最小二乘法线性详细说明
最小二乘法求系数模型

最小二乘法求系数模型最小二乘法是一种常用的数据拟合方法,用于求解线性回归问题中的系数模型。
该方法以最小化残差平方和为目标,通过对数据进行拟合来确定模型的系数。
本文将详细介绍最小二乘法的原理和应用。
一、最小二乘法原理最小二乘法的核心思想是找到一个最佳的拟合曲线或平面,使得该曲线或平面与实际数据之间的残差平方和最小。
在线性回归问题中,我们假设因变量y与自变量x之间存在线性关系,即y = β0 + β1x + ε,其中β0和β1为待求的系数,ε为误差项。
我们的目标是找到最佳的β0和β1,使得残差平方和最小。
具体而言,最小二乘法的步骤如下:1. 假设因变量y与自变量x之间存在线性关系,即y = β0 + β1x + ε。
2. 根据给定的数据集,计算每个数据点的残差,即实际值与拟合值之间的差异。
3. 计算残差的平方和,即求解目标函数:S(β0, β1) = Σ(yi - (β0 + β1xi))^2。
4. 对目标函数进行求导,并令偏导数等于零,求解β0和β1的值。
5. 对得到的β0和β1进行验证,并判断模型的拟合程度。
二、最小二乘法的应用最小二乘法可以应用于各种领域的数据拟合问题,例如经济学、统计学、金融学等。
下面以经济学中的消费函数为例,说明最小二乘法的应用。
在经济学中,消费函数描述了消费支出与收入之间的关系。
我们可以假设消费函数为线性函数,即 C = β0 + β1Y + ε,其中C为消费支出,Y为收入,β0和β1为待求的系数,ε为误差项。
我们的目标是通过最小二乘法来估计β0和β1的值。
具体步骤如下:1. 收集相关数据,包括消费支出和收入的观测值。
2. 根据最小二乘法的原理,计算每个数据点的残差,即实际的消费支出与拟合值之间的差异。
3. 计算残差的平方和,即目标函数:S(β0, β1) = Σ(Ci - (β0 + β1Yi))^2。
4. 对目标函数进行求导,并令偏导数等于零,求解β0和β1的值。
5. 对得到的β0和β1进行验证,并根据模型的拟合程度来评估消费函数的有效性。
第五章 最小二乘法

第二节 正规方程
第五章 线性参数的最小二乘法
正规方程:将误差方程按最小二乘法原理转化得到的
有确定解的代数方程组。
一、等精度测量线性参数最小二乘处理的正规方程
v1 l1 (a11 x1 a12 x2 a1 t xt ) v 2 l 2 (a21 x1 a22 x2 a2 t xt ) v l (a x a x a x ) n n1 1 n2 2 nt t n
2
ln (an1 x1 an 2 x2 ant xt )
vi x1
2
2
2a11 l1 (a11 x1 a12 x2 a1t xt ) 2a21 l2 (a21 x1 a22 x2 a2 t xt ) 2an1 ln (an1 x1 an 2 x2 ant xt ) 0
a
i1 i
a
i1
ai 2 x2
a
it
a it x t 0
2 2 vi 2 a i1a i1 0 2 x1
说明存在极小值
正规方程 (t个)
n n n n ai 1 l i ai 1ai 1 x1 ai 1ai 2 x2 ai 1ait x t i 1 i 1 i 1 i 1 n n n n ai 2 l i ai 2 ai 1 x1 ai 2 ai 2 x2 ai 2 ait x t i 1 i 1 i 1 i 1 n n n n ait l i ait ai 1 x1 ait ai 2 x2 ait ait x t i 1 i 1 i 1 i 1
最小二乘法线性拟合

—26 n 基本概念与数据处理4.最小二乘法线性拟合(非常好)我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分 散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据 处理方法,求出的a 和b 误差较大。
用最小二乘法拟合直线处理数据时 ,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。
最小二乘法就是将一组符合 Y=a+bX 关系的测量数据,用计算的方法求出最佳的a和b 。
显然,关键是如何求出最佳的a 和b 。
(1)求回归直线设直线方程的表达式为: y 二 a bx(2-6-1)要根据测量数据求出最佳的 a 和b o 对满足线性关系的一组等精度测量数据 (X i ,y i ), 假定自变量X i 的误差可以忽略,则在同一 X i 下,测量点y i 和直线上的点 a+bx i 的偏差d i 如下:d i = y i - a - bx-id^ — y 2~ a - bx 2d n = yn ~a ~ bx n显然最好测量点都在直线上(即 d i =d 2=,, =d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上, 这样只有考虑d i 、d 2、”、 d n 为最小,也就是考虑d i +d 2+,, +d n 为最小,但因d i 、d 2、,,、d n 有正有负,加起来可能相互抵消,因此不可取;而|d i | + |d 2|+ ,,+ |d n |又不好解方程,因而不可行。
现在米取一种等效方法:当d^+d/ + ,,+d n 2222对a 和b 为最小时,d i 、d 2、,,、 d n 也为最小。
取(d i +d 2 +,, +d n )为最小值,求 a和b 的方法叫最小二乘法。
nD 八 d i 2i JD 对a 和b 分别求一阶偏导数为:n-na -b ' X i ]i T nnD 八 d i 2 = i ±(2-6-2)-=D-=b:D-a n 一2「y ii 3 n一2[、X i y i i 』n基本概念与数据处理—27 - -b' X j2]i d—28 - n 基本概念与数据处理2 ' x -x将a 、b 值带入线性方程y = a bx ,即得到回归直线方程。
最小二乘法公式计算公式

最小二乘法公式计算公式最小二乘法是一种常用的数据拟合方法,它通过最小化观测数据与拟合曲线之间的残差平方和,来确定拟合曲线的参数。
在数学领域中,最小二乘法通过求解线性方程组来确定问题的最优解。
本文将详细介绍最小二乘法的计算公式,并给出应用示例。
1. 最小二乘法的一般形式假设我们有一组观测数据,包括自变量x和因变量y。
我们希望找到一个拟合曲线,使得观测数据与该曲线的残差平方和最小。
拟合曲线的一般形式可以表示为:y = f(x, β) + ε其中,f(x, β)是关于自变量x和参数向量β的函数,ε是误差项。
根据最小二乘法的原理,我们需要最小化残差平方和:RSS(β) = Σ(y - f(x, β))^22. 最小二乘法的求解过程为了找到使得残差平方和最小的参数向量β,我们需要对该函数进行求导,并令导数为零。
首先,我们定义一个矩阵X,该矩阵的每一行表示一个观测数据的自变量,每一列表示一个参数。
类似地,我们定义一个向量y,其中每个元素对应一个观测数据的因变量。
拟合曲线可表示为:y = Xβ + ε将这个表达式代入残差平方和的公式中,得到:RSS(β) = (y - Xβ)T(y - Xβ)我们的目标是找到一个参数向量β,使得RSS最小化。
使用微积分的方法,我们可以对RSS进行求导,得到:∂RSS(β) / ∂β = -2X^T(y - Xβ) = 0通过上述求导结果,我们可以解得最小二乘法的估计量β的闭式解为:β = (X^TX)^(-1)X^Ty3. 应用示例让我们通过一个简单的线性回归示例来演示最小二乘法的应用。
假设我们有以下观测数据:x = [1, 2, 3, 4, 5]y = [2, 4, 5, 4, 5]我们希望通过最小二乘法来拟合一个线性模型y = β0 + β1x。
首先,我们将数据转换为矩阵形式:X = [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5]]y = [[2], [4], [5], [4], [5]]接下来,我们可以计算参数向量β:β = (X^TX)^(-1)X^Ty计算过程如下:X^TX = [[5, 15], [15, 55]](X^TX)^(-1) = [[11, -3], [-3, 1]]X^Ty = [[20], [70]]将上述结果代入β的公式,即可计算得到具体的参数值:β = [[11, -3], [-3, 1]] * [[20], [70]] = [[1.1818], [3.2727]]因此,最小二乘法拟合出的线性模型为:y = 1.1818 + 3.2727x通过该模型,我们可以预测其他自变量对应的因变量的值。
最小二乘法的原理及其应用

最小二乘法的原理及其应用1. 最小二乘法的原理最小二乘法是一种常用的数学优化方法,其原理是通过最小化残差平方和来寻找数据的最佳拟合线或曲线。
当数据存在随机误差时,最小二乘法可以有效地估计模型参数。
最小二乘法的基本原理可以概括为以下几个步骤:1.首先,假设模型的形式,如线性模型:y=mx+b。
2.然后,定义一个衡量模型拟合程度的误差函数,通常采用残差的平方和:$E(m, b) = \\sum_{i=1}^{n} (y_i - (mx_i + b))^2$。
3.接下来,根据最小二乘法的原理,我们需要通过对误差函数求偏导数,得出使误差函数最小化的模型参数。
4.最后,通过优化算法,如梯度下降法等,迭代地调整模型参数,使误差函数达到最小值,从而获得最佳拟合模型。
最小二乘法的原理非常简单和直观,因此被广泛应用于各个领域,如统计学、经济学、工程学等。
2. 最小二乘法的应用最小二乘法在实际问题中有着广泛的应用,下面将介绍其中的几个应用场景。
2.1 线性回归线性回归是最小二乘法最常见的应用之一。
在线性回归中,最小二乘法用于估计自变量与因变量之间的线性关系。
通过最小化残差平方和,我们可以找到一条最佳拟合直线,从而对未知的因变量进行预测。
线性回归广泛应用于经济学、社会学等领域,帮助研究者探索变量之间的相互关系。
2.2 曲线拟合最小二乘法还可以用于曲线拟合。
当我们需要拟合一个非线性模型时,可以通过最小二乘法来估计参数。
通过选择适当的模型形式和误差函数,可以得到最佳拟合曲线,从而准确地描述数据的变化趋势。
曲线拟合在信号处理、图像处理等领域具有重要的应用。
2.3 数据降维数据降维是指将高维度的数据转化为低维度表示,以便于可视化和分析。
最小二乘法可以用于主成分分析(PCA)等降维方法中。
通过寻找投影方向,使得在低维度空间中的数据点到其投影点的平均距离最小化,可以实现数据的有效降维。
2.4 系统辨识在控制工程中,最小二乘法经常被用于系统辨识。
最小二乘法线性分类器设计说明

题最小二乘法线性分类器设计目讲课老师:学生姓名:所属院系:专业: 学号:最小二乘法线性分类器设计1描述1.1最小二乘法原理的概述最小二乘法原理是指测量结果的最可信赖值应在残余误差平方和为最小的条件下求出。
从几何意义上讲,就是寻求与给定点(X j,yj (i=0,1,…,m)的距离平方和为最小的曲线y = p(x)。
函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
1.2最小二乘法的基本原理最小二乘法又称曲线拟合,所谓“拟合”即不要求所作的曲线完全通过所有的数据点,只要求所得的曲线能反映数据的基本趋势。
曲线拟合的几何解释:求一条曲线,使数据点均在离此曲线的上方或下方不远处。
从整体上考虑近似函数p(x)同所给数据点(X i, y i) (i=0,1, III,m)误差n = p(xj - y i (i =0,1,||( ,m)的大小,常用的方法有以下三种:一是误差r j=p(x)—y i (i=0,1」|(,m)绝对值的最大值max斤,即误差向量1g①mr =(r o,rj||,r m)T的范数;二是误差绝对值的和送斤|,即误差向量r的1—范数;三i=0m是误差平方和v『的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但i =0不便于微分运算,后一种方法相当于考虑2—范数的平方,因此在曲线拟合中常采用误差m平方和〔二『来度量误差r i(i=0 , 1,…,m)的整体大小。
i =0数据拟合的具体作法是:对给定数据(x,yJ (i=0,1,…,m),在取定的函数类①中,求p(x)・:•:」,使误差斤=p(X i)- y i (i=0,1,…,m)的平方和最小,即m m2'『八[p(xj -yj 二mini =0 i =0从几何意义上讲,就是寻求与给定点(X i,yj (i=0,1,…,m)的距离平方和为最小的曲线y = p(x)(图1)。
函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
最小二乘法线性拟合

4.最小二乘法线性拟合(非常好)我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。
用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。
最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。
显然,关键是如何求出最佳的a 和b 。
(1) 求回归直线设直线方程的表达式为:bx a y += (2-6-1)要根据测量数据求出最佳的a 和b 。
对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下:111bx a y d --=222bx a y d --=n n n bx a y d --=显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+|d 2|+……+ |d n |又不好解方程,因而不可行。
现在采取一种等效方法:当d 12+d 22+……+d n2对a 和b 为最小时,d 1、d 2、……、d n 也为最小。
取(d 12+d 22+……+d n 2)为最小值,求a 和b 的方法叫最小二乘法。
令 ∑==ni idD 12=2112][i i ni ni ib a y dD --==∑∑== (2-6-2)D 对a 和b 分别求一阶偏导数为:][211∑∑==---=∂∂ni i n i i x b na y a D][21211∑∑∑===---=∂∂n i i n i i n i i i x b x a y x b D再求二阶偏导数为:n a D 222=∂∂; ∑==∂∂ni i x b D 12222 显然: 0222≥=∂∂n a D ; 021222≥=∂∂∑=n i i x b D 满足最小值条件,令一阶偏导数为零:011=--∑∑==ni i ni ix b na y(2-6-3)01211=--∑∑∑===ni i ni i ni ii x b x a yx (2-6-4)引入平均值: ∑==ni i x n x 11; ∑==n i i y n y 11;∑==n i i x n x 1221; ∑==ni i i y x n xy 11则: 0=--x b a y02=--x b x a xy (2-6-5) 解得: x b y a -= (2-6-6)22xx y x xy b --=(2-6-7)将a 、b 值带入线性方程bx a y +=,即得到回归直线方程。
线性参数的最小二乘法处理

W1、 +1″, +10″, +1″, +12″,
W2、 +6″, +4″,
W3、
W4„
Wn
+2″ , -3″ , +4″ +12″, +4″ +3″, +4″
+12″, +12″, +12″
W12
2
12
W22
2 2
W32
32
最小值
3
即 ∑(PW2)=(P1W21)+(P2W22)+(P3W32)
的测量结果 yi 最接近真值,最为可靠,即: yi=∠i+Wi 由于改正数 Wi 的二次方之和为最小,因此称为最小二乘法。 二 最小二乘法理 现在我们来证明一下,最小二乘法和概率论中最大似然方法(算术平均值方法) 是一致的。 (一)等精度测量时 (1)最大似然方法 设 x1,x2„xn 为某量 x 的等精度测量列,且服从正态分布,现以最大似然法和最小 二乘法分别求其最或是值(未知量的最佳估计量) 在概率论的大数定律与中心极限定理那一章我们讲过,随着测量次数的增加,测 量值的算术平均值也稳定于一个常数,即
2 i 1
n
曾给出: vi2
i 1
n
n n 1 n 2 ,由此可知 x vi2 / i2 为最小,这就是最小二乘法的基本 i n i 1 i 1
含义。引入权的符号 P ,最小二乘法可以写成下列形式:
Pv
i 1
n
2 i i
最小
在等精度测量中, 1 2 ... , P1 P2 ... Pn 即: 最小二乘法可以写成下列形式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
在处理数据时,常要把实验获得的一系 列数据点描成曲线表反映物理量间的关系。 为了使曲线能代替数据点的分布规律,则 要求所描曲线是平滑的,既要尽可能使各 数据点对称且均匀分布在曲线两侧。由于 目测有误差,所以,同一组数据点不同的 实验者可能描成几条不同的曲线(或直线), 而且似乎都满足上述平滑的条件。那么, 究竟哪一条是最曲线呢?这一问题就是 “曲线拟合”问题。一般来说,“曲线拟 合”的任务有两个:
2.Y与X之间是否是直线关系(协方差或相关系 数)?若是,将用一条直线描述它们之间的关系。
3.什么是最好?—找出判断“最好”的原则。 最好指的是找一条直线使得这些点到该直线的纵 向距离的和(平方和)最小。
9
第一节 一元线性拟合
1. 函数形式已知
数学推证过程
1.已知函数为线性关系,其形式为:
大。
22
23
这时“最佳”二字只能说明数据点距这直线的总偏差 较小,但不能反映出数据点的分布规律。或者说,我 们事先的初步判断是错误的。数据点的分布规律不是 线形的,根本就不能用一条直线表示。
为了帮助我们理解这一点,我们再讨论极限情况。
当 R=0时(s 最大)sxy 0 , syy 0,sxx 0,所以
b=0,a= y , 从而得到y= y 的错误结论。这说明数据点
的分布不是线性,不能拟合为线性关系曲线。
24
起码相关系数 -- R0
R0 的值与数据点的个数n有关。书中P40表5-3 中给出了起码相关系数 R0的值。
如果有一组数据点初步观测为线性分布。那么, 为多大R 时,就可以用一条最佳直线来表示其分 布呢?
只有相关系数 R≥ R时0 ,才能用线性回归方程
y=a+bx来描述数据的的分布规律。否则毫无 意义。
25
回归方程的精密度
根据统计理论还可以求出a和b的标准偏差分别 为:
b s
sx x
a b
xi2 n
xi2
s
nsxx
26
回归分析法的运算步骤
首先计算R,判断是否能拟合成线性曲线。 R≥ R0
14
根据二元函数求极值法,把③式对a和b分 别求出偏导数。得:
n
v2 i
i1
a n
2yi a bxi
4
v2 i
i1 2
b
yi a bxi xi
15
令④等于零,得:
n
n
yi na b xi 0
i1 n
i1
n
n
5
yixi
i1
a xi i1
b
x2 i
i1
0
解方程,得:
vi yi2 xi2 (1)
如果测量时,使x较之y的偏差很小,以致可以忽略 (即Δxi很小 )时,我们可以认为x的测量是准确的, 而数据的偏差,主要是y的偏差,因而有:
vi yi yi a bxi ②
12
我们的目的是根据数据点确定回归常数a和b, 并且希望确定的a和b能使数据点尽量靠近直线 能使v尽量的小。由于偏差v大小不一,有正有 负,所以实际上只能希望总的偏差(vi2)最小。
2
v2 i
b2
2 (
v2 i
)2
ab
4n
x2 i
x2 x 2 0
所以⑥⑦式求出的a, b可使为极小值。因而由a, b 所确定的曲线y=a+bx就是用最小二乘法拟合的最 佳曲线。
由于已知函数形式为非线性时,可用变量代换法 “曲线改直”使函数变为线性关系,因而最小二 乘法就有更普遍的意义。
2
一 是物理量y与x间的函数关系已经确定, 只有其中的常数未定(及具体形式未定) 时,根据数据点拟合出各常数的最佳值。
二 是在物理量y与x间函数关系未知时,从 函数点拟合出y与x函数关系的经验公式以 及求出各个常数的最佳值。
3
解决问题的办法
寻找变量之间直线关系的方法很多。于是,再接下 来则是从众多方法中,寻找一种优良的方法,运用 方法去求出线性模型—y=a+bx+u中的截距a= ?; 直线的斜率b= ? 正是是本章介绍的最小二乘法。
R=0.9999
s =0.055
b=1.993
a=-0.007
b= s sxx =0.0057 0.006
= a
b
xi 22
=0.032
n
表明 a>a是零结果,即a=0.
因此,I-U间为线性关系即所测电阻为一线性电阻。 由表二数据得回归方程为y=bx,即I=1.993u(mA)其剩
余标准差为s =0.06
b
sxy sxx
1.9955
1.996
a y bx 0.0459
其次为了检查粗差,先计算剩余标准偏差:
(1 R2 )syy (n 2) 0.086395 0.087
取 s =0.087
30
利用肖维湟准则剔除粗差,从§2(p12)表2-1可查的n=11 时,k=2.00, 即位标准差的极限值。表三给出了此极限值下 测量值y(I)的上下限。由表二,表三可知u=5.00v组数据的I 值有粗差的坏值,应予剔除。剔除后重新计算,并经过检 查,得:
b sxy sxx ⑥
a y bx ⑦
16
公式⑥⑦式中:
sxy xiyi
xi yi n
sxx
x2 i
xi 2 n
x xi n
从④不难求出对a, b的二阶偏导数为:
2
vi2 a 2
2n
2
vi2 b 2
2
xi 2
2
vi2
ab
2
xi
17
2
v2 i
a 2
而且: b 1.993 0.006
31
第二节 二元线性回归
已知函数形式(或判断经验公式的函数形式)为 y a b1x1 b2x2
式中,均为独立变量,故是二元线性回归。 若有实验数据:
x1 x11, x12,......... .x1n x2 x21, x22,......... .x2n
sxx
(
x2 i
xi)2 110 1.10 102
n
syy
(
y2 i
xi)2 1523.26 1.523102
n
R sxy sxxsyy 0.9998 0.735 R0
29
式中的0.735是n=11时的起码相关系数R。所以 x,y(即u,I)间是线性关系,可用y=a+bx表示。且:
7
最小二乘法的地位与作用
现在回归分析法已远非道尔顿的本意,已经成 为探索变量之间关系最重要的方法,用以找出 变量之间关系的具体表现形式。
后来,回归分析法从其方法的数学原理——误 差平方和最小出发,改称为最小二乘法。
8
最小二乘法的思路
1.为了精确地描述Y与X之间的关系,必须使用这 两个变量的每一对观察值,才不至于以点概面。
差并计算出b, a, a , b .
表一
Xu(V) YI(mA) Xu(V) YI(mA)
0.00 1.00 2.00 3.00 4.00 5.00 0.00 2.00 4.01 6.05 7.85 9.60 6.00 7.00 8.00 9.00 10.00 11.83 13.75 16.02 18.10 19.94
b2 s11 s2 y s12 s1y
s s s 11 22
2 12
a y b1x1 b2 x 2
33
公式中:
s11
x2 1i
(
x1i)2 n
s22
x2 2i
(
x2i)2 n
y a bx u yˆ 84.33 0.516 x
如此以来,高的伸进了天,低的缩入了地。他百思 不得其解,同时又发现某人种的平均身高是相当稳 定的。最后得到结论:儿子们的身高回复于全体男 子的平均身高,即“回归”——见1889年F.Gallton 的论文《普用回归定律》。
后人将此种方法普遍用于寻找变量之间的规律
所谓最小二乘法就是这样一个法则,按照这个 法则,最好地拟合于各数据点的最佳曲线应使 各数据点与曲线偏差的平方和为最小。
13
由最小二乘法确定a和b
首先,求偏差平方和,将②式两边平方后相加, 得:
n
n
2
vi2 yi a bxi ③
i1 i1
显然,vi2是a, b的函数。按最小二乘法,当a, b选择适当,能使为最小时y=a+bx才是最佳曲 线。
归方程与各数据点的拟合程度。
20
剩余标准差 s
s
vi2 n2
(1R2 )syy n2
公式中:
syy yi2 ( yi)2
n
R sxy sxxsyy
21
R称为相关系数。其值可正可负,一般有:
0 R 1
a:当R=±1时,s=vi2 0,即各数据点与最佳直线完全重合。
b:0<R<1时,各数据点与最佳直线不完全重合。有两种 情况:
19
3. 回归方程的精度和相关系数
用最小二乘法确定a, b存在误差。 总结经验公式时,我们初步分析判断所假定
的函数关系是正确,为了解决这些问题,就 需要讨论回归方程的精度和相关性。 为了估计回归方程的精度,进一步计算数据
点 xi,yi 偏离最佳直线y=a+bx的大小,我们 引入概念——剩余标准差 s ,它反映着回
18
2. 经验公式的线性回归—函数形式未知
由于经验公式的函数形式是未知的,因而恰 当地选择经验公式的函数形式就成了曲线拟 合中的重要问题。
在进行经验公式的回归时,必须先确定函数 的形式。确定函数形式一般是根据理论的推 断或者从实验数据的变化趋势来推测判断。