光电编码器及接口电路调试
数控机床编码器的选型及各类编码的特点及调试

一:增量旋转编码器选型有哪些注意:1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。
2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。
3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。
其输出方式应和其控制系统的接口电路相匹配。
二如何使用增量编码器?1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。
2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。
一般利用A超前B 或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。
也有不相同的,要看产品说明。
3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。
4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。
5,在电子装置中设立计数栈三:从接近开关、光电开关到旋转编码器:工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。
可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了:信息化:除了定位,控制室还可知道其具体位置;柔性化:定位可以在控制室柔性调整;现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个µ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。
光电编码器精度分析

光电编码器精度分析作者:徐桂成来源:《电脑知识与技术》2018年第08期摘要:光电轴角编码器也叫做光电角位置传感器,它集光、机、电为一体,它是以高精度圆光栅为检测元件,通过码盘把机械圆周角度转换为电信号,通过差分放大、整形滤波、校正、细分、译码等处理后和计算机相连可实现输出精密角度值以及做伺服控制,它具有分辨率高、测量范围广、使用可靠、易于维护等优点被广泛应用于雷达、光电经纬仪、数控机床、指挥仪和高精度闭环调速系统等诸多领域。
随着科技的发展,军工、国防等领域对微型传感器的需求越来越急迫,要求编码器向高精度、高分辨率、小型化和智能化发展。
同时随着科技的发展,尤其是空间科学自动化和国防建设等领域对编码器的分辨率和精度提出了更高的要求。
因此,研制高精度、高分辨率的编码器是科学技术发展的关键一步。
关键词:光电编码器;经度;偏心中图分类号:TP3 文献标识码:A 文章编号:1009-3044(2018)08-0049-031码盘装调偏心量对精度的影响光电轴角编码器主轴的幌动和光栅码盘轴心与主轴系间的偏心都将引起测量误差,因此,采取措施尽量使码盘轴心与主轴轴心一致,是完成高精度编码器调试的必要条件。
调整轴向跳动和偏心量是码盘装调主要步骤,启动摩擦力矩和高速旋转主轴转动惯量等也是码盘装调的主要程序。
接下来只对码盘偏心量加以研究,并提出一种用光电信号调整码盘偏心量的方法,用光电信号调整码盘偏心的成功应用为高精度编码器码盘的调试成型奠定了基础。
码盘偏心量是指码盘轴心与支承主轴旋转中心的差值。
该差值量直接影响精粗码道之间的相位关系,同时该偏心量对读数也有显著影响,如图1所示:(3)式与(2)式结果相同,因此采用对经读数方式,不管码盘偏心量如何,不影响读数。
因此,偏心不限制对径读数。
但是光栅码盘轴心与主轴系间的偏心对粗码计圈数间的关系影响无法消除,不能补偿圈间关系,因为狭缝本身的圈间关系是一个定值,不随码盘的圈间相位变化容易导致错码。
光电编码器的原理及应用

光电编码器的原理及应用光电编码器是一种精密测量设备,常用于测量旋转角度或线性位置。
它通过光电传感器和编码盘之间的互动来实现测量。
本文将介绍光电编码器的原理、构造和应用。
一、原理光电编码器的工作原理基于光电传感器对编码盘上光学标记的检测。
编码盘通常由透明和不透明的区域组成。
当光线照射到编码盘上时,透明和不透明的区域将交替出现在光电传感器面前,从而导致光电传感器输出脉冲。
光电编码器的输出脉冲数与编码盘上的光学标记数目相关。
通常,编码盘上的光学标记数越多,输出脉冲数就越多,从而实现更精确的位置测量。
此外,光电编码器还可通过增量编码或绝对编码方式进行测量。
二、构造光电编码器通常由光学系统、编码盘、信号处理电路和接口电路组成。
光学系统包括光源和光电传感器,用于发射和接收光线。
编码盘作为测量对象,用于生成光学标记。
信号处理电路负责对光电传感器输出的脉冲信号进行处理和解码。
接口电路用于将处理后的信号输出给外部设备。
光电编码器的结构形式主要有旋转式和直线式两种。
旋转式编码器适用于旋转轴测量,常见的有光栅编码器和光学电子编码器。
直线式编码器适用于直线位移测量,常见的有线性光栅编码器和直线电子编码器。
三、应用光电编码器在工业控制、机械加工、自动化系统等领域中有广泛的应用。
1. 位置测量:光电编码器可用于测量机械设备的旋转角度或线性位移,例如机床的进给系统、机器人的关节角度等。
其高精度和稳定性使得测量结果可靠准确。
2. 运动控制:光电编码器可作为反馈装置用于闭环控制系统中,实现对机械设备运动的精确控制。
通过实时监测位置变化,可以对运动过程进行调整和优化,提高生产效率。
3. 位置校准:光电编码器可在传感器灵敏度高、分辨率高的情况下,对其他传感器的测量结果进行校准。
例如,在无人驾驶领域中,光电编码器可用于对雷达或摄像头的测量结果进行校准,提高车辆的定位准确性。
4. 导航系统:光电编码器可用于导航系统中船舶、飞行器等航行过程的航向或航行距离的测量。
光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。
下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。
光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。
当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。
当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B相滞后半个周期。
通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。
其具体的鉴相规则如下:1.A为上升沿,B=0时,旋钮右旋;2.B为上升沿,A=l时,旋钮右旋;3.A为下降沿,B=1时,旋钮右旋;4.B为下降沿,A=O时,旋钮右旋;5.B为上升沿,A=0时,旋钮左旋;6.A为上升沿,B=1时,旋钮左旋;7.B为下降沿,A=l时,旋钮左旋;8.A为下降沿,B=0时,旋钮左旋。
通过上述方法,可以很简单地判断旋钮的旋转方向。
在判断时添加适当的延时程序,以消除抖动干扰。
2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。
一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。
本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。
另一种是具有定制接口的流接口驱动程序。
它是一般类型的设备驱动程序。
流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。
GTHD调试总结--汪敏

目录一、旋转电机与GTHD (2)1、光电编码器 (2)2、旋转电机参数 (3)3、初始化配置流程 (5)4、驱动器调试流程 (11)一、模拟量(速度)控制模式 (11)二、脉冲(位置)模式控制 (16)二、直线电机与GTHD (20)1、光栅尺 (20)2、直线电机参数 (20)3、初始化配置流程 (23)4、驱动器调试流程 (24)一、模拟量(速度)控制模式 (24)二、脉冲(位置)模式控制 (29)备注 (32)一、旋转电机与GTHD1、光电编码器使用普通旋转伺服电机(交流永磁伺服旋转电机)需要用到光电编码器(一种反馈器件,提供位置、速度等信息),光电编码器有两种---增量式编码器和绝对式编码器。
两者的区别在于前者只能知道相对于上电位置的相对位置,后者可以知道当前的绝对位置(位置唯一)。
一般旋转伺服电机都会使用到增量式编码器,说到编码器就需要知道编码器的一项重要性能指标---分辨率(mencres,单位:LRP。
也叫刻线数),也可以用每转脉冲数表示。
电机光电编码器的分辨率有下列几种,10进制的有2000/5000/10000,二进制的有1024/2048/4096/8192。
编码器计数是通过A、B两项信号的信号沿得到的,一个周期内有四个沿,所以每转脉冲数等于分辨率乘以四,而A、B两项信号相差90度。
A64200.51 1.52 2.53 3.54B64200.51 1.52 2.53 3.542、旋转电机参数使用编码器时需要用到下面几个参数:名称GTHD内参数名称反馈类型feedbacktype分辨率mencres接线类型menctypefeedbacktype的值须与电机实际反馈类型(接线方式)相符,对于增量式光电编码器反馈,该值设为 2menctype的值跟接线有关,主要看有没有接I(index)向和Halls (霍尔:确定转子位置,从而知道输入电流状态)信号。
大多数旋转电机都是带有I向和Halls信号,所以menctype值设为0,而不带Halls 信号的menctype值设为2,这个时候就需要会用到一种代替Halls信号作用的寻找转子的软件方式phasefind(驱动器第一次上伺服时会自动寻找,不断电情况下一般不需要再次寻找,除非电机飞车)。
库伯勒编码器技术手册

库伯勒编码器技术手册库伯勒编码器是数字电子设备中常用的一种传感器,用于将旋转或线性运动转换为数字信号。
本手册旨在介绍库伯勒编码器的原理、种类、应用以及安装和调试方法。
I. 原理及分类库伯勒编码器基于光电、电磁或霍尔效应等原理工作。
其中最常见的类型为光电编码器和磁性编码器。
1. 光电编码器光电编码器通过光电传感器和光栅来测量运动。
光栅通常由透明和不透明的标记组成,光电传感器则可以检测到光栅上光线的变化,进而转换为电信号。
光电编码器具有高分辨率、精确度高等优点。
2. 磁性编码器磁性编码器利用磁性材料和传感器来测量运动。
通常由精密的磁性标记和霍尔传感器组成。
磁性编码器具有较高的稳定性和耐用性,适用于恶劣环境条件下的应用。
II. 应用领域库伯勒编码器广泛应用于各个领域,例如:1. 机械加工库伯勒编码器用于CNC机床、车床和磨床等机械加工设备中,用于控制运动的精度和速度。
通过与数控系统的配合,可以实现高精度加工。
2. 机器人技术库伯勒编码器在机器人技术中发挥着重要作用。
它可以精确检测机器人的关节角度和位置,从而实现精确的运动和控制。
3. 自动化系统在自动化系统中,库伯勒编码器用于测量和控制各种设备的位置、速度和加速度。
例如,常用于电梯、输送带、自动门等系统中,确保安全和效率。
4. 医疗设备库伯勒编码器应用于医疗设备中,例如手术机器人、医学成像设备等。
它可以提供精确的位置和运动信息,帮助医生进行精细操作或诊断。
III. 安装与调试正确的安装和调试对于库伯勒编码器的正常运行至关重要。
以下是一些建议和步骤:1. 安装确保库伯勒编码器与被测量的运动装置正确连接,避免摩擦和松动。
根据具体类型选择合适的安装方式,例如夹紧安装、板式安装等。
2. 供电与信号连接库伯勒编码器通常需要外部供电,并通过信号线与控制系统连接。
确保供电电压和信号电平的匹配,并正确连接接线端子。
3. 调试在启动之前进行调试是必要的。
使用示波器或编码器测试设备,检查输出信号的稳定性和准确性。
光电编码器输出信号自动调试技术研究

摘要 : 刚装 配 完成的编 码信 号 受到各 种 因素 的影响往 往存 在误 差 , 不能 直接使 用 , 需要 对信 号进行 调 试 。
为 了提 高编 码 器信号调 试 效率 和精度 , 开发 了一套 编码 器信 号 自动调 试 系统 。本 系统 研 究 并 结合 了信
号采 集 、 T C P / I P通信 等相 关 内容 , 应 用数 据 采 集卡 、 图形 工作 站 、 计 算机 、 适 配 器等硬 件设 备 , 开发 出 自 动调试 软件 。实验表 明 , 本 系统能 够 自动 调试 编码 器信 号使信 号 达到使 用要 求 , 具有 良好 的调试 精 度和
c i e n c y a n d a c c ur a c y o f t h e e n c o d e r s i g n a l , a s e t o f a u t o ma t i c de b ug g i ng s y s t e m o f e n c o d e r s i g n a l i s de v e l o p e d. Th e s y s t e m r e s e a r c h c o mbi n e s wi t h t h e s i g n a l a c q u i s i t i o n a n d TCP/I P c o mmu n i c a t i o ns . S o me ha r d e q u i p me n t s
2 . C h a n g c h u n Yu h e n g Op t i c s C o . , L t d . , Ch a n g c h u n 1 3 0 0 1 2, C h i n a )
A b s t r a c t : C o d e d s i g n a l a f f e c t e d b y v a i r o u s f a c t o r s t e n d s t o h a v e e r r o r s , w h e n t h e e n c o d e r h a s j u s t i f n i s h e d a s ‘
编码器调试注意事项

编码器调试注意事项
在编码器送电之前查线时首先注意编码器电源线8、12端子的所接电源的正负,当电源极性接反后会造成编码器损坏,其次确保编码器1、3端子即A、B信号的输出接线不能与地线和PLC输出24V电源负端短接,如果出现A、B信号与电源负短接,会造成相应的通道损坏(编码器内部相应通道中的电阻烧坏),在之后进行FM350-1计数测试时会发现编码器只有在朝一个方向旋转时,FM350-1才能计数但计数不能累加,比如正向计数时计数值只能在0和1之间来回跳动,当编码器反转时FM350不能计数。
根据现场分析判断编码器通道结构大概为:
如图所示当B与24V-或GND短接时,在编码器旋转时FM350-1模块将不能接收到由B通道送出的高低电平信号,同时编码器内部B 通道的光敏二极管接通,造成B通道的限流电阻烧坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5
图6
图 6 电路十分简单,其各点波形见图 7。A、B二相信号经异或门G1后输出V1即 为二倍频方波,V1一路直送下一级异或门G2,另一路经RC积分电路延迟后变为V2, 再经异或后即为四倍频的V3。该电路虽简单,但也存在不甚完美之处,即G2门的 翻转是由C上电压充电(或放电)到门的转移电平处开始的,而实际产品的转移 电压离散范围在 40%~60%电源电压内,这将造成延迟时间不一致,在调试电 路时应注意。
光栅编码器接口电路及调试
张黎军 王 颖 何源来
摘 要 介绍了光栅编码器实用的接口电路,其中包括远距离差分传输、光 电耦合器隔离、方向辨别、脉冲四倍频等,并给出了一些实用的调试方法。
关键词:光栅编码器 接口电路 调试
The Interfacing circuit for Grating Encoder and Its Calibration
fmax=4Vmax/W(kHz) 对于圆光栅,一般给出圆盘上的刻线数N,根据传动机构估算出最高转速nmax (r/min),则四倍频后的输出脉冲最高频率为
在调试电路时,应使用示波器监视脉冲波形,将时间常数整定在适当的数值 上。为调试方便且使示波器上的波形能较长时间稳定地同步,最好能使用专用的 互差 90°的双相方波发生器来代替编码器的信号。这里给出笔者自制的这种简 易信号发生器电路图(见图 9)。
Key words:Grating encoder Interfacing circuit Calibration
0 引言
光栅编码器具有测量精度高、抗干扰能力强的优点,被广泛应用于高精度的 位移测量中。
常用的光栅编码器有圆光栅和尺型直光栅二种。其输出信号一般都为增量式 脉冲串,即给出 A、B 二路相位互差 90°的方波脉冲串,另外还在光栅上的一个 特定点处给出一个代表零位脉冲信号 Z,见图 1。除特殊类型之外,A、B、Z 三 信号一般为标准的 TTL 电平。
图9 图 9 中的振荡器采用石英晶体稳频,IC2是可分档调节的二进制分频器,IC3 -1、IC3-2分别检出脉冲的前沿和后沿,以产生 90°相位差的二路脉冲,IC4-1、IC4 -2为二分频,将二路脉冲整形为方波。IC5采用了有较强驱动能力的三态总线驱动 器。本电路的最高输出频率为 8192Hz。当需要更高的频率时,可换用高频率的 晶体,并注意IC3-1、IC3-2二个单稳的定时RC应相应减小。 作者介绍:张黎军,南,47 岁,1976 年毕业于北京钢铁学院.现在北京科技大学 机械工程学院任教,工程师。 作者单位:张黎军 王 颖,北京科技大学 何源来,上海浦东钢铁(集团)公司
图7 图 8 电路是图 6 的改进型。异或门输出即为A、B二相信号的二倍频方波。用 单稳电路IC2-1检出二倍频方波的前沿,IC2-2检出后其后沿,二者在IC3-1逻辑 “或”后即可得到四倍频脉冲串。为保证电路工作稳定可靠,二个单稳电路使用 了集成化单稳CD4538,这是一种结合了线性工艺技术的CMOS精、Z 三路信号进行隔离,也是抗干扰的一种方法。 光电耦合器的发光二极管是电流驱动器件,可以构成电流环传输。这种低阻抗电 路对噪声不敏感,抗干扰能力较强。光耦还可以对系统起到安全保护作用。它切 断现场与接收端系统之间的地线回路,使二者能用独立的电源供电,消除二地间 电位差带来的影响和危害,并可防止现场一侧在运行和检修时由于故障和错误造 成的强电混入,使系统免遭致命的伤害。如果使用的编码器栅距很小(相当于每 转对应的脉冲数很多),或带动编码器的机械运动较快,使编码器输出脉冲频率 较高,因此隔离用的光耦常选用高速光耦。又由于有时要对 A、B 脉冲进行四倍 频处理,应保证二路脉冲经过光耦后仍有互差 90°的相位关系,这就对光耦的 响应速度提出了更高的要求。一般不宜选用常用的 4N25(尽管手册中给出的响 应频率可达 300kHz,但实测用于编码器要求四倍频时仅工作到约 10kHz)等,可 选用高速型如 6 N137(单光耦)、TLP 113(单光耦,不要误用 TIL113)、TLP 2601 (单光耦)、TLP2630(双光耦)等。一般市售的成品光耦隔离接口板很少有高 速型的(最高仅为 10~30kHz),用户可以自制。图 3 给出了笔者设计的一种光 耦隔离电路,用于编码器每转 2000 脉冲且有四倍频要求的场合,工作稳定可靠,
3 实用的方向辨别及四倍频电路
结合笔者的工作实践,下面介绍几种实用的辨向及四倍频电路。图 4 是常用 的辨向电路。
图4
图 4 中R1、C1将A相脉冲的前沿微分,微分尖脉冲同时加到IC1-2和IC1-3,而它
们分别由B和 来选通。当B超前A时,CP+输出脉冲,而当A超前B时,则由CP-
输出脉冲。该电路可在不需要倍频细分时使用,适用于双时钟计数器。若对上述 电路稍加改动,则可适用于单时钟和“加/减”控制信号的计数器,见图 5。B 相超前A相时,+/-信号为“1”,A相超前B相时,+/-信号为“0”。当采 用四倍频细分电路时,可将图 5 电路中的门IC1-4省去,即可与下述图 6 或图 8 的四倍频电路配合使用。这时对于单时钟计数器,四倍频脉冲就是CP;而对于双 时钟电路,则需再增加二只双输入端与非门,用+/-和-/+端分别选通四倍
1 远距离传输及光电隔离
有时计数显示装置离安装编码器的现场较远,长距离传输会造成信号衰减、 跳变边沿陡度变差,并会引入干扰。较好的解决方法是在编码器的发送端一侧使
用长线驱动器接口电路,在接收端一侧采用长线接收器接口电路。其传输距离可 达公里级。一个采用Motorola公司的MC75110L线驱动器和MC75107L接收器的电路 见图 2。图中每个MC75110L和MC75107L均为双电路,故每个只用了一半。由编码 器来的单端TTL电平信号V1,输入发送器后变成差分信号,用双绞线传送到接收 器处,再转变为单端TTL电平信号V2。R1~R4为消除长传输线反射波的终端匹配电
实测其最高工作频率约为 500kHz,这对于大多数的应用场合是足够的。
图3
2 关于脉冲倍频的讨论
对于一般的编码器,厂家给出的 A、B 双相互差 90°的方波脉冲,是用 4 个 光电元件相当于等间距安放在一个栅距的距离上产生出的信号,因此 A、B 双相 脉冲的每个前沿和后沿实际上都对应着 1/4 栅距的位移信息。由此可知,厂家 给出的脉冲当量的 1/4 才是该光栅尺可利用的最高精度,这可由用户通过并不 复杂的四倍频电子细分法来完成。不经倍频而直接使用原始脉冲,用户将损失掉 光栅尺潜在的四倍的精度。需指出的是,直接使用原始脉冲无疑是可靠的,而使 用用户自制的倍频器则需选择可靠的电路及进行正确的调试。
图1
为计量并显示位移的大小,可将 A 和 B 脉冲送入可逆计数器计数,正向运动 时计数器作加计数,反向运动时则作减计数。为判断运动方向,可将 A、B 脉冲 送入辨别电路中产生出方向信号。常用的可逆计数器电路分为二种:使用“加/ 减”控制信号的单时钟电路和不使用控制信号的双时钟电路。在设计接口电路 时,应将光栅编码器的信号处理成能与你所选择的计数器相适应。
具有良好的稳定性及精度。
图8
4 电路调试
辨向及四倍频电路的调试,主要是对作为边沿检测用的微分电路或单稳电路 的时间常数进行整定。整定之前应先计算一下脉冲的最高频率(包括四倍频在 内),然后将时间常数整定为该最高频率下脉冲周期的一半,这样脉冲有足够的 宽度和间隔,会将温漂及电源波动引起的因脉冲宽度变化造成的丢脉冲或脉冲 “粘连”在一起的现象减到最小程度。脉冲的最高频率可以用如下方法估算。对 于直光栅传感器,一般给出光栅常数W(μm)(或称栅距),即输出的A相(或B 相)每一脉冲对应的位移量,再根据机械传动机构估算出被测对象的最高运动速 度Vmax(mm/s),则四倍频后的输出脉冲最高频率为
Abstract The practical interfacing circuit for grating encoder is introduced.It is composed of long distance differential transmission, photoelectric coupler isolation,direction recognition and pulse quadruplex, etc..Some practical calibrating methods are also given.
参考文献 [1]严钟豪,谭祖根.非电量电测技术.北京:机械工业出版社,1983:284~
292
[2]中国集成电路大全.接口集成电路.北京:国防工业出版社,1986 [3]TOSHIBA Semiconductor General Catalog,1992.
[4]MOTOROLA Inc. Optoelectronics Device Data, 1986
有时当光栅尺的每脉冲对应的位移量无法与十进制计数器相适应时,也可用 倍频的方法来解决。例如,一种常用的光栅尺每脉冲对应 40μm,不便于十进制 计数器计数并显示,经四倍频后变为每脉冲对应 10μm,即可与十进制统一了。
有些刊物中常见有想超越四倍频再进一步提高分辨率的文章,笔者认为这样 做一般是困难的和不现实的。其原因有如下三个。第一,由于编码器提供给用户 的 A、B 双相信号是方波信号,故无法使用对正弦波信号进行处理的电桥细分法 和电阻链细分法。第二,虽然从原理上讲可以对方波脉冲用锁相环电路进行高倍 数的倍频,但这种方案要求光栅头的运动必须是恒速的,否则锁相环电路是无法 正常且稳定地工作的。这对于被测对象以不同的速度运动、及在终点附近进行多 级降速以求精确定位等情况均是不适宜的。第三,那么能否在四倍频的基础上再 用普通电路进行再次二倍频、四倍频……显然也不实用。这是因为第一次四倍频 是在 A、B 均为方波且互差 90°的条件下进行的,输出的四倍频脉冲是均匀的, 但该脉冲已不是方波(即使在某一速度下将电路参数调整到使脉冲为方波,但速 度一变就又不是方波了),再对其前后沿进行处理产生二倍频脉冲就不会是间隔 均匀的了,即每一脉冲对应的位移量将不同!由此可见,若用四倍频电子细分法 仍不能满足精度要求,则只能在机械传动上改进或选用更高分辨率的编码器。