输入与输出阻抗,同时对电路的频率特性也有一定的影响。

因此,在电路仿真调试的过程可以有目的性的进行元器件参数设置。

电路调试的截图如下:根据调试的参数对电阻值进行设置,再仿真可以得到如下电路仿真波形:c、施密特触发器原件制作。

多谐振荡器双闪灯电路设计与制作

多谐振荡器双闪灯电路设计与制作

多谐振荡器双闪灯电路设计与制作我们主张,电子初学者要采用万能板焊接电子制作作品,因为这种电子制作方法,不仅能培养电子爱好者的焊接技术,还能提高他们识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。

本文将通过设计与制作多谐振荡器双闪灯,掌握识别与检测电阻、电容、二极管、三极管。

掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。

一、多谐振荡器双闪灯电路功能介绍图1 多谐振荡器双闪灯成品图多谐振荡器双闪灯电路,来源于汽车的双闪灯电路,是经典的互推互挽电路,通电后LED1和LED2交替闪烁,也就是两个发光二极管轮流导通。

完成本作品的目的是为了掌握识别与检测电阻、电容、二极管、三极管。

掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。

该电路是一个典型的自激多谐振荡电路,电路设计简单、易懂、趣味性强、理论知识丰富,特别适合初学者制作。

二、原理图图2 多谐振荡器双闪灯原理图三、工作原理本电路由电阻、电容、发光二极管、三极管构成典型的自激多谐振荡电路。

在上篇文章中介绍了电阻、和发光二极管,本文只介绍电容和三极管。

1、电容器的识别电容器,简称电容,用字母C表示,国际单位是法拉,简称法,用F表示,在实际应用中,电容器的电容量往往比1法拉小得多,常用较小的单位,如微法(μF)、皮法(pF)等,它们的关系是:1法拉(F)=1000000微法(μF),1微法(μF)=1000000皮法(pF)。

本的套件中使用了2个10μF的电解电容,引脚长的为正,短的为负;旁边有一条白色的为负,另一引脚为正。

电容上标有耐压值上25V,容量是10μF。

2、三极管的识别三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件。

其作用是把微弱信号放大成幅值较大的电信号,也用作无触点开关,俗称开关管。

实验报告-多谐振荡器

实验报告-多谐振荡器

实验报告-多谐振荡器韶关学院仿真实验报告册仿真实验课程名称:数字电⼦技术实验仿真仿真实验项⽬名称:基于555定时器的多谐振荡器的设计仿真类型(填■):(基础□、综合□、设计■)院系:物理与机电⼯程学院专业班级:13电⼦(2)班姓名:学号:指导⽼师:刘堃完成时间:成绩:⼀、实验⽬的1、熟悉555集成时基电路的电路结构、⼯作原理及其特点;掌握555集成时基电路的基本应⽤。

2、掌握Multisim10软件在数字电⼦技术实验中的应⽤。

⼆、实验设备Multisim10软件。

三、实验原理(1)555定时器集成芯⽚555是⼀种能够产⽣时间延迟和多种脉冲信号的控制电路,是数字、模拟混合型的中规模集成电路。

芯⽚引脚排列如图1所⽰,内部电路如图2所⽰。

电路使⽤灵活、⽅便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,⼴泛应⽤于信号的产⽣、变换、控制与检测。

它的内部电压标准使⽤了三个5 kΩ的电阻,故取名555电路。

电路类型有双极型和CMOS型两⼤类,两者的⼯作原理和结构相似。

⼏乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。

555和7555是单定时器,556和7556是双定时器。

双极型的555电路电源电压为+5 V ~ +15 V,输出的最⼤电流可达200 mA;CMOS 型的电源电压是+3 V~+18 V。

555内部电路有两个电压⽐较器、基本RS触发器和放电开关管T。

⽐较器的参考电压由三只5 kΩ的电阻分压提供,⽐较器A1同相端参考电平为CCV32、⽐较器A2的反相端参考图1 555芯⽚引脚排列图图2 555定时器内部电路电平为CC V 31。

A 1和A 2的输出端控制RS 触发器状态和放电管开关状态。

当输⼊信号超出CCV 32时,⽐较器A 1翻转,触发器复位,555的输出端○脚输出低电平,开关管导通,电路充电。

多谐振荡电路课程设计

多谐振荡电路课程设计

多谐振荡电路课程设计一、课程目标知识目标:1. 学生能理解多谐振荡电路的基本原理,掌握其组成元件及功能。

2. 学生能掌握多谐振荡电路的频率计算方法,并运用相关公式进行简单计算。

3. 学生能了解多谐振荡电路在实际应用中的优缺点,如电子音乐设备、无线通信等领域。

技能目标:1. 学生能通过实验操作,搭建并测试多谐振荡电路,观察其振荡现象。

2. 学生能运用所学知识,分析多谐振荡电路的故障原因并进行排除。

3. 学生能运用多谐振荡电路设计简单的电子电路,提高实际操作能力。

情感态度价值观目标:1. 学生通过学习多谐振荡电路,培养对电子科学的兴趣,增强探索精神。

2. 学生在小组合作中,学会沟通、协作,培养团队意识。

3. 学生能关注多谐振荡电路在科技发展中的应用,认识到科技对社会进步的重要性。

课程性质:本课程为电子技术基础课程,旨在让学生了解多谐振荡电路的基本原理和实际应用,培养其实践操作能力和科技创新意识。

学生特点:本课程针对高中年级学生,他们对电子技术有一定的基础知识,具备一定的实验操作能力,但对多谐振荡电路的了解较为有限。

教学要求:结合学生特点,注重理论与实践相结合,强调实验操作和实际应用,提高学生的动手能力和创新思维。

在教学过程中,关注学生的个体差异,激发学生的学习兴趣,培养其科学素养。

通过课程学习,使学生达到以上设定的课程目标,为后续电子技术课程打下坚实基础。

二、教学内容本课程教学内容主要包括以下三个方面:1. 多谐振荡电路基本原理:- 振荡电路的定义、分类及基本工作原理。

- 多谐振荡电路的组成元件:放大器、反馈网络、正反馈与负反馈。

- 多谐振荡电路的频率计算公式及其推导。

2. 多谐振荡电路的实验操作:- 搭建多谐振荡电路实验装置,观察振荡现象。

- 测试不同参数对振荡频率、幅值等特性的影响。

- 故障分析与排除,提高实际操作能力。

3. 多谐振荡电路的应用与拓展:- 多谐振荡电路在电子音乐设备、无线通信等领域的应用案例分析。

如何设计一个简单的多谐振荡器电路

如何设计一个简单的多谐振荡器电路

如何设计一个简单的多谐振荡器电路多谐振荡器是一种电路,能够产生多种频率的振荡信号。

它在电子领域有着广泛的应用,比如在无线通信、音频放大和音乐合成等方面。

设计一个简单的多谐振荡器电路需要考虑一些关键因素,如选择适当的元器件和确定合适的工作参数。

本文将介绍如何设计一个简单的多谐振荡器电路。

首先,我们需要选择合适的元器件。

一个基本的多谐振荡器电路通常包括一个放大器和一个反馈网络。

放大器可以是单管或双管放大器,选择合适的放大器是设计中的第一步。

反馈网络通常包括电容和电感元件,可以选择合适的数值以实现所需的频率响应。

其次,确定电路的工作参数。

多谐振荡器可以产生多个频率的振荡信号,我们需要确定这些频率的范围和间隔。

这取决于电路中使用的元器件和反馈网络的参数。

通过调整这些参数,我们可以实现所需的频率响应。

设计电路的关键是选择合适的反馈网络。

反馈网络决定了电路的振荡频率和增益。

常见的反馈网络包括RC网络、LC网络和LCR网络。

选择合适的网络取决于所需的频率响应和振荡器的性能要求。

最后,我们需要进行电路的调试和优化。

在实际的电路设计中,可能会出现电路不稳定或振荡频率不准确的情况。

这时需要通过调整元器件数值或更换元器件来优化电路性能。

可以使用示波器和频谱分析仪等仪器来帮助调试和优化电路。

总结起来,设计一个简单的多谐振荡器电路需要选择适当的元器件、确定合适的工作参数和选择合适的反馈网络。

通过调试和优化,可以获得所需的振荡频率和性能。

设计过程中需要注意电路的稳定性和可靠性,确保电路能够长时间稳定地工作。

只有经过仔细的设计和调试,才能实现一个简单而有效的多谐振荡器电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档