最小二乘法线性拟合y
三种常用的拟合直线方法

三种常用的拟合直线方法
在数学和统计学中,拟合直线是一种常用的数据分析方法,可以用来描述两个变量之间的关系。
下面介绍三种常用的拟合直线方法: 1. 最小二乘法:最小二乘法是一种常用的拟合直线方法,它通过将数据点到直线的距离的平方和最小化来确定直线的位置。
该方法适用于线性回归问题,即适用于自变量和因变量之间呈线性关系的情况。
2. 线性规划法:线性规划法是一种将数据点拟合到直线上的方法,它通过寻找一条直线,使得所有数据点到该直线的距离之和最小化。
与最小二乘法不同的是,线性规划法可以适用于非线性回归问题。
3. 非线性规划法:非线性规划法是一种将数据点拟合到曲线上的方法,它通过寻找一条曲线,使得所有数据点到该曲线的距离之和最小化。
该方法适用于非线性回归问题,如指数、对数等曲线拟合。
无论选择哪种方法,拟合直线都是一种重要的数据分析方法,可以帮助我们更好地理解数据之间的关系,从而为决策提供更加准确的依据。
- 1 -。
最小二乘法拟合原理

最新资料推荐最小二乘法拟合原理最小二乘法拟合原理最小二乘拟合在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量x与y之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x与y之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设x与y之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
一、最小二乘法原理在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y的误差。
设x和y的函数关系由理论公式y = f (x; cl , c2 , cm) (0-0-1 ) 给出,其中cl , c2 , cm是m个要通过实验确定的参数。
对于每组观测数据(xi , yi ) i = 1, 2 , , N。
都对应于xy平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取m组测量值代入式(0-0-1 ),便得到方程组yi1 / 12=f (x; cl , c2 , cm)(0-0-2 )式中i = 1,2 , , m.求m个方程的联立解即得m个参数的数值。
显然Nm时,参数不能确定。
在Nm的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m个参数值,只能用曲线拟合的方法来处理。
设测量中不存在着糸统误差,或者说已经修正,则y 的观测值yi围绕着期望值f (x ;cl ,c2 , cm)摆动,其分-布为正态分布,则yi的概率密度为p yi 1 yi f xi;c1, c2, ............................... , cm exp 2 2 i2 i2 ,式中i是分布的标准误差为简便起见,下面用C代表(cl,c2,cm)。
最小二乘法知识

最小二乘法知识最小二乘法是一种最优化方法,经常用于拟合数据和解决回归问题。
它的目标是通过调整模型参数,使得模型的预测值与观测值之间的差异最小。
最小二乘法的核心思想是最小化误差的平方和。
对于给定的数据集,假设有一个线性模型y = β₀ + β₁x₁ + β₂x₂ + ... +βₙxₙ,其中β₀, β₁, β₂, ... , βₙ 是需要求解的未知参数,x₁, x₂, ... , xₙ 是自变量,y 是因变量。
那么对于每个样本点 (xᵢ, yᵢ),可以计算其预测值ŷᵢ = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,然后计算预测值与实际值之间的差异 eᵢ = yᵢ - ŷᵢ。
最小二乘法的目标是使得误差的平方和最小化,即最小化目标函数 E = ∑(yᵢ - ŷᵢ)²。
对于简单的线性回归问题,即只有一个自变量的情况下,最小二乘法可以通过解析方法求解参数的闭合解。
我们可以通过求偏导数,令目标函数对参数的偏导数等于零,求解出参数的最优解。
然而,对于复杂的非线性回归问题,解析方法通常不可行。
在实际应用中,最小二乘法通常使用迭代方法进行求解。
一种常用的迭代方法是梯度下降法。
梯度下降法通过反复进行参数更新的方式逐步降低目标函数的值,直到收敛到最优解。
具体而言,梯度下降法首先随机初始化参数的值,然后计算目标函数对于每个参数的偏导数,根据偏导数的方向更新参数的值。
迭代更新的过程可以通过下式表示:βₙ = βₙ - α(∂E/∂βₙ)其中,α 是学习率参数,控制每次更新参数的步长。
学习率需要适当选择,过小会导致收敛过慢,过大会导致震荡甚至不收敛。
最小二乘法除了可以用于线性回归问题,还可以用于其他类型的回归问题,比如多项式回归。
在多项式回归中,我们可以通过增加高次项来拟合非线性关系。
同样地,最小二乘法可以通过调整多项式的系数来使得拟合曲线与实际数据更加接近。
除了回归问题,最小二乘法还可以应用于其他领域,比如数据压缩、信号处理和统计建模等。
最小二乘法的拟合

一、最小二乘法与最小一乘法1.什么时候用最小二乘法在研究两个变量之间的关系时,可以用回归分析的方法进行分析。
当确定了描述两个变量之间的回归模型后,就可以使用最小二乘法估计模型中的参数,进而建立经验方程.例如,在现实世界中,这样的情形大量存在着:两个变量X和Y(比如身高和体重)彼此有一些依赖关系,由X 可以部分地决定Y的值,但这种关系又是不确定的.人们常常借助统计学中的回归模型来寻找两个变量之间的关系,而模型的建立当然是依据观测数据.首先通过试验或调查获得x和Y的一组对应关系(x1,Y1),(x2,Y2),…,(x n,Y n),然后回答下列5个问题:1. 这两个变量是否有关系?(画出散点图,作直观判断)2. 这些关系是否可以近似用函数模型来描述?(利用散点图、已积累的函数曲线形状的知识和试验数据,选择适当的回归模型,如一元线性模型y=b0+b1x,二次函数模型y=b0+b1x+b2x2等)3. 建立回归模型.4. 对模型中的参数进行估计,最小二乘法是这些参数的一种常用估计方法.5. 讨论模型的拟合效果.在上述第3步中,设所建立的回归模型的一般形式是,其中Y称为响应变量,x称为解释变量或协变量;是一个由参数决定的回归函数;是一个不可观测的随机误差.为了通过试验数据来估计参数的值,可以采用许多统计方法,而最小二乘法是目前最常用、最基本的.由的估计值决定的方程称为经验回归方程或经验方程.教科书中涉及的回归模型是最简单的一元线性模型Y=b0+b1x+,此时模型的拟合效果可以通过Pearson相关系数来描述。
事实上,在线性回归模型中可以证明相关指数等于相关系数的平方.2.什么是最小二乘法思想简单地说,最小二乘的思想就是要使得观测点和估计点的距离的平方和达到最小.这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小.例如,对于回归模型,若,…,为收集到的观测数据,则应该用来估计,这里是的估计值。
最小二乘法 线性与非线性拟合

最小二乘法线性与非线性拟合最小二乘法实现数据拟合最小二乘法原理函数插值是差值函数p(x)与被插函数f(x)在节点处函数值相同,即p( )=f( ) (i=0,1,2,3……,n),而曲线拟合函数不要求严格地通过所有数据点( ),也就是说拟合函数在处的偏差=不都严格地等于零。
但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求| |按某种度量标准最小。
即=为最小。
这种要求误差平方和最小的拟合称为曲线拟合的最小二乘法。
(一)线性最小二乘拟合根据线性最小二乘拟合理论,我们得知关于系数矩阵A的解法为A=R\Y。
例题假设测出了一组,由下面的表格给出,且已知函数原型为y(x)=c1+c2*e^(-3*x)+c3*cos(-2*x)*exp(-4*x)+c4*x^2试用已知数据求出待定系数的值。
在Matlab中输入以下程序x=[0,0.2,0.4,0.7,0.9,0.92,0.99,1.2,1.4,1.48,1.5]';y=[2.88;2.2576;1.9683;1.9258;2.0862;2.109;2.1979;2.5409;2.9627;3.155;3.2052];A=[ones(size(x)) exp(-3*x),cos(-2*x).*exp(-4*x) x.^2];c=A\y;c'运行结果为ans =1.22002.3397 -0.6797 0.8700下面画出由拟合得到的曲线及已知的数据散点图x1=[0:0.01:1.5]';A1=[ones(size(x1)) exp(-3*x1),cos(-2*x1).*exp(-4*x1) x1.^2];y1=A1*c;plot(x1,y1,x,y,'o')事实上,上面给出的数据就是由已知曲线y(x)= 0.8700-0.6797*e^(-3*x)+ 2.3397*cos(-2*x)*exp(-4*x)+ 1.2200*x^2产生的,由上图可见拟合效果较好。
最小二乘法的线性拟合

8
4.3 数表与线图的公式化处理
前面介绍的数表与线图的程序化处理方法,这种方法虽然 解决了数表和线图在CAD作业中的存储和检索问题,但还存 在下述一些缺点:
1)占用大量计算机内存。数表和线图的程序化处理,要将 数表中的全部数据编进计算程序中,实现数据的自动检索。 当数表很庞大时,所占内存很大。一般情况下,一个设计计 算程序常常需要使用多个数表,则所占内存更加庞大,严重 时甚至会影响程序的正常运行。
4
4.2.2 直线图的公式化处理
1、直角坐标直线图的公式化处理
(a)直齿轮
(b)斜齿轮
5
2、对数坐标直线图的公式化处理
对数坐标中的直线方程可写为:
注意:一般程序语言中,只有lnx (自然对数)无十进制对数 lgx ,所以编程时,要进行换底运算。
lg x ln x ln10
6
3、区域图的公式化处理
2)效率低,占机时间长。通常设计所使用到的仅是数表中 的一小部分数据,有时甚至只是其中的一、二个。但数表程 序化处理对数表中的每个数据,无论在当时的计算程序中
是否被用到,都必须顺序地将全部数据读入内存。
检索时,一般又得顺序地从头检索至所需的那个
9
数据为止。
4.3.1 曲线拟合
数表程序化处理一般只适用于数表较小(数据 量较小)、计算程序使用数表个数不多的情况。对 于比较大型的计算程序,常常需使用很多的数表, 数据量很大,在这种情况下数表的处理就要采用其 它的方法。其中一种方法就是本节所要介绍的曲线 拟合。
常用的处理方法有三种:
1
(1)线图所表示的各参数之间本来就有计算公 式,只是由于计算公式复杂.为了便于手工计算 将公式绘成线图,以供设计时查用。对于这类线 图处理的方法为:找到线图原有公式,将公式编 写成程序。这是最精确的程序化处理方法,但难 以找到。
最小二乘法求出直线拟合公式

最小二乘法求出直线拟合公式最小二乘法是一种常用的线性回归方法,用于求出最佳的拟合直线公式。
其基本思想是通过最小化观测数据与拟合直线之间的误差来确定最佳的直线参数。
假设我们有一组观测数据(xi, yi),其中xi表示自变量的取值,yi表示因变量的取值。
我们的目标是找到一条直线y = mx + c,使得观测数据点到这条直线之间的误差最小。
首先,我们定义观测数据点到拟合直线的误差为:ei = yi - (mx + c)。
我们的目标是最小化所有观测数据点的误差之和:min Σ(ei^2) = min Σ(yi - (mx + c))^2为了求解上述最小化问题,我们需要对误差函数关于参数m和c进行求导,并令导数等于零。
这样可以得到参数的最优解。
对于参数m的求解,我们有以下等式:d/dm Σ(ei^2) = d/dm Σ(yi - (mx + c))^2 = 0通过对上述等式进行求导和化简,我们得到以下方程:m * Σ(xi^2) + c * Σ(xi) = Σ(xi * yi)类似地,对于参数c的求解,我们有以下等式:d/dc Σ(ei^2) = d/dc Σ(yi - (mx + c))^2 = 0通过对上述等式进行求导和化简,我们得到以下方程:m * Σ(xi) + c * n = Σ(yi)其中,n表示观测数据点的数量。
最终,我们可以通过解上述方程组,求得最佳的直线参数m和c,从而得到直线的拟合公式。
拓展:最小二乘法不仅可以应用在线性回归问题中,还可以拓展到非线性回归问题。
例如,如果观测数据点遵循多项式分布,则可以使用多项式回归来拟合数据。
此时,最小二乘法的基本原理是相同的,只是拟合的模型变为多项式函数。
此外,最小二乘法还可以应用于其他问题,例如数据平滑、参数估计等。
它是一种常用的统计学方法,可以在各种实际问题中得到广泛的应用。
最小二乘法线性拟合

4.最小二乘法线性拟合(非常好)我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。
用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。
最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。
显然,关键是如何求出最佳的a 和b 。
(1) 求回归直线设直线方程的表达式为:bx a y += (2-6-1)要根据测量数据求出最佳的a 和b 。
对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下:111bx a y d --=222bx a y d --=n n n bx a y d --=显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+|d 2|+……+ |d n |又不好解方程,因而不可行。
现在采取一种等效方法:当d 12+d 22+……+d n2对a 和b 为最小时,d 1、d 2、……、d n 也为最小。
取(d 12+d 22+……+d n 2)为最小值,求a 和b 的方法叫最小二乘法。
令 ∑==ni idD 12=2112][i i ni ni ib a y dD --==∑∑== (2-6-2)D 对a 和b 分别求一阶偏导数为:][211∑∑==---=∂∂ni i n i i x b na y a D][21211∑∑∑===---=∂∂n i i n i i n i i i x b x a y x b D再求二阶偏导数为:n a D 222=∂∂; ∑==∂∂ni i x b D 12222 显然: 0222≥=∂∂n a D ; 021222≥=∂∂∑=n i i x b D 满足最小值条件,令一阶偏导数为零:011=--∑∑==ni i ni ix b na y(2-6-3)01211=--∑∑∑===ni i ni i ni ii x b x a yx (2-6-4)引入平均值: ∑==ni i x n x 11; ∑==n i i y n y 11;∑==n i i x n x 1221; ∑==ni i i y x n xy 11则: 0=--x b a y02=--x b x a xy (2-6-5) 解得: x b y a -= (2-6-6)22xx y x xy b --=(2-6-7)将a 、b 值带入线性方程bx a y +=,即得到回归直线方程。