八年级数学全册知识点整理

合集下载

八年级全册数学知识点全汇总

八年级全册数学知识点全汇总

八年级全册数学知识点全汇总数学是一门需要反复练习和总结的学科,尤其是对于八年级的学生来说,数学知识面愈发广泛且深入。

为了帮助各位同学更好地复习和总结八年级数学知识,现将全册数学知识点进行全面汇总,方便大家查阅。

无论是几何、代数还是数据统计等各个领域的知识点,都将在本文中得到详细的整理和总结。

1. 几何
- 直线、线段、射线的概念及区别
- 角的概念与分类
- 三角形、四边形、多边形的性质
- 圆的基本概念与计算
2. 代数
- 整数、有理数、无理数的性质及计算
- 一元一次方程与一元一次不等式的解法
- 计算式、代数式、恒等式的区别
- 多项式的相加、相减与乘法运算
3. 数据统计
- 数据的收集与整理
- 统计图表(柱状图、折线图、饼图)的读取和绘制
- 平均数、中位数、众数的计算
- 概率与事件的概念及初步计算
通过以上全册数学知识点的全面汇总,相信大家对八年级的数学知识有了更清晰的认识和理解。

在复习备考过程中,同学们可以根据具体知识点的汇总内容,有针对性地进行练习和复习,提升自己的数学能力。

希望本文的内容对大家有所帮助,祝各位同学在数学学习中取得优异的成绩!。

八年级数学重点知识点(全)

八年级数学重点知识点(全)

初二数学知识点因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法就是相反的两个转化、2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”、3.公因式的确定:系数的最大公约数·相同因式的最低次幂、注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3、4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b)(a- b);(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2、5.因式分解的注意事项:(1)选择因式分解方法的一般次序就是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式、6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子瞧作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项、7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q就是完全平方式 ”、分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式、2.有理式:整式与分式统称有理式;即、3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义、4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单、5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解、6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式、7.分式的乘除法法则:、8.分式的乘方:、9.负整指数计算法则:(1)公式: a0=1(a≠0), a-n= (a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式: (-1)-2=1, (-1)-3=-1、10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母、11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂、12.同分母与异分母的分式加减法法则:、13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x就是未知数,a与b就是用字母表示的已知数,对x来说,字母a就是x的系数,叫做字母系数,字母b就是常数项,我们称它为含有字母系数的一元一次方程、注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数、14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就就是解含有字母系数的方程、特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0、15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程就是整式方程、16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根、17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根就是增根,这时原方程无解;若值不为零,求出的根就是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能就是原方程的增根、18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序、数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根就是x);注意:(1)a叫x的平方数,(2)已知x 求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算、2.平方根的性质:(1)正数的平方根就是一对相反数;(2)0的平方根还就是0;(3)负数没有平方根、3.平方根的表示方法:a的平方根表示为与、注意:可以瞧作就是一个数,也可以认为就是一个数开二次方的运算、4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为、注意:0的算术平方根还就是0、5.三个重要非负数: a2≥0 ,|a|≥0 ,≥0 、注意:非负数之与为0,说明它们都就是0、6.两个重要公式:(1) ; (a≥0)(2) 、7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根就是x)、注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方、8.立方根的性质:(1)正数的立方根就是一个正数;(2)0的立方根还就是0;(3)负数的立方根就是一个负数、9.立方根的特性:、10.无理数:无限不循环小数叫做无理数、注意:π与开方开不尽的数就是无理数、11.实数:有理数与无理数统称实数、12.实数的分类:(1)(2)、13.数轴的性质:数轴上的点与实数一一对应、14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示、注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:、三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线、(如图)几何表达式举例: (1) ∵AD平分∠BAC∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD就是角平分线2.三角形的中线定义:在三角形中,连结一个顶点与它的对边的中点的线段叫做三角形的中线、(如图) 几何表达式举例:(1) ∵AD就是三角形的中线∴ BD = CD(2) ∵ BD = CD∴AD就是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点与垂足间的线段叫做三角形的高线、(如图) 几何表达式举例:(1) ∵AD就是ΔABC的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD就是ΔABC的高※4.三角形的三边关系定理:三角形的两边之与大于第三边,三角形的两边之差小于第三边、(如图) 几何表达式举例: (1) ∵AB+BC>AC∴……………(2) ∵ AB-BC<AC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、几何表达式举例:(1) ∵ΔABC就是等腰三角形(如图) ∴ AB = AC(2) ∵AB = AC∴ΔABC就是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形、(如图) 几何表达式举例:(1)∵ΔABC就是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC就是等边三角形7.三角形的内角与定理及推论:(1)三角形的内角与180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于与它不相邻的两个内角的与;(如图) ※(4)三角形的一个外角大于任何一个与它不相邻的内角、(1) (2) (3)(4) 几何表达式举例:(1) ∵∠A+∠B+∠C=180°∴…………………(2) ∵∠C=90°∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B∴…………………(4) ∵∠ACD >∠A∴…………………8.直角三角形的定义:有一个角就是直角的三角形叫直角三角形、(如图) 几何表达式举例:(1) ∵∠C=90°∴ΔABC就是直角三角形(2) ∵ΔABC就是直角三角形∴∠C=90°9.等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰几何表达式举例:(1) ∵∠C=90° CA=CB直角三角形、(如图) ∴ΔABC就是等腰直角三角形(2) ∵ΔABC就是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等、(如图) 几何表达式举例:(1) ∵ΔABC≌ΔEFG∴ AB = EF ………(2) ∵ΔABC≌ΔEFG∴∠A=∠E ………11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”、 (如图)(1)(2) (3) 几何表达式举例:(1) ∵ AB = EF∵∠B=∠F又∵ BC = FG∴ΔABC≌ΔEFG(2) ………………(3)在RtΔABC与RtΔEFG中∵ AB=EF又∵ AC = EG∴RtΔABC≌RtΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相几何表达式举例: (1)∵OC平分∠AOB等;(如图)(2)到角的两边距离相等的点在角平分线上、(如图)又∵CD⊥OA CE⊥OB∴ CD = CE (2) ∵CD⊥OA CE⊥OB 又∵CD = CE∴OC就是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线、(如图) 几何表达式举例:(1) ∵EF垂直平分AB∴EF⊥AB OA=OB(2) ∵EF⊥AB OA=OB∴EF就是AB的垂直平分线14.线段垂直平分线的性质定理及逆定理: (1)线段垂直平分线上的点与这条线段的两个端点的距离相等;(如图)(2)与一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上、(如图) 几何表达式举例:(1) ∵MN就是线段AB的垂直平分线∴ PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都就是60°、(如图)(1) (2) (3) 几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC就是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形就是等边三角形;(如图)(3)有一个角等于60°的等腰三角形就是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边就是斜边的一半、(如图)(1)(2)(3)(4) 几何表达式举例:(1) ∵∠B=∠C∴ AB = AC(2) ∵∠A=∠B=∠C∴ΔABC就是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC就是等边三角形(4) ∵∠C=90°∠B=30°∴AC =AB17.关于轴对称的定理(1)关于某条直线对称的两个图形就是全等形;(如图) 几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称(2)如果两个图形关于某条直线对称,那么对称轴就是对应点连线的垂直平分线、(如图)∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方与等于斜边c的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1) ∵ΔABC就是直角三角形∴a2+b2=c2(2) ∵a2+b2=c2∴ΔABC就是直角三角形19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线就是斜边的一半;(如图)(2)如果三角形一边上的中线就是这边的一半,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1)∵ΔABC就是直角三角形∵D就是AB的中点∴CD = AB(2) ∵CD=AD=BD∴ΔABC就是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空与选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数、二常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之与、2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而八年级数学重点知识点(全)第三个交点可在三角形内,三角形上,三角形外、注意:三角形的角平分线、中线、高线都就是线段、3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA、4.三角形能否成立的条件就是:最长边<另两边之与、5.直角三角形能否成立的条件就是:最长边的平方等于另两边的平方与、6.分别含30°、45°、60°的直角三角形就是特殊的直角三角形、7.如图,双垂图形中,有两个重要的性质,即:(1) AC·CB=CD·AB ; (2)∠1=∠B ,∠2=∠A 、8.三角形中,最多有一个内角就是钝角,但最少有两个外角就是钝角、9.全等三角形中,重合的点就是对应顶点,对应顶点所对的角就是对应角,对应角所对的边就是对应边、10.等边三角形就是特殊的等腰三角形、11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明、12.符合“AAA”“SSA”条件的三角形不能判定全等、13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法、14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线、15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图、16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该就是几何基本作图、17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图、※18.几何重要图形与辅助线:(1)选取与作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;八年级数学重点知识点(全)③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图、(2)已知角平分线、(若BD就是角平分线)①在BA 上截取BE=BC构造全等,转移线段与角;②过D点作DE∥BC交AB于E,构造等腰三角形、(3)已知三角形中线(若AD就是BC的中线)①过D点作DE∥AC交AB于E,构造中位线 ; ②延长AD到E,使DE=AD连结CE构造全等,转移线段与角;③∵AD就是中线∴SΔABD= SΔADC(等底等高的三角形等面积)(4) 已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD (顶角的平分线或底边的高)构造全等三角形; ②作等腰三角形ABC一边的平行线DE,构造新的等腰三角形、八年级数学重点知识点(全) (5)其它①作等边三角形ABC一边的平行线DE,构造新的等边三角形; ②作CE∥AB,转移角; ③延长BD与AC交于E,不规则图形转化为规则图形;④多边形转化为三角形; ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形; ⑥若a∥b,AC,BC就是角平分线,则∠C=90°、。

八年级全册数学知识点总结

八年级全册数学知识点总结

八年级全册数学知识点总结数学这门科目是学生们学习过程中必不可少的一门基础学科。

在八年级数学学习中,我们学习了很多的知识点,涉及到了各种各样的计算方法、概念和技巧。

为了使大家更好地掌握和巩固这些知识点,本文将对八年级全册数学知识点进行总结。

一、整数运算1.正负数之和的运算法则:同号相加,异号相减,绝对值大的符号不变,结果的符号与大的相同。

2.正负数的乘除运算:同号为正,异号为负。

3.数轴的绘制及简单运用。

4.约数、倍数、质数、合数的初步认识,了解最大公因数和最小公倍数的概念及计算方法。

5.分数与整数的关系,基本性质及运算法则。

6.除法的应用,求商和余数的方法。

二、分数运算1.分数的加、减、乘和除法的口诀及计算方法。

2.分数的化简、通分、约分等操作方法。

3.带分数与假分数的相互转化及运算。

4.分数的比较运算。

三、代数基础1.代数式的概念和基本形式,了解同类项和合并同类项的方法。

2.解一元一次方程,掌握用逆运算法则解方程的方法。

3.解含有一个未知数的简单应用问题,培养学生的实际问题解决能力。

4.代数式的计算,包括加、减、乘和分的基本运算方法。

四、图形基本概念1.平面直角坐标系及其表示方法,了解平面直角坐标系的构造要素和基本概念。

2.点、线、面的概念及分类,培养学生对空间的基本认识。

3.多边形和圆的基本概念,包括正多边形、等边三角形、等腰三角形等基本概念的认识。

4.面积与周长的概念及计算方法。

五、几何变换1.平移、旋转、翻折等简单的几何变换及其基本性质。

2.图形的对称性和轴对称,了解轴对称的概念及其特点。

3.简单的图形复合变换,如移动和旋转的组合等。

六、统计与概率1.统计调查的基本方式、统计表格和图表的制作及分析方法。

2.抽样调查的原则与方法、统计中的描述性指标。

3.概率的初步认识和计算,包括概率的基本定义、事件、样本空间、基本事件和复合事件的概念等。

综上所述,八年级数学知识点十分广泛、繁杂而内容丰富,需要学生们仔细认真地学习和掌握。

八年级全册数学知识点归纳

八年级全册数学知识点归纳

八年级全册数学知识点归纳《八年级全册数学知识点归纳》八年级的数学呀,那可是有好多有趣的东西呢。

函数就像一个魔法世界。

一次函数就像一个乖巧的小助手,它的表达式y = kx + b(k、b为常数,k≠0),这个k就像小助手的速度,决定着函数图象是上坡还是下坡。

当k>0的时候呀,图象就像小火箭一样往上升,y随x的增大而增大;要是k<0呢,图象就像个小滑梯一样向下滑,y随x的增大而减小。

b就更有趣啦,它是这个小助手的起始位置,要是b = 0,那这个一次函数就像个从原点出发的小探险家。

再说说三角形。

三角形的内角和是180°,这就像一个铁打的规则。

等腰三角形就像一对双胞胎,两条边相等,那两个底角也相等。

等边三角形就更厉害了,三条边都相等,三个角都是60°,就像三个亲密无间的小伙伴。

直角三角形里的勾股定理可有名啦,a² + b² = c²,就像一个神秘的宝藏密码,知道两条边就能算出第三条边呢。

还有整式的乘除。

同底数幂相乘,底数不变,指数相加,就像一群小伙伴手拉手,力量相加。

幂的乘方,底数不变,指数相乘,这就像是给小伙伴们来了个集体升级。

整式的除法也很有趣,单项式除以单项式,系数和同底数幂分别相除,就像在分配小糖果一样,每个都分得清清楚楚。

分式这里也有不少门道。

分式有意义的条件是分母不为0,就像一场游戏有它的规则一样。

分式的基本性质,分子分母同时乘以或者除以一个不为0的整式,分式的值不变,这就像给分式换个漂亮的外衣,本质可没变哦。

因式分解就像是把一个大礼包拆成一个个小礼物。

提公因式法就先把公因式提出来,就像从一堆东西里先把共同的部分拿出来。

公式法有平方差公式a² - b² =(a + b)(a - b)和完全平方公式a²±2ab + b² =(a±b)²,这些公式就像小魔法棒,能把复杂的式子变得简单又整齐。

初中八年级数学知识点整理

初中八年级数学知识点整理

初中八年级数学知识点整理初中数学八年级是数学学科中重要的学科年份之一,学生们在这个年龄段学习了很多基础知识。

在这个年份里,学生们学习了代数、初步的几何、相似三角形、圆、统计学和概率等方面的内容。

接下来,将对这些重点进行详细的整理。

代数•基本常识:加、减、乘、除、倒数、幂、有理数。

•一元一次方程和一元一次不等式。

•解方程组(二元一次、三元一次)。

•因式分解(公因数、提公因式、分组因式、三项分解、差平方、求和差)。

•分数及其四则运算(分数的基本概念、约分、通分、加减乘除、整数、负数、混合数的四则运算)。

•整式的加减、乘法。

•简单的平方根和立方根。

•线性函数及图像。

几何•几何基本概念及命题证明(点、线、面、角、线段、尺规作图)。

•相似三角形的判定及其性质(比例、平移、旋转)。

•直角三角形及其定理(勾股定理、余弦定理、正弦定理)。

•圆的相关的知识(圆的定义、圆的性质、圆的周长、圆的面积计算)。

•平面向量(平面向量的基本概念、向量的加法、数乘、内积、几何应用)。

•三视图(常用体的三视图的表示方法)。

统计与概率•数据的类型与分类(离散数据、连续数据)。

•数据调查、整理、分析与表示(频数、频率、下、中、上四分位数、极差、平均数、众数、标准差)。

•概率的基本概念(等可能条件下的概率、多事件概率的计算)。

总结初中八年级数学知识点总结包括了代数、几何、统计学和概率等方面的知识点。

这些知识点涵盖了初中阶段数学学科的基础,也是未来学习更高层次数学的基础。

熟练掌握这些知识点对学生未来的数学学习和应用大有帮助。

新人教版八年级数学全册知识点总结

新人教版八年级数学全册知识点总结

新人教版八年级数学上册知识点总结第十一章 三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: ①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式1.基本运算:⑴同底数幂的乘法:mnm na a a+⨯=⑵幂的乘方:()nm mn aa =⑶积的乘方:()nn nab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:mnm na a a-÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭8.整数指数幂: ⑴mnm na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1nn aa-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).新人教版八年级数学下册知识点总结第16章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

初中八年级数学重点知识点

初中八年级数学重点知识点

一、代数与方程1.一元一次方程与一元一次方程的应用:-解一元一次方程;-列方程、解方程解决实际问题。

2.一元二次方程与勾股定理:-解一元二次方程;-利用勾股定理解决实际问题。

3.平方根与立方根:-计算平方根与立方根;-应用平方根与立方根解决实际问题。

4.整式的加减运算:-整式的合并同类项;-整式的加减运算。

5.等比数列与指数函数:-等比数列的概念与性质;-利用等比数列解决实际问题;-指数函数的基本概念与性质。

二、平面图形与空间几何1.直角三角形与勾股定理:-直角三角形的性质与判定;-勾股定理的概念与应用。

2.平行线与平行四边形:-平行线的性质与判定;-平行四边形的性质与判定。

3.三角形的面积公式:-三角形面积公式的推导与应用。

4.相似与全等:-三角形相似与全等的概念与判定;-利用相似与全等解决实际问题。

5.空间几何体的表面积与体积:-立方体、长方体、棱柱的表面积与体积;-表面积与体积的单位换算。

三、数据与概率1.数据的整理、分析与应用:-数据的调查与整理;-数据的统计与分析。

2.平均数与中位数:-平均数的计算与应用;-中位数的计算与应用。

3.概率的基本概念与计算:-事件的概念与概率的计算;-用频率估计概率。

四、函数的初步认识1.函数的概念与表示:-自变量、因变量与函数的关系;-函数的表示及函数解析式。

2.函数的图象与性质:-函数图象的初步认识;-函数的单调性、奇偶性与周期性。

以上仅列举了初中八年级数学的一些重点知识点,详细内容可以根据教材内容进行查阅。

八年级上下册数学知识点总结

八年级上下册数学知识点总结

数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。

2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。

3.乘方:乘方的概念,乘方的性质,乘方的运算法则。

4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。

5.分数:分数的概念,分数的性质,分数的加减法运算法则。

6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。

7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。

8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。

9.角:角的概念,角的分类,角的性质,角的度量。

10.平行线:平行线的概念,平行线的性质,平行线的判定。

二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。

2.勾股定理:勾股定理的概念,勾股定理的应用。

3.多边形:多边形的概念,多边形的分类,多边形的性质。

4.圆:圆的概念,圆的性质,圆的度量。

5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。

6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。

7.百分数:百分数的概念,百分数的性质,百分数的计算。

8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。

9.概率:概率的概念,概率的计算。

10.函数与图像:函数的概念,函数的性质,函数的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章——全等三角形知识点整理
*1.全等形:能够完全重合的两个图形叫做全等形。

*2.全等三角形:
(1)定义:能够完全重合的两个三角形叫做全等三角形。

(2)全等于( )
(3)全等三角形的性质:全等三角形的对应边相等
全等三角形的对应角相等
**3.三角形全等的判定:
No.1 边边边 (SAS) :三边对应相等的两个三角形全等。

No.2 角边角(SAS):两边和它们的夹角对应相等的两个三角形全等。

No.3 角边角(ASA):两边和他们的夹角对应相等的两个三角形全等。

角角边(AAS):两个角和其中的一个叫的对边对应相等的两个三角形全等。

No.4 斜边,直角边 (HL):斜边和直角边对应相等的两个三角形全等。

**4.角的平分线的性质
1.角的平分线的性质:角的平分线上的点到角的两边的距离相等。

2.角的平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。

第十二章——轴对称知识点整理
知识点结构梳理:
1.轴对称图形
➢定义:如果一个图形沿着某条直线重叠,直线两旁的部分能够互相重合,这种图形就叫做轴对称图形,这条直线就是它的对称轴。

➢性质:轴对称图形的对称轴是任何一对对应点所连线断的垂直平分线。

➢线段的垂直平分线:
✧定义:经过线段的中点并且垂直于这条线段的直线,叫做线段的垂直平分线。

✧性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。

✧判定:到一条线段的两个端点距离相等的点,在这条线段的垂直平分线上。

2.轴对称
➢定义:如果一个图形沿某条直线折叠后能够和另外一个图形完全重合,则这两个图形关于镜面对称。

➢性质:如果两个图形关于镜面对称,那么对称轴上是任何一对对应点锁链线段的垂直平分线。

➢判定:如果两个图形中任何一对对应点所连的线段都被同一条直线垂直平分,那么这两个图形关于某直线对称。

3.轴对称变换
➢定义
➢用坐标轴表示轴对称:关于x轴对称(x,-y)
关于y轴对称(-x,y)
4.等腰三角形:
➢定义元素性质判定
5.全等三角形:
➢定义性质判定
6. 直角三角形的性质
第十三章——实数知识点整理
一、平方根:
定义
开平方: 求一个数a的平方根的运算,叫做开平方的运算,叫做开平方。

平方根的运算:正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

算数平方根:一般的,如果一个正数x的平方等于a,即x2= a,那么这个正数x叫做a的算术平方根。

二、立方根:
定义
开立方:求一个数的立方根的运算叫做开立方。

立方根的性质:正数里立方根是正数,且只有一个;负数的立方根是负数,也只有一个;0的立方根是0.
三、实数:
定义:有理数和无理数统称为实数。

分类:
实数
有理数
无理数
整数
分数
有限小数和无限循环小数无限不循环小数
按有理数和无理数分类
第十四章——一次函数知识点整理
1、正比例函数的定义 形如)0(≠=k kx y 的形式
自变量与函数之间是k 倍的关系
一般情况下,x 当作自变量,y 作为函数 2、正比例函数的性质 ①是一条过原点的直线。

②当0>k 时,图象从左到右是上升的趋势,也即是y 随x 的增大而增大。

过一、三象限。

③当0<k 时,图象从左到右是下降的趋势,也即是y 随x 的增大而减小。

过二、四象限。

k>0
3、一次函数的定义
形如:)0,,(≠+=k b k b kx y 且为常数 自变量与常量的乘积,再加上一个常量的形式。

4、一次函数与正比例函数的关系
实数
正实数
正有理数
正整数
正分数

负实数
正无理数
负有理数
负无理数
负整数 负分数
按正、负分类
)0(≠=k kx y )0,,(≠+=k b k b kx y 且为常数
属于
正比例
一次函数
0=b
通过上图,我们能够看出,正比例函数包含在一次函数中。

5、一次函数的图象性质
② 当
k>0时,y 随x 的增大而增大,b>0时,图象过第一、二、三象限,b<0时,图象过一、三、四象限
③当k<0时,y 随x 的增大而减小,b>0时,图象过第一、二、四象限,b<0时,图象过二、三、四象限
第十五章——整式的乘除与因式分解知识点整理
一、整式的乘除:
同底数幂相乘:都是正整数)n m a a a n
m n
m
,(+=•
幂的乘方: 都是正整数)n m a
a mn
n
m ,()(=
积的乘方:都是正整数)n m b a ab n
n
n
,()(=
整式的乘法:单项式与单项式相乘:72
52
5
2
5
)()(abc abc c c b a bc ac ==•••=•+
多项式与单项式相乘:mc mb ma c b a m ++=++)( 多项式与多项式相乘:n m b a =++))((乘方公式: 平方差公式:2
2
))((b a b a b a -=-+
完全平方公式:
2
2
2
2222)(2)(b
ab a b a b ab a b a +-=-++=+
二.整式的除法: 同底数幂相除:)并且都是正整数n m n m a
a a n
m n
m
>=÷-,,(
整式的除法:单项式相乘,把系数与同底数幂分别相除作为商的因式,对于只在被除式
里含有的字母,则同它的指数分别作为商的一个因式。

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

三.因式分解:
①提公因式法:mc mb ma c b a m ++=++)( ②公式法:))((2
2
b a b a b a -+=-
2
2
2
222)
(2)(2b a b ab a b a b ab a -=+-+=++。

相关文档
最新文档