数学找规律的方法

合集下载

一年级数学找规律方法

一年级数学找规律方法

一年级数学找规律方法
在一年级数学学习中,找规律是一个非常重要的方法,它可以帮助孩子们在数学领域拓展思维和提高解题能力。

下面介绍一些在一年级数学找规律的方法。

1. 数字规律:让孩子观察数字序列,发现其中的规律。

例如:1,3,5,7,9……让孩子发现其中的规律是每个数字都比前一个数字大2,这就是数字规律。

可以通过类似的练习让孩子逐渐掌握数字规律的方法。

2. 图形规律:让孩子观察一些简单的图形序列,发现其中的规律。

例如:①,②,③,④,……让孩子发现其中的规律是每个图形都比前一个图形多一条边,这就是图形规律。

还可以通过让孩子画出一些图形,让他们自己发现图形规律。

3. 字母规律:让孩子观察一些字母序列,发现其中的规律。

例如:a,b,c,d,……让孩子发现其中的规律是每个字母都比前一个字母多一个字母,这就是字母规律。

4. 形式化规律:让孩子把上述规律归纳总结出一种形式化规律,例如:数字规律可以表示为“每个数字都比前一个数字大2”,这样就可以帮助孩子更加明确地理解规律。

总之,找规律是一种非常重要的数学方法,可以帮助孩子们更好地理解数学知识,提高数学解题能力。

在学习过程中,我们也可以通过游戏等方式来让孩子们更加轻松地学习找规律的方法。

初一数学找规律方法

初一数学找规律方法

初一数学找规律方法初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。

初一数学找规律方法一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n 项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196,… (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,14583)18894)(N+2)^2-N^2=4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x 轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y 增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.。

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例:4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

数学找规律题的解题技巧方法归纳

数学找规律题的解题技巧方法归纳

数学找规律题的解题技巧方法归纳数字变化类规律题解题技巧(1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘;(2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关;(3)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(1)、(2)、技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来;(4)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来;(5)同技巧(3)、(4)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。

当然,同时加、或减的可能性大一些,同时乘、或除的不太常见;(6)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。

数学找规律题的技巧标出序列号找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

看增幅如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a1+(n-1)b。

如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二级等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种求法。

总体思路从具体实际的问题出发,观察各个数量的特点及相互之间的变化规律;由此及彼,合理联想,大胆猜想;善于类比,从不同事物中发现相似或相同点;总结规律,得出结论,并验证结论正确与否;善于变化思维方式,做到事半功倍,探索规律是一种思维活动及思维从特殊到一半的跳跃,需要有一定的归纳与综合能力,当已知的数据有很多组时,需要仔细观察,反复比较才能准确找出规律。

初一找规律的数学题及解题方法

初一找规律的数学题及解题方法

初一找规律的数学题及解题方法初一找规律的数学题通常涉及数列、图形、数字变换等问题,需要观察、分析、归纳和推理。

下面是一些初一找规律的数学题及解题方法:一、数列规律题题目:观察数列1,3,7,15,31,...,求第n项的值。

解题方法:首先观察数列中相邻两项的差,发现差值分别为2,4,8,16...,即每次乘以2。

这是一个等比数列的差数列。

根据这个规律,我们可以推导出第n项的公式:第n项=2^(n-1)-1。

二、图形规律题题目:有一组图形,第一个图形有1个点,第二个图形有3个点,第三个图形有7个点,第四个图形有15个点,...,求第n个图形中点的个数。

解题方法:首先观察图形中点数的变化规律,发现相邻两项的差分别为2,4,8,...。

这是一个等比数列的差数列。

根据这个规律,我们可以推导出第n个图形中点的个数公式:第n个图形中点的个数=2^(n-1)-1。

三、数字变换规律题题目:观察数字序列1,11,21,1211,111221,...,求第n项的值。

解题方法:首先观察数字序列的变化规律,发现每个数字都是由前一个数字生成的。

具体地,第一个数字是“1”,第二个数字表示前一个数字有“1”个“1”,所以是“11”,第三个数字表示前一个数字有“2”个“1”,所以是“21”,以此类推。

这是一个描述性规律题,需要通过观察和描述来找出规律。

根据这个规律,我们可以逐步推导出第n项的值。

四、等差数列规律题题目:观察等差数列2,5,8,11,...,求第n项的值。

解题方法:首先观察等差数列的公差,发现相邻两项的差为3。

根据等差数列的通项公式an=a1+(n-1)d,其中a1为首项,d为公差,n为项数,我们可以推导出第n项的公式:第n项=2+3(n-1)。

以上是初一找规律的数学题及解题方法的一些例子。

对于找规律的数学题,重要的是通过观察和分析来发现其中的规律和模式,并根据这些规律和模式来推导出解决问题的方法。

数学找规律方法怎么教五年级小孩数学

数学找规律方法怎么教五年级小孩数学

数学找规律⽅法怎么教五年级⼩孩数学找规律是数学学习题型的⼀种,找规律要求有较强的思维逻辑,下⾯就是⼩编给⼤家带来的数学找规律⽅法,希望⼤家喜欢!数学找规律⽅法代数中的规律“有⽐较才有鉴别”。

通过⽐较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题⽬,通常按照⼀定的顺序给出⼀系列量,要求我们根据这些已知的量找出⼀般规律。

揭⽰的规律,常常包含着事物的序列号。

所以,把变量和序列号放在⼀起加以⽐较,就⽐较容易发现其中的奥秘。

例1 观察下列各式数:0,3,8,15,24,……。

试按此规律写出的第100个数是___。

”分析:解答这⼀题,可以先找⼀般规律,然后使⽤这个规律,计算出第100个数。

我们把有关的量放在⼀起加以⽐较:给出的数:0,3,8,15,24,……。

序列号: 1,2,3, 4, 5,……。

平⾯图形中的规律:图形变化也是经常出现的。

作这种数学规律的题⽬,都会涉及到⼀个或者⼏个变化的量。

所谓找规律,多数情况下,是指变量的变化规律。

所以,抓住了变量,就等于抓住了解决问题的关键。

2数学找规律⽅法⼀从具体的.实际的恩提出发,观察各个数量的特点及相互之间的变化规律。

由此及彼,合理联想,⼤胆猜想善于类⽐,从不同事物中发现相似或相同点;总结规律,得出结论,并验证结论正确与否;在探索规律的过程中,要善于变化思维⽅式,做到事半功倍探索规律是⼀种思维活动,及思维从特殊到⼀半的跳跃,需要有⼀定的归纳与综合能⼒。

当以知的数据有很多组时,需要仔细观察,反复⽐较,才能准确找出规律。

需⽤到的数学⽅法有:分类讨论法.转化法.归纳法.通过观察.分析.综合.归纳.概括.推理.判断等⼀系列探索活动,解答有关探索规律性问题的特点是问题的结论或条件不直接给出,需要逐步确定需要的结论和条件。

解答这类题的关键是认真审题,掌握规律.合理推测.认真验证,从⽽得出问题的正确结论。

数学找规律⽅法3数学找规律⽅法⼆标出序列号:找规律的题⽬,通常按照⼀定的顺序给出⼀系列量,要求我们根据这些已知的量找出⼀般规律。

初中数学找规律方法)

初中数学找规律方法)

初中数学找规律方法)找规律是数学问题解题中常用的问题解决方法之一,通过观察数列、图形或者其他数学对象中的特点和规律,能够找到一个普遍规律,从而解决问题。

下面将介绍一些常见的找规律方法。

1.列举法:通过列举一些例子,观察其中的关系和规律。

比如要求验证一个关系式,可以取几组不同的数值代入进行验证。

2.长度法:通过观察数列中各个项的长度之间的变化规律来确定数列的规律。

例如,观察斐波那契数列中各项的长度,可以发现每一项的长度都是前两项长度之和。

3.变化量法:观察数列中每一项与相邻项之间的差值或者比值的变化规律来确定数列的规律。

例如,观察等差数列中相邻项的差值恒定,可以得出其通项公式。

4.递推法:通过已知的前几项推导出后面的项。

递推法常用于数列、图形等问题中。

例如,要求第n个项的值,可以先求出前几项的值,利用观察到的规律进行递推。

5.图形法:通过观察图形中的形状、大小、颜色等特点来确定规律。

图形法常用于几何图形和图表问题中。

例如,观察等边三角形中边长和内角的关系,可以得出等边三角形的性质。

6.分类法:将问题中的对象进行分类,观察每一类对象之间的关系和规律。

例如,观察一个多边形中正多边形和非正多边形之间的特点和规律。

7.等式法:通过构造等式来推导出规律。

等式法常用于代数问题中。

例如,通过构造等式x+y=y+x,可以推导出交换律。

8.归纳法:通过已知的基本情况推导出全体情况的规律。

归纳法常用于整数、证明等问题中。

例如,通过归纳法证明一个等式对于任意整数n 都成立。

总之,找规律是一种通过观察数学对象的特点和规律来解决问题的方法。

在解题过程中,可以结合不同的方法,多角度观察问题,提高问题解决的效率和准确性。

初中数学找规律常见公式

初中数学找规律常见公式

—、基本方法一一看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b. 例:4 、10 、16 、22 、28……,求第n 位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1) 6 = 6n —2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法. 基本思路是:1、求出数列的第n-1位到第n位的增幅; 2 、求出第 1 位到第第n 位的总增幅;3、数列的第1 位数加上总增幅即是第n 位数. 举例说明:2 、5 、10 、17……,求第n 位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n 位的增幅是:3+2X( n-2)=2 n-1,总增幅为:[3+ (2n-1 ) ] X n-1)乞= (n+1 ) X n-1)= n2-1 所以,第n 位数是:2+ n 2-仁n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为 1 、 2 、 4 、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧. 二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘. 例如,观察下列各式数:0,3,8,15,24, ••…试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24, ••…序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n 、3n, 或2n 、3n 有关.例如:1,9,25,49,(),(),的第n 为(2n-1 )2 (三)看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1 B : 2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例: 2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号: 1 、2、3、4、分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1 )+2= n2+1 (五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来. 例:4,16,36,64,?,144,196, …?(第一百个数同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)•当然,同时加、或减的可能性大一些,同时乘、或除的不太常见(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律三三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例 1 : 一道初中数学找规律题0,3,8,15,24, ••…2,5,10,17,26, •…0,6,16,30,48 ..( 1 )第一组有什么规律?(2 )第二、三组分别跟第一组有什么关系?(3 )取每组的第7 个数,求这三个数的和?2 、观察下面两行数2,4,8,16,32,64, . . . (1 )5,7,11,19,35,67 . . . ( 2 )根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3A2-1A2=8 X1 5A2-3A2=8 >2 7A2- 5A2=8X3 ••…用含有N 的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差"山。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学找规律的方法
代数中的规律“有比较才有鉴别”。

通过比较,可以发觉事物的相同点和不同点,更简单找到事物的变化规律。

找规律的题目,通常根据肯定的挨次给出一系列量,要求我们依据这些已知的量找出一般规律。

揭示的规律,经常包含着事物的序列号。

下面是我为大家整理的关于数学找规律的(方法),盼望对您有所关心。

欢迎大家阅读参考学习!
1数学找规律方法
代数中的规律“有比较才有鉴别”。

通过比较,可以发觉事物的相同点和不同点,更简单找到事物的变化规律。

找规律的题目,通常根据肯定的挨次给出一系列量,要求我们依据这些已知的量找出一般规律。

揭示的规律,经常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较简单发觉其中的神秘。

例 1 观看下列各式数:0,3,8,15,24,。

试按此规律写出的第100个数是___。

”分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,。

序列号:1,2,3,4,5,。

平面图形中的规律:图形变化也是常常消失的。

作这种数学规律的题目,都会涉及到一个或者几个变化的量。

所谓找规律,多数状况下,是指变量的变化规律。

所以,抓住了变量,就等于抓住了解决问题的关键。

2数学找规律方法
从详细的.实际的恩提动身,观看各个数量的特点及相互之间的变化规律。

由此及彼,合理联想,大胆猜想擅长类比,从不同事物中发觉相像或相同点;(总结)规律,得出结论,并验证结论正确与否;在探究规律的过程中,要擅长变化(思维方式),做到事半功倍探究规律是一种思维活动,及思维从特别到一半的跳动,需要有肯定的归纳与综合力量。

当以知的数据有许多组时,需要认真观看,反复比较,才能精确找出规律。

需用到的数学方法有:分类争论法.转化法.归纳法.通过观看.分析.综合.归纳.概括.推理.推断等一系列探究活动,解答有关探究规律性问题的特点是问题的结论或条件不直接给出,需要逐步确定需要的结论和条件。

解答这类题的关键是仔细审题,把握规律.合理推想.仔细验证,从而得出问题的正确结论。

3数学找规律方法
标出序列号:找规律的题目,通常根据肯定的挨次给出一系列量,要求我们依据这些已知的量找出一般规律。

找出的规律,通常包括序列号。

所以,把变量和序列号放在一起加以比较,就比较简单发觉其中的神秘。

例如,观看下列各式数:0,3,8,15,24,。

试按此规律写出的第100个数是1002-1,第n个数是n2-1。

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。

我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,。

序列号:1,2,3,4,5,。

简单发觉,已知数的每一项,都等于它的序列
号的平方减1。

因此,第n项n2-1,第100项是1002-1。

公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n有关。

例如:1,9,25,49,(81),(121),的第n项为( (2n-1)2 ),1,2,3,4,5......,从中可以看出n=2时,正好是22-1的平方,n=3时,正好是23-1的平方,以此类推。

4数学找规律方法
学校数学的学习、学好要在理解的基础上进行学习,这是我们在学习中应当遵循的第一原则,也是其他科目普遍的共性及今后的学习考试趋势。

首先对于概念、公式、定义、定理、公理要有精确的熟悉,到位的理解,除此之外,同学在这些学问点的学习中也是有一些规律可循的,反复熟悉理解就是一个好方法,比如数学概念的命名,都是有肯定意义的,比如有理数(有道理的,有规律的,说得清的数――有限小数及无限循环小数);同位角、内错角、同旁内角的含义,内心、外心、非负数的含义等,都可以先作一个简洁的熟悉,之后离真正的深刻的理解就不远了,而真正理解的东西想忘都忘不了。

数学是一门要求特殊严谨的学科,规律性极强,极注意推理。

数学课是注意说理的学科,在数学题面前不能试图蒙混过关,不允许消失一丁点儿的推理错误,这与某些学科的学习是有很大的区分的,比如语文,一个错别字不至于严峻影响一篇(文章)的精彩程度,但数学的一个小数点,确足以葬送一个大题的命运。

在数学学习中不会有怜悯分,因此学习中必需时时、到处留意推理出的每一步是否正确,能否还原?否则就会像多米诺骨牌一样发生连锁反应,一错全错,需
要推倒重来,如由de=ae推导出d=a就是错误的。

在教学中老师要提示同学数学的严谨性,我们自身务必做到语言严谨、推理精确、论证、画图等都要做同学的表率,做到无懈可击,用自身的行为去引导同学;对于同学的提问及作业,要从语言的表述,题目的书写格式,证明、推理、计算的每一步骤,必要字句的书写等方面,都要从严要求,信任通过严格持续的学习训练,对于同学的数学及其他学科的学习,甚至今后的生活工作都会产生乐观的影响。

相关文档
最新文档