高三一轮复习:函数的单调性

合集下载

高考第一轮复习-函数的单调性

高考第一轮复习-函数的单调性

年级高三学科数学版本人教版(文)内容标题函数的单调性编稿老师孙力【本讲教育信息】一. 教学内容:函数的单调性1. 概念:设函数)(xf的定义域为I(1)增函数:如果对于属于定义域I内某个区间上的任意两个自变量的值21,xx,当21xx<时,都有)()(21xfxf<,那么称函数)(xf在这个区间上是增函数。

(2)减函数:如果对于属于定义域I内某个区间的任意两个自变量的值21,xx,当21xx<时,都有)()(21xfxf>,则称)(xf在这个区间上是减函数。

(3)单调区间:如果函数)(xfy=在某个区间是增函数或减函数,则称函数)(xfy=在这一区间上具有(严格的)单调性,该区间叫做)(xfy=的单调区间。

注:①中学单调性是指严格单调的,即不能是)()(21xfxf≤或)()(21xfxf≥②单调性刻画的是函数的“局部”性质。

如xy1=在)0,(-∞与),0(+∞上是减函数,不能说xy1=在),0()0,(+∞⋃-∞上是减函数。

③单调性反映函数值的变化趋势,反映图象的上升或下降2. 单调性的判定方法(定义法、复合函数单调性结论,函数单调性性质,导数,图象)(1)定义法[例1] 证明函数1)(31-=xxf在R上是增函数证:设21xx<,则3223123113212131231121)()(xxxxxxxxxfxf++-=-=-而分子021<-=xx分母043)21(3222312311322312311321>++=+⋅+=xxxxxxx故0)()(21<-xfxf得证补:讨论函数22)(x xaxf-=的单调性)10(≠<a解:设1>a时,对任Rx∈,022>-xxa,设121<<xx2112222212)()(x x x x a x f x f +--=,而)](2)[(221212211222x x x x x x x x +--=+--0> 即)()(12x f x f >故在)1,(-∞单增,同理在),1(+∞单减 当10<<a 时,同理在(1,∞-)单减,在(1,∞+)单增[例2] 讨论xx x f +=1)(的单调性解:设21x x <,则)11)((11)()(2112112212x x x x x x x x x f x f --=+-+=-21212112)()1)((x x x x x x x x +--=(1)当1021≤<<x x 时,1021<<x x ,0)()(12<-x f x f (2)当211x x <≤时,211x x <,0)()(12>-x f x f 故)(x f 在]1,0(上是减函数,在),1[+∞上是增函数[例3] 试求函数xpx x f +=)((p 0≠)的单调区间 分析:考虑到212112112212)()()()(x x p x x x x x px x p x x f x f --=+-+=-以下分类讨论 (1)当p 0>时① 若p x x -≤<21,则0)()(12>-x f x f ,)(x f 增 ② 若021<<≤-x x p ,则0)()(12<-x f x f ,)(x f 减③ 若p x x ≤<<210,则0)()(12<-x f x f ,)(x f 减④ 若21x x p <≤,则0)()(12>-x f x f ,)(x f 增(2)当0<p 时① 若021<<x x ,则0)()(12>-x f x f 增 ② 若210x x <<,则0)()(12>-x f x f 增综上所述,0>p 时,)(x f 在)0,[p -或],0(p 上是减函数)(x f 在],(p --∞或),[+∞p 上是增函数时,在或上是增函数在)0,[p-及],0(p上分别单调递减另法,利用导数21)(xpxf-=')(122pxx-=(1)若0>p则))((1)(2pxpxxxf-+='(2)若0<p,则0)(>'xf下证高考分式函数试题类型与解法研究[例4] 讨论分式函数xbaxxf+=)(的单调性(0≠ab)以下只研究0,0>>ba与0,0<>ba两种情形对于0,0><ba与0,0<<ba可利用对称性得到。

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值

第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有,那么就称函数f(x)在区间D上是增函数当x1<x2时,都有,那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是或,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得(1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.[举一反三]1.(2022·全国·高三专题练习)函数222x x y -++=的单调递增区间是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞-D .递增区间是(1,1)-4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x =B .()ln y x =-C .12xy =D .1y x=-6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.7.(2022·全国·高三专题练习)函数216y x x =-+_____. 8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;10.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b ac << B .a b c << C .c a b << D .a c b <<2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)[举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7-D .()(),77,-∞-⋃+∞6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,17.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <-10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______.11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________.13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.16.(2022·全国·高三专题练习)已知函数()f x x .(1)若1a ,求函数的定义域;(2)是否存在实数a,使得函数()f x在定义域内具有单调性?若存在,求出a的取值范围第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M(1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞ B .[3,)+∞ C .(,1]-∞-D .[1,)+∞【答案】B 【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥, 所以函数2()23f x x x =--(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数2()23f x x x =--[3,)+∞.故选:B.2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【解】任取1x 、2(11)x ∈-,,且12x x <,(11)1()(1)11a x f x a x x -+==+--,则:21121212()11()()(1)(1)11(1)(1)a x x f x f x a a x x x x --=+-+=----,当0a >时,12())0(f x f x ->,即12()()f x f x >,函数()f x 在(11)-,上单调递减; 当0a <时,12())0(f x f x -<,即12()()f x f x <,函数()f x 在(11)-,上单调递增. [举一反三]1.(2022·全国·高三专题练习)函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 【答案】C 【解析】令220x x -++≥,解得12x -≤≤, 令22t x x =-++,则y =∵函数22t x x =-++在区间112⎡⎤-⎢⎥⎣⎦,上单调递增,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,y =内递增,∴根据复合函数的单调性可知,函数y =112⎡⎤-⎢⎥⎣⎦,.故选:C2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( ) A .(),2-∞ B .()2,+∞ C .()2,2- D .()2,6-【答案】C 【解析】 令13log y u=,2412u x x =-++.由24120u x x =-++>,得26x -<<.因为函数13log y u=是关于u 的递减函数,且()2,2x ∈-时,2412u x x =-++为增函数,所以()213log 412y x x =-++为减函数,所以函数()213log 412y x x =-++的单调减区间是()2,2-.故选:C.3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞- D .递增区间是(1,1)-【答案】D 【解析】因为函数222,0()22,0x x x f x x x x x x x ⎧-+≥=-+=⎨+<⎩,作出函数()f x 的图象,如图所示:由图可知,递增区间是(1,1)-,递减区间是(,1)-∞-和()1,+∞. 故选:D .4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞【答案】C 【解析】因为12log y x=在()0,∞+上为减函数,所以只要求()y f x =的单调递减区间,且()0f x >.由图可知,使得函数()y f x =单调递减且满足()0f x >的x 的取值范围是()[),50,1-∞-.因此,函数()()12log g x f x =的单调递增区间为(),5-∞-、[)0,1.故选:C.5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x = B .()ln y x =-C .12xy =D .1y x=-【答案】D 【解析】选项A. 函数tan y x =在(),0∞-上只有单调增区间,但不是一直单调递增,故不满足; 选项B. 由复合函数的单调性可知函数()ln y x =-在(),0∞-上单调递减,故不满足;选项C. 函数1122xx y ⎛⎫== ⎪⎝⎭在(),0∞-上单调递减,故不满足;选项D. 函数1y x=-在(),0∞-上单调递增,故满足,故选:D6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.【答案】 (12,1)-,(12,)++∞ (,12)-∞-,(1,12)【解析】作出函数y =|-x 2+2x +1|的图像,如图所示,观察图像得,函数y =|-x 2+2x +1|在(12,1)-和(12,)++∞上单调递增,在(,12)-∞和(1,12)上单调递减,所以原函数的单调增区间是(1,(1)+∞,单调递减区间是(,1-∞,(1,12).故答案为:(1-,(1)++∞;(,1-∞,(1,12)7.(2022·全国·高三专题练习)函数1y =_____. 【答案】[3,6] 【解析】226060x x x x -+≥⇒-≤,解得06x ≤≤,令()()22639x x x x μ=-+=--+,对称轴为3x =,所以函数()x μ在(),3-∞为单调递增;在[)3,+∞上单调递减.所以函数1y =[3,6]. 故答案为:[3,6]8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.【答案】1()12xf x =-(答案不唯一) 【解析】 1()12x f x =-,定义域为R ;102x>,1()112x f x =-<,值域为(,1)-∞; 是增函数,满足对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.故答案为:1()12xf x =-(答案不唯一). 9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;【解】由题意,040x x x ≠⎧⎪-⎨>⎪⎩,解得04x <<故f (x )的定义域为(0,4) 令441x u x x -==-,lg y u =,由于41u x=-在(0,4)单调递减,lg y u =在(0,)+∞单调递增,因此4lgxy x-=在(0,4)单调递减,又1y x =在(0,4)单调递减,故f (x )1x =+4lgx x -在(0,4)上单调递减,证明如下: 设0<x 1<x 2<4,则: ()()()()121221121122122144411lg lg lg 4x x x x x x f x f x x x x x x x x x -----=+--=+-, ∵0<x 1<x 2<4,∴x 2﹣x 1>0,x 1x 2>0,4﹣x 1>4﹣x 2>0,12214114x xx x -->,>, ∴()()()()1212211221214401lg 044x x x x x x x x x x x x ----->,>,>, ∴f (x 1)>f (x 2),∴f (x )在(0,4)上单调递减11.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.【解】由题意11211()22212x x x f x +-==-+++, 令1112,2xu y u =+=-+,由于12x u =+在R 上单调递增,112y u=-+在(0,)+∞单调递减,由复合函数单调性可知f (x )在R 上为减函数. 证明:设∀x 1,x 2∈R ,且x 1<x 2,所以f (x 1)﹣f (x 2)()()211212112212121212x x x x x x -=-=++++,由于x 1<x 2,y =2x 在R 上单增 所以21220x x ->,且2x >0 所以f (x 1)>f (x 2), 所以f (x )在R 上单调递减.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A【解析】()f x 的定义域为R , 因为()()()e e ee ()22x xxx x x f x f x ------===,所以()f x 为偶函数,所以()()2221log log 3log 33a f f f ⎛⎫==-= ⎪⎝⎭,443322c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,当0x >时,()()()ee e e 2xx x xx f x ---++'=,因为0x >,所以e1,0e 1xx -><<,所以e e 0x x -->,(e e )0x x x -+>,所以()0f x '>,所以()f x 在(0,)+∞上单调递增,因为2x y =在R 上单调递增,且340143-<<<,所以43013402222-<<<<,即433402122-<<<<,因为2log y x =在(0,)+∞上为增函数,且234<<,所以222log 2log 3log 4<<,即21log 32<<,所以4334202log 32-<<<,所以()433422log 32f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即b a c <<,故选:A2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.【答案】1 【解析】解:(],1x ∈-∞时,()1x f x e -=单调递增,()()1111f x f e -==≤;()1,x ∈+∞时,()1+1f x x x=-单调递减,()11+111f x <-=.所以()f x 的最大值为1. 故答案为:1.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C 【解析】解:()f x 定义域为R , 又()()-=-f x f x ,所以()f x 是奇函数,当0x =时,()00f =,当0x >时,()=f x ()f x 在()0,∞+上递增, 所以()f x 在定义域R 上递增,又()()21f x f x >-,所以21x x >-,解得13x >,故选:C4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)【答案】C 【解析】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---, 若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩,解可得:1a <-或12a <,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C . [举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<【答案】B 【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,122112121212()()()()00f x f x x f x x f x x x x x x x -->⇔>--, 于是得函数()f x x 在(0,)+∞上单调递增,而函数()f x 是R 上的偶函数,即(2)(2)22f f b -==,显然有(1)(2)(3)123f f f <<,因此得:a b c <<, 所以a b c <<. 故选:B2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>【答案】D 【解析】解:因为()()()32200x x x f x x x -⎧-+>⎪=⎨-≤⎪⎩,又2x y =在()0,∞+上单调递增,2x y -=在()0,∞+上单调递减,则()22xx g x -=-+在()0,∞+上单调递减且()002002g -+==,又()3h x x =-在(),0∞-上单调递减且()3000h =-=,所以()f x 在R 上单调递减,又因为0.20331>=,即1b >,0ln1ln 2lne 1=<<=,即01a <<,0.30.3log 2log 10<=,即0c <,所以b a c >>,所以()()()f b f a f c <<; 故选:D3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C 【解析】设1x t ,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭【答案】C【解析】因为函数()1y f x =-是定义在R 上的偶函数,所以()y f x =的图象关于直线1x =-对称.因为()f x 在(),1-∞-上单调递减,所以在()1,-+∞上单调递增. 因为()00f =,所以()()200f f -==.所以当()(),20,x ∈-∞-⋃+∞时,()0f x >;当()2,0x ∈-时,()0f x <.由()()210f x f x +<,得20,2210.x x x ⎧-⎨-<+<⎩或或20,212210.x x x -<<⎧⎨+-+⎩或解得312,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:C5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7- D .()(),77,-∞-⋃+∞【答案】A 【解析】解:因为()()212,12,1x x f x x x ⎧++<⎪=⎨-≥⎪⎩,所以()36f =-,()()233126f -=-++=,则()()340f f x +->,即()()()4363f x f f ->-==-,()f x 的函数图象如下所示:由函数图象可知当3x >-时()6f x <且()f x 在(),3∞--上单调递减,所以()()43f x f ->-等价于43x -<-,即1x <,解得11x -<<,即()1,1x ∈-; 故选:A6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1【答案】B 【解析】因为分段函数()f x 在R 上的单调函数,由于22y x ax =-开口向上,故在1≥x 上单调递增,故分段函数()f x 在在R 上的单调递增,所以要满足:0212112a aa a>⎧⎪-⎪-≤⎨⎪-≤-⎪⎩,解得:203a <≤ 故选:B7.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-【答案】D 【解析】解:函数2()2(1)3f x x m x =-+-+的图像的对称轴为2(1)12m x m -=-=--, 因为函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,所以14m -≥,解得3m ≤-, 所以m 的取值范围为(],3-∞-, 故选:D8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】B 【解析】由题意可知,()313y a x a =-+在(),1-∞上为减函数,则310a -<, 函数21y x =-+在[)1,+∞上为减函数,且有()3130a a -+≥,所以,310610a a -<⎧⎨-≥⎩,解得1163a ≤<.综上所述,实数a 的取值范围是11,63⎡⎫⎪⎢⎣⎭.故选:B.9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >- B .1b >- C .1b ≥- D .2a <-【答案】AC 【解析】 ()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b.故选:AC10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______. 【答案】(2,4]- 【解析】 函数5()3x f x x a +=-+,定义域为(,3)(3,)x a a ∈-∞-⋃-+∞,又322()133x a a a f x x a x a -++++==+-+-+,因为函数5()3x f x x a +=-+在(1,)+∞上是减函数,所以只需23a y x a +=-+在(1,)+∞上是减函数,因此2031a a +>⎧⎨-≤⎩,解得24a -<≤.故答案为:24a -<≤11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 【答案】(-∞,0)∪(1,4] 【解析】由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤4()xmin =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4; 当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0. 故实数m 的取值范围是(-∞,0)∪(1,4]. 故答案为: (-∞,0)∪(1,4].12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________. 【答案】22x x -+ 【解析】由(1)(1)f x f x +=-可得()f x 关于1x =对称,所以开口向下,对称轴为1x =,且过原点的二次函数满足题目中的三个条件, 故答案为:22x x -+13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.【答案】1223⎛⎫- ⎪⎝⎭,【解析】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________. 【答案】13(,)22【解析】解:由题意得2()4f x x ax =-+的对称轴为2x a =,因为函数()f x 在[]1.3内不单调,所以123a <<,得1322a <<.故答案为:13(,)22.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【解】因为函数()y f x =是定义在R 的递减函数,所以2(31)(1)(2)f mx f mx x f m ->+->+对(0x ∈,1]恒成立2231112mx mx x mx x m ⎧-<+-⇔⎨+-<+⎩在(0x ∈,1]恒成立.整理,当(0x ∈,1]时,2222(1)1mx x m x x ⎧<-⎨-<+⎩恒成立, (1)当1x =,2102m <⎧⎨<⎩,所以12m <;(2)当(0,1)x ∈时,222211x m xx m x ⎧-<⎪⎪⎨+⎪>⎪-⎩恒成立,1,2xy y x ==-都在(0,1)x ∈上为减函数22122x x y x x -∴==-在(0,1)x ∈上为减函数, ∴22122x x ->,222x m x-∴<恒成立⇔12m ≤. 结合当1x =时,12m <①又2222212(1)(1)21,01(1)(1)x x x x x x y y x x x +--+--'===<-++,当(0,1)x ∈ 故211x y x +=-在(0,1)x ∈上是减函数,∴2111x x +<--.211x m x +∴>-恒成立1m ⇔≥-② ∴①、②两式求交集1[1,)2m ∈-由(1)(2)可知当[1m ∈-,1)2时,对任意(0x ∈,1]时,2(31)(1)(2)f mx f mx x f m ->+->+恒成立.16.(2022·全国·高三专题练习)已知函数()f x x . (1)若1a =,求函数的定义域;(2)是否存在实数a ,使得函数()f x 在定义域内具有单调性?若存在,求出a 的取值范围. 【解】(1)()f x x ,∴|1|10x +-≥,解得(,2][0,)x ∈-∞-+∞; 所以函数的定义域为(,2][0,)x ∈-∞-+∞.(2)当x a ≥-,211()24f x x x ⎫===-+⎪⎭,在1[,)4+∞递减,此时需满足14a -≥,即14a -≤时,函数()f x 在[,)a -+∞上递减;当x a <-,()f x x x ,在(,2]a -∞-上递减, ∵104a ≤-<,∴20a a ->->,即当14a -≤时,函数()f x 在(,)a -∞-上递减;综上,当14a -≤时,函数()f x 在定义域R 上连续,且单调递减.所以a 的取值范围是1,4⎛⎤-∞- ⎥⎝⎦。

导数与函数的单调性课件高三数学一轮复习

导数与函数的单调性课件高三数学一轮复习
目录
|解题技法| 讨论函数f(x)单调性的步骤
(1)确定函数f(x)的定义域; (2)求导数f'(x),并求方程f'(x)=0的根; (3)利用f'(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上 讨论f'(x)的正负,由符号确定f(x)在该区间上的单调性. 提醒 研究含参函数的单调性时,需注意依据参数取值对不等式解集的影响进 行分类讨论.
目录
考向2 解不等式
A.(-∞,-2)∪(1,+∞) B.(2,+∞) C.(-∞,-1)∪(2,+∞) D.(-1,2)
目录
答案 C
目录
(1)若函数f(x)存在单调递减区间,求a的取值范围;
目录
所以a>-1. 即a的取值范围是(-1,+∞).
目录
(2)若函数f(x)在[1,4]上单调递减,求a的取值范围.

1.(多选)(2023·贵阳一模)下列选项中,在R上是增函数的有
()
A.f(x)=x4 C.f(x)=xex
B.f(x)=x-sin x D.f(x)=ex-e-x-2x
目录
目录
2.已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是
.

解析:f'(x)=3x2-a,由结论1知f'(x)≥0,即a≤3x2,又∵x∈[1,+∞),
∴a≤3,即a的最大值是3.
答案:3
目录
02
目录

证明(判断)函数的单调性 【例1】 (1)(2022·北京高考·节选) 已知函数f(x)=exln(1+x),设g (x)=f'(x),讨论函数g(x)在[0,+∞)上的单调性;
目录
目录

2024届新高考一轮总复习人教版 第二章 第2节 函数的单调性与最值 课件(35张)

2024届新高考一轮总复习人教版 第二章 第2节 函数的单调性与最值 课件(35张)

【小题热身】 1.思考辨析(在括号内打“√”或“×”). (1)对于函数 y=f(x),若 f(4)<f(5),则 f(x)为增函数.( ) (2)函数 y=f(x)在[4,+∞)上是增函数,则函数的单调递增区间是[4,+∞).( ) (3)函数 y=3x的单调递减区间是(-∞,0)∪(0,+∞).( ) (4)对于函数 f(x),x∈D,若对任意 x1, x2∈D,且 x1≠x2 有(x1-x2)[f (x1)-f(x2)]>0,则 函数 f(x)在区间 D 上是增函数.( ) 答案:(1)× (2)× (3)× (4)√
【考点集训】
1.下列函数中,在区间(0,+∞)上为减函数的是( )
A.y=-sin x
B.y=x2-2x+3
C.y=ln (x+1)
x
D.y=2 022-2
解析:y=-sin x 和 y=x2-2x+3 在(0,+∞)上不具备单调性;y=ln (x+1)在(0,
+∞)上单增.故选 D.
答案:D
2.函数 y=log1(-x2+x+6)的单调递增区间为( )
-1<12,解得 1≤x<32,故选 D. 答案:D
4.(必修第一册 P81 例 5 改编)函数 f(x)=2x-5 1在区间[2,4]上的最大值为________, 最小值为________.
解析:因为 f(x)在[1,5]上是减函数,所以最大值为 f(2)=2×52-1=53,最小值为 f(4)
第二章 函 数
[课标解读] 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值, 理解它们的作用和实际意义.
备考第 1 步——梳理教材基础,落实必备知识
1.函数单调性的定义
义域为 I,区间 D⊆I,如果∀x1,x2∈D,当 x1<x2 时

3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

即练即清
1.判断正误(对的打“√”,错的打“✕”)
(1)函数y= 1 的单调递减区间是(-∞,0)∪(0,+∞). ( × )
x
(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数. ( × )
(3)偶函数图象不一定过原点,奇函数的图象一定过原点. ( × )
1
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 3 .
因此f(1)≠f(-1), f(-1)≠-f(1),
故f(x)为非奇非偶函数.
(3)由1 x2 0, 得函数的定义域为(-1,0)∪(0,1),关于原点对称,
| x 2 | 2,
∴x-2<0,∴|x-2|-2=-x,∴f(x)= lg(1 x2) .
x
又∵f(-x)= lg[1 (x)2]=- lg(1 x2) =-f(x),
1 0
1
+b=ln +b=0,
2 (1 0)
2
∴b=-ln 1 =ln 2,此时f(x)=ln 1 1 +ln 2=ln 1 x ,满足题意.
2
2 1 x
1 x
综上可知,a=-1 ,b=ln 2.
2
答案 -1 ;ln 2
2
即练即清
3.判断下列函数的奇偶性:
(1)f(x)=
1
3x x2
;(2)f(x)=|x|+x;
2.(2024届江苏淮安期中,7)若函数f(x)=(3aax, x1)x1 4a, x 1,是定义在R上的减函数,则a的 取值范围为 ( A )
A. 18
,
1 3

高三一轮复习函数的单调性

高三一轮复习函数的单调性

在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.
谢谢观看
汇报人姓名
根据定义证明函数单调性的一般步骤是:(1)设x1,x2是给定区间内的任意两个值,且x1<x2;(2)作差f(x2)-f(x1),并将此差式变形(要注意变形的程度);(3)判断f(x2)-f(x1)的正负(要注意说理的充分性)以确定其增减性.
函数的单调性可以借助函数的导数来确定.一般地,设函数y=f(x)在某个区间内可导,如果f ′(x)>0,则f(x)在这个区间上是增函数,如果f ′(x)<0,则f(x)在这个区间上是减函数.
如果y=f(u)和u=g(x)单调性相同,那么y=f(g(x))是增函数;如果y=f(u)和u=g(x)的单调性相反,那么f(g(x))是减函数.
注意:(1)函数的单调性只能在函数的定义域内来讨论,因此求函数的单调区间需先求定义域.
若要证明f(x)在区间[a,b]上是递增或者递减的就必须证明对区间[a,b]上任意的两个自变量的值 x1,x2,当x1<x2时,都有不等式f(x1)<f(x2)或f(x1)>f(x2).若要证明f(x)在区间[a,b]上不是单调函数,只要举出反例即可,即只要找到两个特殊的x1、x2不满足定义即可.
01
03
02
3.复合函数单调性的判断方法
答案:A
01
答案:D
函数f(x)=ax-1+logax(a>0且a≠1),在[1,2]上的最大值与最小值之和为a,则a的值为________.
Hale Waihona Puke 解析:函数y=ax-1和y=logax在公共定义域内具有相同的单调性,在[1,2]区间上的最值对应着函数的最值,故(a1-1+loga1)+(a2-1+loga2)=1+a+loga2=a,可得loga2=-1,求得

函数的单调性与最值+课件——2025届高三数学一轮复习

函数的单调性与最值+课件——2025届高三数学一轮复习
探究点一 函数单调性的判断与证明
例1 已知函数,且,讨论 的单调性.
[思路点拨] 先分离常数,再根据定义判断函数的单调性,注意分 和 两种情况进行讨论.
解:函数,设,,且 ,则 ,当时,在上单调递增,由,得 ,所以,又, ,所以,即 ,此时在 上单调递增;当时,在 上单调递减,由,得,所以 ,又,,所以 ,即,此时在 上单调递减.综上,当时,函数在 上单调递增;当时,函数在 上单调递减.
单调性
单调区间
续表
3.函数的最值
前提
一般地,设函数的定义域为,如果存在实数 满足
条件
,都有____________; ,使得_____________
,都有____________; ,使得_____________
结论
为最大值
为最小值
几何意义
图象上最高点的_________
图象上最低点的_________
变式题 (多选题)下列函数在其定义域内是增函数的为( )
BD
A. B. C. D.
[解析] 对于A,画出函数 的图象如图所示,易知函数 在其定义域内不是增函数,故A错误;对于B,因为函数是增函数, 是减函数,所以是 上的增函数,故B正确;对于C,函数是减函数,而 为增函数,
在定义域 上为减函数,故C错误;对于D,的定义域为,在上恒成立,故 是上的增函数,故D正确.故选 .
(2)开区间上的“单峰”函数一定存在最大值或最小值.
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 函数 的单调递增区间是_______,单调递减区间是________.
[解析] 由函数的图象可得 的单调递增区间是,单调递减区间是 .
2.[教材改编] 函数 的最大值为___,最小值为___.

2023年新高考数学大一轮复习专题15 单调性问题(原卷版)

2023年新高考数学大一轮复习专题15 单调性问题(原卷版)

专题15单调性问题【考点预测】知识点一:单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题 类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); (2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); (5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. (7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); (5)导数图像定区间; 【方法技巧与总结】1.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性. 注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.【题型归纳目录】题型一:利用导函数与原函数的关系确定原函数图像 题型二:求单调区间题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围 题型四:不含参数单调性讨论 题型五:含参数单调性讨论 情形一:函数为一次函数 情形二:函数为准一次函数 情形三:函数为二次函数型 1.可因式分解 2.不可因式分解型情形四:函数为准二次函数型 题型六:分段分析法讨论 【典例例题】题型一:利用导函数与原函数的关系确定原函数图像例1.(2022·陕西·汉台中学模拟预测(文))设函数()f x 在定义域内可导,()f x 的图象如图所示,则其导函数()'f x 的图象可能是( )A .B .C .D .例2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-例3.(2022·安徽马鞍山·三模(理))已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列结论正确的是( )A .()()()f b f c f a >>B .()()()f b f c f e >=C .()()()f c f b f a >>D .()()()f e f d f c >>【方法技巧与总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间例4.(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)例5.(2021·西藏·林芝市第二高级中学高三阶段练习(理))函数()()3e xf x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,例6.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.【方法技巧与总结】求函数的单调区间的步骤如下: (1)求()f x 的定义域 (2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围例7.(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m的取值范围为( ) A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-例8.(2021·河南·高三阶段练习(文))已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭例9.(2022·全国·高三专题练习)若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =( ) A .-12B .-10C .8D .10例10.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______.例11.(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.例12.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.例13.(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.例14.(2022·全国·高三专题练习(文))若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上存在单调递减区间”,则实数a 的取值范围为________.例15.(2020·江苏·邵伯高级中学高三阶段练习)若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.例16.(2022·全国·高三专题练习(文))已知函数f (x )=3xa-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则实数a 的取值范围是________.【方法技巧与总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围. (3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解. 题型四:不含参数单调性讨论例17.(2022·山东临沂·三模)已知函数()21ln ax f x x-=,其图象在e x =处的切线过点()22e,2e .(1)求a 的值;(2)讨论()f x 的单调性;例18.(2022·天津·模拟预测)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;例19.(2022·天津市滨海新区塘沽第一中学三模)已知函数()()ln 1x a x a f x x+++=(1)若函数()f x 在点()()e,e f 处的切线斜率为0,求a 的值.(2)当1a =时.设函数()()()xf x G x f x '=,求证:()y f x =与()y G x =在[]1,e 上均单调递增;例20.(2022·浙江·杭州高级中学模拟预测)已知函数()()ln ln e1,,0x af x x a x a a +=+-+>->. 当1a =时,求()f x 的单调区间题型五:含参数单调性讨论 情形一:函数为一次函数例21.(2022·江西·二模(文))己知函数()ln 1(),()e 1x f x ax x a R g x x =++∈=-. 讨论()f x 的单调性;例22.(2022·北京八十中模拟预测)已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例23.(2022·广东·模拟预测)已知函数()ln(1)(),()22f x x mx m g x x n =--∈=+-R . 讨论函数()f x 的单调性;情形二:函数为准一次函数例24.(2022·全国·模拟预测(文))设函数()1ln a xf x x+=,其中R a ∈. 当0a ≥时,求函数()f x 的单调区间;例25.(2022·江苏·华罗庚中学三模)已知函数()()2e 3x R f x ax a =-+∈ ,()ln e x g x x x =+(e 为自然对数的底数,25e 9<). 求函数()f x 的单调区间;例26.(2022·云南师大附中模拟预测(理))已知函数()()21ln 12f x x x ax a x =-+-,其中0a .讨论()f x 的单调性;例27.(2022·云南师大附中高三阶段练习(文))已知函数()ln f x x x ax =-. 讨论()f x 的单调性;情形三:函数为二次函数型 1.可因式分解例28.(2022·全国·模拟预测)已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k . 讨论()f x 的单调性;例29.(2022·天津·二模)已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例30.(2022·安徽师范大学附属中学模拟预测(文))已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;例31.(2022·浙江省江山中学模拟预测)函数2()ln 1(,0)x f x x a R a a=-+∈≠.讨论函数()y f x =的单调性;例32.(2022·广东·潮州市瓷都中学三模)已知函数()()()322316R f x x m x mx x =+++∈.讨论函数()f x 的单调性;例33.(2022·湖南·长沙县第一中学模拟预测)已知函数()()()21ln 2a f x x a x x a R =+--∈. 求函数()f x 的单调区间;例34.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈ (1)当1a =-时,求()f x 在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调递增区间.2.不可因式分解型例35.(2022·江苏徐州·模拟预测)已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x . 讨论函数()f x 的单调性;例36.(2022·天津南开·三模)已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明. 情形四:函数为准二次函数型例37.(2022·安徽·合肥市第八中学模拟预测(理))设函数23ln 2()2,()2,e e x xx x f x ax ax g x ax a x =+-=++∈R . 讨论()f x 的单调性;例38.(2022·全国·二模(理))已知函数()()2x e 2e xf x a ax =+++.讨论()f x 的单调性;例39.(2022·安徽·合肥一六八中学模拟预测(理))已知函数()e e x x f x ax -=--(e 为自然对数的底数),其中R a ∈.试讨论函数()f x 的单调性;例40.(2022·浙江·模拟预测)已知函数()()2e 2e x x f x a a x =+--.讨论()f x 的单调性;题型六:分段分析法讨论例41.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()12211ln x f x a x x x a -+=+-++-(0a >,且1a ≠)求函数()f x 的单调区间;【方法技巧与总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.【过关测试】 一、单选题1.(2022·江西·上饶市第一中学模拟预测(理))已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-2.(2022·全国·哈师大附中模拟预测(理))已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( )A .B .C .D .3.(2022·江西师大附中三模(理))下列函数中既是奇函数又是增函数的是( )A .1()f x x x=-B .122()xxf x ⎛+⎫⎪⎝⎭= C .3()tan f x x x =+ D .)()lnf x x =4.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞6.(2022·江西宜春·模拟预测(文))“函数sin y ax x =-在R 上是增函数”是“0a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2022·江西宜春·模拟预测(文))已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2eD .()0,e8.(2022·江苏·南京市天印高级中学模拟预测)已知1,1a b >>,且1(1)e e (e a b b a a ++=+为自然对数),则下列结论一定正确的是( )A .ln()1a b +>B .ln()0-<a bC .122a b +<D .3222a b +< 二、多选题9.(2022·广东·信宜市第二中学高三开学考试)已知()ln x f x x =,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+ B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解 10.(2022·全国·模拟预测)已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12 B .1 C .2 D .311.(2022·全国·高三专题练习)下列函数在区间(0,+∞)上单调递增的是( )A .y =x ﹣(12)x B .y =x +sin x C .y =3﹣x D .y =x 2+2x +112.(2022·广东·模拟预测)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 三、填空题13.(2022·山西运城·模拟预测(理))若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________.14.(2022·重庆八中模拟预测)写出一个具有性质①②③的函数()f x =____________.①()f x 的定义域为()0,+∞;②()()()1212f x x f x f x =+;③当()0,x ∈+∞时,()0f x '>.15.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.16.(2022·江西萍乡·二模(文))已知函数()f x 是R 上的奇函数,且()33f x x x =+,若非零正实数,m n 满足()()20f m mn f n -+=,则11m n+的小值是_______.四、解答题17.(2022·北京工业大学附属中学三模)已知函数()ln R k f x x k k x =--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.18.(2022·青海·大通回族土族自治县教学研究室二模(文))已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.19.(2022·全国·高三专题练习)已知函数2()(1)=--x f x k x e x ,其中k ∈R.当k 2≤时,求函数()f x 的单调区间;20.(2022·全国·高三专题练习)已知函数()e x f x ax -=+.讨论()f x 的单调性;21.(2022·全国·高三专题练习)已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;22.(2022·全国·高三专题练习)讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三一轮复习:函数的单调性
高三一轮复习:函数的单调性教学设计
一、【教学目标】
【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.
二、【教学重点】
函数单调性的概念、判断、证明及应用.
函数的单调性是函数的最重要的性质之一,它在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,三、【教学难点】
归纳抽象函数单调性的定义以及根据定义或导数证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下
(1)函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数、三角函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。

(3)函数的单调性有着广泛的实际应用。

在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;利用函数图象来研究
函数性质的数形结合思想将贯穿于我们整个数学教学。

因此“函数的单调性”在中学数学内容里占有十分重要的地位。

它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。

四、【学情分析】
从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数,指数函数,对数函数,幂函数,三角函数等简单函数,能画出这些简单函数的图像,从图像的直观变化,进一步巩固函数的单调性。

从学生现有的学习能力看,通过初中、高中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

五、【教学方法】教师是教学的主体、学生是学习的主体,通过双主体的教学模式方法:
启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。

探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。

合作学习——通过组织小组讨论达到探究、归纳的目的。

六、【教学手段】计算机、投影仪.
七、【教学过程】
(一)基础知识梳理:
1.函数的单调性定义:
2.单调区间:
3.一些基本函数的单调性 (1)一次函数b kx y += (2)反比例函数x k y = (3)二次函数c
bx ax y ++=2
(4)指数函数x a
y =()1,0≠>a a
(5)对数函数x y a
log
=()
1,0≠>a a
(二)基础能力强化:
1.下列函数中,在)
,(0∞-内是减函数的是( ) A.2
1x y -= B.x x y 22
+= C.2
1x y = D.1-=x x y
2.x
x
x f -=1)(在( ) A.),(),(∞+∞-11Y 上是增函数 B.),(),(∞+∞-11Y 是减函数 C.),)和(,(∞+∞-11是增函数 D.),)和(,(∞+∞-11是减函数
3.函数3)1(22
+--=x a x y 在区间(]1,∞-内递减,在)
,(∞+1内递增,则a 的值是( )
A.1
B.3
C.5
D.-1
4.函数54)(2+-=mx x x f 在区间[)∞+-,2上是增函数,在区
间(]2-∞-,
上是减函数,则)1(f =( ) A.-7 B.1 C.17 D.25
5.函数2)1(2)(2
+-+=x a x x f 在区间4,(∞-]上是减函数,

么实数a 的取值范围是( )
3-≤a B.3-≥a C.5≤a D.3≥a
6.设函数b x a x f +-=)(12)(是R 上的增函数,则有( )
A.2
1>a B.2
1

a
C.21->a D .2
1
<a 7.已知函数
⎩⎨
⎧≥+-<=)
0(4)3()0()(x a x a x a x f x ,满足对任意2
1
x x
≠,
都有0)
()(2
1
2
1
<--x
x x f x f 成立,则a 的取值范围是( ) A.⎥⎦
⎤ ⎝
⎛41,0 B.)(,1
0 C.⎪⎭

⎢⎣
⎡14
1, D.)(3,0
(三)课堂互动讲练:
考点一、函数单调性的证明方法:
(1)定义法: (2)求导法:
(3)定义的两种等价形式: 例1:证明:函数)(x f =x x -+12
在定义域上是减函数.
例2:求函数()m x x x x f ++=9-6-2
3
的单调区间.
例3:试讨论函数)(x f =)0(>+a x
a x 的单调性.
考点二、复合函数的单调性:
例1:求下列函数的单调区间,并指出其增减性。

(1))4(log 2
2
1x x y -= (2)3
22
1
2-+=x x y
练习:
1.函数3
22)2
1(-+=x x y 的单调递减区间是 ;函数)
23(log
23
1x x y --=的单调递增区间是
2.已知)2(log ax y a
-=在[],10上是减函数,则实数a 的取值范围是( )
A.()1,0
B.()1,2
C.()2,0
D.[)∞+,
2
考点三、函数单调性的应用:
1.函数)(x f 在)
,(∞+∞-上是增函数,且a 为实数,则
有( )
A.)2()(a f a f <
B.)()(2
a f a f < C.)()(2
a f a a f <- D.)()1(2
a f a f >+
2.已知函数)0(42)(2
>++=a ax ax x f ,若0,2
121=+<x x x x ,则( )
A.)()(21x f x f >
B.)()(2
1x f x f =
C.)()(21x f x f <
D.)()(2
1x f x f 与的大小不能确定
3.已知函数)(x f y =在[)∞+,
0上是减函数,试比较)1()4
3
(2+-a a f f 与的大小。

4.如果函数c bx x x f ++=2
)(,对任意实数t 都有)2()2(t f t f -=+,试比较)4(),2(),1(f f f 的大小。

5.若)(x f 是定义在)(,11-上的减函数,解不等式0)1()1(2
<---a f a f .
6.定义正实数集上的函数)(x f 满足以下三条:
(1)1)4(=f ;(2))()()(y f x f xy f +=;(3)y x >时,
)(x f )(y f >. 求满足2)6()(≤-+a f a f 的实数a 的取值范围。

7.函数)(x f 对任意的R b a ∈,,都有1)()()(-+=+b f a f b a f , 并且当0>x 时,1)(>x f (1)求证:)(x f 是R 上的增函数
(2)若5)4(=f ,解不等式3)23(2
<--m m f 。

相关文档
最新文档