折射率参考表

合集下载

宝石的密度值参考表之欧阳音创编

宝石的密度值参考表之欧阳音创编
1.560 - 1.605
绿柱石
长石
2.55 - 2.76
6.0 - 6.5 Mohs
1.518 - 1.572
长石
火蛋白石
1.98 - 2.25
5.5 - 6.5 Mohs
1.430 - 1.460
蛋白石
石榴石
3.50 - 4.30
6.5 - 7.5 Mohs
1.730 - 1.760
石榴石
镁锌尖晶石
宝石名称
时间:2021.03.11
创作:欧阳音
比重
莫氏硬度
折射率
寶石家族
正长石
2.55 - 2.76
6.0 - 6.5 Mohs
1.518 - 1.526
长石
橄榄石
3.22 - 3.45
7.0 Mohs
1.635 - 1.690
橄榄石
钠长石
2.55 - 2.76
6.0 - 6.5 Mohs
1.560 - 1.572
长石
黄晶
3.50 - 3.60
8.0 Mohs
1.607 - 1.627
黄玉
黄榴石
3.50 - 4.30
6.5 - 7.5 Mohs
1.880 - 1.940
石榴石
电气石
3.03 - 3.25
7.0 - 7.5 Mohs
1.603 - 1.655
电气石
沙弗来石
3.50 - 4.30
6.5 - 7.5 Mohs
1.880 - 1.940
石榴石
锡兰锆石
4.60 - 4.70
7.5 Mohs
1.777 - 1.987
锆石
月长石

国外一本归纳光学薄膜折射率的书

国外一本归纳光学薄膜折射率的书

国外一本归纳光学薄膜折射率的书光学薄膜的折射率是指光在薄膜中传播时所遵循的规律,是光学薄膜设计与制备中极为重要的参数之一。

在国外,有一本专门归纳光学薄膜折射率的书籍,它包含了丰富的内容和详细的数据,对光学薄膜研究领域具有重要的指导意义。

下面将对这本书的主要内容进行介绍:1. 书籍的作者和出版信息该本书的作者是一位在光学薄膜领域具有丰富经验的专家,他在这一领域已经有多年的研究和实践经验。

书籍的出版信息包括出版社、出版时间以及ISBN号码等内容,这些信息可以帮助读者更好地了解书籍的来源和可信度。

2. 光学薄膜的基本知识该书首先介绍了光学薄膜的基本知识,包括折射率的定义、计算方法、影响因素等内容。

这些基础知识对于理解光学薄膜折射率的意义和作用具有重要意义,有助于读者建立起整体的认识框架。

3. 实验数据和统计分析该书还收集了大量的实验数据和统计分析结果,这些数据和分析可以帮助读者了解不同材料、不同波长下的折射率特性,为光学薄膜的实际设计和制备提供了参考依据。

4. 折射率的应用领域该书还介绍了光学薄膜折射率在各个领域的具体应用,包括光学镀膜、激光器件、光学薄膜滤波器等方面。

这些内容可以帮助读者了解光学薄膜折射率在实际应用中的重要性和价值。

5. 附录和参考文献该书的附录部分包括了一些相关的数学公式、图表数据和计算方法,这些内容有助于读者更好地理解书中的内容。

书中还列出了大量的参考文献,这些文献可以为读者深入研究提供有力支持和引导。

该本归纳光学薄膜折射率的书籍内容丰富、数据详实,并且包含了大量实用信息,对光学薄膜研究领域具有重要的指导意义。

不仅适合光学工程师和科研人员阅读,也可以作为相关专业学生的参考书籍。

希望该书籍能够为光学薄膜研究领域的发展和进步做出积极的贡献。

6.最新研究进展除了介绍基本知识和实验数据外,该书还对光学薄膜折射率的最新研究进展进行了详细介绍。

介绍了最新的材料研究成果和新型测量方法,包括多层薄膜结构、纳米材料的折射率测量技术等。

液体化工产品折光率的测定

液体化工产品折光率的测定

12.2.23
4
需样品量少,测量精密度高(折光率可精确 到 ),重现性好,所以阿贝尔折光仪是教 学和科研工作中常见的光学仪器,近年来, 由于电子技术和电子计算机技术的发展, 该仪器品种也在不断更新。下面介绍仪器 的工作原理和使用方法
12.2.23
5
折光率测定
一、参比标准
二、项目事实依据 (折射率)
12.2.23
13
六、安全措施
1. 此方案不适合用于深色液体,或在接近测试温度 时产生泡点的液体。
2. 测定样品钱仔细调节棱镜温度,使之保持在 (20+ 0.1)℃,仪器校正后,才能进行样品测定。
3. 折射仪的清洗必须小心谨慎。灰尘和油污能影响 仪器的光学元件,每次测定之前应清洗棱镜表面。 可用适当的挥发性溶剂清洗棱镜表面,再用镜头 纸或医药棉将溶剂吸干。
15
七、参考资料
《有机化工产品检验》主编:姜洪文 杨永梅 GB-T 6682-2008 分析实验室用水规格和试验 方法 GB-T 6488-2008 液体化工产品 折光率的测 定(20℃) JJG 625-2001 阿贝折射仪检定规程
12.2.23
16
12.2.23
18
12.2.23 11
温度/0C 15 18 20
纯水的折光率 1.3334 1.3332 1.3330
温度/0C 22 25 30
纯水的折光率 1.3328 1.3325 1.3319
12.2.23
12
五、 数据记录预处理
条件 温度 21℃ 水 1.3315 测定次 数 1 2 3 平均值 1 2 3 4 5 乙酸乙 乙酸酐 酯
12.2.23 14
4.装入样品时,滴加量要适中,太少会产生气泡, 过多会溢出沾污仪器。一旦加入量过多,样品 溢出时,应立即用吸水纸吸取多余的样品。 5.不要用折射仪测定有腐蚀的液体。 6.在装样和清洗过程中要特别注意要特别保护棱镜 的光学表面,滴放试样时要用滴管,不可使用 玻璃或硬物质触及棱镜

材料折射率表(全面)

材料折射率表(全面)
本材料折射率表详细列出了众多不同材料的折射系数。这些材料包括但不限于硫化银、乙缩醛、丙酮、脂肪酸、玛瑙、钠长石、石榴石、三氧化二铝、氢氧化铝、勃姆石、金刚砂、氧化铝混合物、硬脂酸铝、硫酸铝、氯化铵、硫酸铵、磷酸二氢铵、二氧化钛、中长石、铅矾、无水石膏、石膏、硼砂、钙长石、钠二砷、沥青等。每种材料对应的折射率也一并列出,如硫化银的折射率为2.2,乙缩醛的折射率为1.48,丙酮的折射率为1.36等。此表为科研、工业制造、光学设计等领域提供了重要的参考数据,方便用户根据具体需求选择合适的材料。

纺织纤维的鉴定

纺织纤维的鉴定

纺织纤维的鉴定纺织纤维的鉴别:是依照纤维内部结构、外观形状、化学与物理性能的差异来进行的。

鉴别步骤是先判定纤维的大类再具体分析出品种,然后作最后验证。

常规的鉴别方法有:手感目测法:手感目测法是鉴别纤维最简单的方法。

它是依照纤维的外观形状、色泽、手感及拉伸等特点来区分天然纤维棉、麻、毛、丝及化学纤维,适用于呈散纤维状态的纺织原料。

天然纤维中,棉、麻、毛属于短纤维,它们的纤维长短差异专门大,长度整齐度差,蚕丝是长丝,长而纤细,具有光泽。

化学纤维中,粘胶纤维的干、湿强力差异专门大,而其他化学纤维,因其外观特点在一定程度上可人为操纵,因此无法用手感目测法来区别。

下面两个表是常用纤维的手感目测比较如表1、2所示。

表1 天然纤维与化学纤维手感目测比较表2 各种天然纤维手感目测比较显微镜观看法:用生物显微镜放大300~400倍左右,观看纤维的截面与纵向形状,就能把它们鉴别出来。

下面是纤维断面形状在显微镜下观看纤维的纵向和横向断面能够发觉不同纤维的明显差异,如图/表3所示。

表3常见纤维纵横向形状密度梯度法:密度法依照各种纤维具有不同的特点来鉴别纤维。

测定纤维密度的方法专门多,其中常用的密度梯度法,它利用悬浮原理来测定固体密度。

分三个步骤鉴别:1.配定密度梯度液;2.标定密度梯度管;3.测定和运算荧光法:荧光法依照紫外线荧光灯照耀纤维时,纤维出现不同颜色来鉴别。

各种纤维的荧光颜色参考如下表:纺织纤维的荧光颜色燃烧法:各种纤维的化学组成不同,其燃烧特点也不同。

通过观看纤维观看接近火焰、在火焰中和离开火焰后的燃烧特点,散发的气味及燃烧后的残留物,可将常用纤维分为三类,即纤维素纤维、蛋白质纤维及合成纤维三大类。

这三大纤维的燃烧特点有明显差异,如下表所示。

三大纤维的燃烧特点燃烧法能有效地识别上述3大类纤维,在特定条件下,也可用于鉴别纤维,但难以鉴别相同种类中的不同品种。

化学溶解法:利用各种纤维在不同的化学溶剂中的溶解性能来鉴别纤维的方法。

物化实验参考答案

物化实验参考答案

物化实验参考答案答案不是标准答案,供参考.不必每个都看,只在需要时找有关的内容参考即可. 在参考中若发现解答不妥或错误的地方,请发帖更正或将信息反馈以便纠正.饱和蒸气压的测定1.为什么平衡管a,c 中的空气要赶净怎样判断空气已被赶净在实验过程中如何防止空气倒灌答:若空气不赶净测得的压力不是纯液体的饱和蒸气压,而是与空气的混合压力,它不能用克劳修斯-克拉贝龙方程来描述.在大气压下测定沸点,若几次(例如三次)测定值在误差范围之内(≤0.05℃)则可认为空气已被赶净.为防止空气倒灌,可在读取温度和压力数据后立即重新加热水浴,或迅速使系统减压.2.本实验的主要系统误差有哪些答: (1)方法误差.在由克拉贝龙方程导出克劳修斯-克拉贝龙方程的过程中有 3 个近似. g l 即:将蒸气看作理想气,设V m=RT/P;与气体摩尔体积相比,忽略液体的摩尔体积(V m) ; 在不太大的温度间隔内,将摩尔气化热看作常数. (2)读取温度和压力不能同时. (3)温度的测量不作校正;(4)四氯化碳不纯等. 3.对教材第46页上提示2如何回答答:a:该平衡管对压力变化反应较灵敏,但由于液柱较细,容易发生倒灌.而且c管和b 管液面上升和下降较快,两液面相平时的温度和压力不易读准,并且由于封闭液体量少,易因蒸气损失量大而影响实验. b:该平衡管制作简便,易装液,但空气不能排尽,且容易发生空气倒灌.在精度比较低的实验中可采用之. c:该平衡管制作比较精良,能较好地解决空气倒灌问题,并且由于b 管比c 管粗许多, 所以b 管液面下降较慢,而 c 管液面上升较快,易判断两液面相平,温度和压力读数较准. 另外b,c 间封液较多,一般不会因蒸气量损失大而影响实验.(也有人认为读数时b 管与c 管液面相平不易观察,对读数的可靠性造成一定影响,可能滞后.此问题可以讨论,也可以通过小实验验证) 4.系统如何捡漏判断漏气的依据是什么答:将系统减压~50 kPa,关闭与安全瓶相连的活塞,观察系统压力变化.若系统压力不断增大则可判断系统漏气. 5.实验装置中缓冲瓶起什么作用答:使系统压力稳定,即使系统稍有漏气也不会对测量产生太大影响. 6.本实验中所用测量仪器的最小读数的精确度是多少用来表示平均摩尔汽化热的有效数字有几位答:本实验中所用温度传感器,最小分度0.1℃,可估计读到0.01℃;压力计最小读数是0.01kpa;一般温度和压力读数都是 4 位有效数字,所以用来表示平均摩尔汽化热的有效数字也应当是4 位. 7.实验测得的是特定压力下液体的实际沸点, 如何求得液体的正常沸点你得到的正常沸点是多少,并与文献值比较答:由实验得到的ln(p/p0)~1/T 图上查出ln1 下的1/T 值,然后计算T;或由实验上得到的0 ln(p/p )= -A/T+b 公式计算p=100kPa 下的T 值(在已知A 和 b 的情况下) . 8.压力和温度测量都有随机误差, 试用最小二乘法求算ln(p/p0)=-vHm/RT+b=-A/T+b 直线的斜率及其误差,并由此求算vHm 值及其误差. 答:见实验教材第24 页上的例题.以同样的方法对你的实验结果作误差分析. 9.四氯化碳是易燃物,在加热时应该注意什么问题答:所有接口都必须密封,加热温度不要太高,一般高出正常沸点2-3 度即可.双液体系沸点-成分图的绘制1.本实验中,气,液两相是怎样达成平衡的若冷凝管D 处体积太大或太小,对测量有何影响答:在本实验采用的恒沸点仪中,利用冷凝回流的方法保持气,液两相的相对量一定,则体系温度一定,两相达平衡.若冷凝管D 处的体积太大,则气相冷凝液不易更新,客观上会造成气相蒸汽分馏,影响气相的平衡成分测定;而过小,则会因积存液量少给取样测定带来困难.2.平衡时气,液两相温度应该不应该一样实际是否一样怎样防止温度的差异答:平衡时气,液两相温度应该一样,但实际上存在差异.气相温度存在梯度,且略低于液相.为防止差异可采用以下方法:给气相保温,如本实验那样,在恒沸点仪上部和支管处缠绕石棉绳;使温度计置气,液两相中量取两相的折中温度;在恒沸点仪设计上,在保证沸腾的液体不会溅到D 处的条件下尽量缩短支管的长度和降低支管的位置.3.查乙醇或环己烷在不同温度的折射率数据,估计其温度系数,如不恒温,对折射率的数据影响如何答:查书后乙醇,环己烷不同温度下折射率数据表,计算折射率温度系数dn/dT.大多数液态有机物的dn/dT 为负值,对乙醇其值约为-0.0004/℃,随温度的升高折射率降低.4.温度计的水银球为什么一半浸在液体中,一半留在气相中答:为兼顾测量气,液两相的折中温度.5.本实验中所用温度计的精确度是多少答:本实验中所用温度计为1/10 温度计,最小分度0.1℃,可估计读到0.01℃.6.讨论本实验的主要误差来源. 答:本实验的主要误差来源有: (1)温度的测量.实际上测得的温度只是气相和液相的折中温度,并不是两相的平衡温度,且气相本身就存在温度梯度.另外,并不能完全保持蒸汽全回流,因而温度也就不能完全恒定. (2)在取样分析过程中,成分可能有变化,从而使测得的折射率并非平衡相组成. (3)折射率测定的恒温效果不好.7.如何判断气,液相已达到平衡状态答:当体系温度恒定(t≤±0.05℃)时可判断气,液相已达到平衡状态. 8.实验时,若所吸取的蒸汽冷凝液挥发掉了,是否需要重新配制溶液答:一般不需要.再重新加热蒸馏,待积存足够的气相冷凝液时再取样分析即可,因体系可在新的条件下达新的平衡.但若需要原来的物系组成,则可在实验完成后,专门配制漏掉点的溶液进行测定.9.该体系用普通蒸馏办法能否同时得到两种纯组分为什么答:不能.因该体系具有最低恒沸点,实际上将体系分为两个部分:乙醇-恒沸混合物和环己烷-恒沸混合物. 在每个部分内的溶液通过蒸馏只能得到相应的一种纯组分和恒沸混合物, 故不能同时得到两种纯组分.10.实验测得的溶液的沸点与标准大气压下的沸点是否一致若不一致,对沸点~成分图有何影响答:通常不一致,因为一般实验时的大气压并不等于标准大气压.不一致时,测得的同一成分溶液的沸点会稍偏高或偏低,可借用褚鲁统规则和克劳修斯-克拉贝龙方程导出的溶液沸点随大气压变化的关系式进行分析: t 标= t/℃+(273.15 + t/℃)/10 × (101325-P/Pa)/101325 式中t 标为校正到101325 Pa 下的正常沸点(C°),t/℃为实验大气压P(Pa)下测得的沸点. 可见,若实验时的大气压不等于标准大气压,则沸点~成分图在温度轴上稍有平移. 11.为什么工业上常生产95%的酒精只用精馏含水酒精的方法能否获得无水酒精答:因为乙醇与水的体系具有最低恒沸点(78.15℃) ,恒沸混合物的组成含乙醇95.57%, 所以只能生产95%的乙醇.只用精馏含水酒精的方法不能获得无水酒精.要想得到无水酒精, 可在95.57%的乙醇中加入CaO, 使之与其中的水反应生产Ca(OH)2,然后进行蒸馏方可.蔗糖的转化1.蔗糖的转化速率和哪些条件有关答:蔗糖的转化速率与反应温度,蔗糖浓度,水的浓度,催化剂H 离子浓度有关.2.如何判断某一旋光物质是左旋还是右旋答:可有4 种回答:(1)能使偏振光的振动面顺时针方向旋转的为右旋物质,旋光度为正值;能使偏振光的振动面逆时针方向旋转的为左旋物质,旋光度为负值.(2)先用蒸馏水调零,然后测试溶液.如果在测试中只有当检偏镜顺时针方向旋转时才能使视野中三分视界明暗相同, 则被测物质的旋光性为右旋; 若只有当检偏镜逆时针方向旋转时才能使视野中三分视界明暗相同,则被测物质的旋光性为左旋.(3)看实验教材第229页上的叙述. (4)将溶液稀释后测旋光度,若旋光度增大则为左旋,否则为右旋.3.为什么配蔗糖溶液可用粗天平称量答: 因为反应过程中反应液的浓度是用旋光仪测定旋光度来跟踪的, 所以不必知道蔗糖溶液的准确浓度.4.一级反应的特点是什么答:一级反应的特点是:反应的半衰期只与速率常数有关,而与反应物的起始浓度无关. (t1/2=0.693/k,速率常数的量纲是时间的倒数. )5.已知蔗糖的*α+D =65.55°,设光源为钠光D 线,旋光管长为20cm.试估计你所配的蔗糖和盐酸混合液的最初旋光角度是多少20 20 答: 旋光物质的比旋光角可用下式计算: D =10α/LC 表示钠光黄线, *α+ (D 893nm) 式中*α+D . 为比旋光角;α为测量值;L 为旋光管长度(cm) ,即光在液柱中所经过的距离;C 为溶质浓3 度(g/cm ) .比旋光角定义为:当光经过一个10cm 长,每立方厘米溶液中含有1 克旋光物质的液柱时所产生的旋光角.∵C=10g/50ml×1/2=0.1g/ml,蔗糖的*α+D =65.55°,L=20cm∴α=*α+D LC/10=65.55×20×0.1/10=13.11°6.在数据处理中,由αt-t 曲线上读取等时间间隔t 时的αt 值,这称为数据的"匀整",此法有何意义什么情况下采取此法答: 此法可使数据采集均匀, 既避免某些测量数据带来的偶然误差又可以避免对大量数据作处理.此法适用于测量数据较多,作图点的密度较大的情况.时间间隔的取值应适宜,在允许的范围内均匀选取.7.实验中我们用去离子水来校正旋光仪的零点, 蔗糖转化过程中所测的旋光度αt 是否需要零点校正为什么答:不需要.因为在数据处理中用到的都是旋光角之差,校正值会消掉,所以没必要对测量数据作零点校正.8.旋光管的凸出部位有何用途答:一是加液用,二是可从此处赶走气泡.9.α∞不准(偏高或偏低)对k 有何影响答:α∞不准对k 的影响可做如下误差分析: 由式ln(αt-α∞)=-kt+ln(α0-α∞),可得k=1/t*α∞/(α0-α∞) + α∞/(αt-α∞)+ .可以看出,因α∞是负值,所以若α∞测得值偏低则k (这里不考虑t,αt 和α0 的测量误差) 偏小;若α∞测得偏高则k 偏大.10.估计本实验的误差,怎样减小实验误差答: (1)根据蔗糖水解速度常数κ=1/t,ln*(α0-α∞)-( αt-α∞ )+-的相对误差分析,可得: t 2α 2α k/k = ——+ —————————————— + ——————————————t (α0-α∞)ln*(α0-α∞)-( αt-α∞ )+ (αt-α∞)ln*(α0-α∞)-( αt-α∞ )+ 可见在反应初期,由于t 值较小,时间测定的相对误差较大;随着反应的进行,αt 值不断减小,使αt-α∞值也不断减小,故由旋光度测定的相对误差增大. (2)温度对k 的影响可由阿累尼乌斯公式进行误差分析:k/k=[Aexp(-Ea/RT2)-Aexp(-Ea/RT1)]/[Aexp(-Ea/RT1)]=[-Ea/R(1/T2-1/T1)]-1 -1 -1 -1 若实验温度由298K 偏高1K,活化能Ea=46024Jmol ,常数R=8.314JK mol ,则将引起k 值6%的系统误差.可见,在动力学实验中,反应温度恒定十分重要,否则会引入较大的系统误差.11.蔗糖溶液的初始浓度是否影响最后的旋光角α∞ 答:若不存在副反应,则最后的旋光角只与生成物的浓度有关,而生成物的浓度与蔗糖溶液的初始浓度有关.所以,蔗糖溶液的初始浓度会影响最后的旋光角α∞.乙酸乙酯皂化反应1.配制乙酸乙酯溶液时,为什么在容量瓶中要事先加入适量的去离子水答:在容量瓶中事先加适量去离子水,可使乙酸乙酯滴入水中形成溶液,减少挥发.2.将NaOH 溶液稀释一倍的目的是什么答:测定κ0 时将NaOH 溶液稀释一倍是为了使之与反应液中NaOH 溶液初始浓度一致.3.为什么乙酸乙酯与NaOH 溶液的浓度必须足够的稀答:因为只有溶液足够稀,每种强电解质的电导率才与其浓度成正比,溶液的总电导率才等于组成溶液的各种电解质的电导率之和, 才可通过测定反应液的电导率来跟踪反应物浓度的变化.4. 如果NaOH 与CH3COOC2H5 起始浓度不相同,试问其动力学方程式如何表示测得的k 值与本实验结果是否相同答:若乙酸乙酯与NaOH 溶液的起始浓度不等,则应具体推导k 的表达式.设t 时生成物浓度为x,则反应的动力学方程式为dx/dt=k(a-x)(b-x) (1)令NaOH 溶液起始浓度等于a,乙酸乙酯溶液起始浓度等于 b.当a≠b 时,将上式积分得:k=[1/t(a-b)]ln[b(a-x)/a(b-x)+ (2)当a>b 时,有:NaOH + CH3COOC2H5 = CH3COONa + CH3CH2OHt=0 a b 0 0t=t a-x b-x x xt=∞a-b 0 b b则:k0 = aA1k∞ = bA2+A1(a-b)kt = A1(a-x)+A2x ,得联立解之,得x=b(k0-kt)/(k0-k∞),代入式(2)k=[1/t(a-b)]ln{[a(k0-k∞)-b(k0-kt)]/a(kt-k∞)}k∞的测定:配制(a-b)浓度的NaOH 和b 浓度的NaAc 混合溶液,在与反应相同条件下测其电导率.当b>a 时,有:NaOH + CH3COOC2H5 = CH3COONa + CH3CH2OHt=0 a b 0 0t=t a-x b-x x xt=∞ 0 b-a a a则: k0=aA1k∞=aA2kt=A1(a-x)+ A2x ,得联立解之,得x=a(k0-kt)/(k0-k∞),代入式(2)k=[1/t(b-a)]ln{[b(k0-k∞)-a(k0-kt)]/b(kt-k∞)-k∞的测定:配制(b-a)浓度的乙酸乙酯,a 浓度的NaAc 和b 浓度的CH3CH2OH 混合溶液,在相同条件下测其电导率.以ln{[b(k0-k∞)-a(k0-kt)]/b(kt-k∞)-对t 作图得一直线,由直线斜率求k. 从得到的动力学方程可以看出,二级反应的速率常数与初始浓度有关.当a,b 相等时, 速率常数与初始浓度成反比.5.若实验中用二次水代替电导水可能会产生的影响是什么–1 答:通常二次水中含有杂质(电导率一般在10-5 Scm ),如从空气中溶入的CO2 和一般玻璃器皿上溶下来的离子,将会影响电导率的测量.但在实际的计算过程中,水的电导率kw 的-1 影响可被消掉.本实验中用去离子水代替电导水,二者的电导率相近,约为10-6 Scm ,即-1 10-3 mScm (在本实验的测量精度以下),故不会对结果产生影响.6.反应分子数与反应级数是两个完全不同的概念, 反应级数只能通过实验来确定. 试问如何从实验结果来验证乙酸乙酯皂化反应应为二级反应答:设乙酸乙酯皂化反应为二级反应,可得到速率方程的积分式.若反应物浓度相等,并设为a,则有:k=(1/t)[x/a(a-x)] .可用两种方法来验证: (1)在反应的不同时刻取样,并立即终止反应,然后用化学分析方法测定某反应物或生成物的浓度,并将测得数据代入方程计算k 值.若k 值为常数,则可判定反应为二级; (2)用物理化学分析法测定反应进程中某物理量(如电导率)的变化,根据推导出的含有所测物理量的速率方程作图.若得直线,则可判定反应为二级.7.如果乙酸乙酯和NaOH 溶液均为浓溶液,试问能否用此法求得k 值答:不能.因为浓溶液中强电解质的电导率不与其浓度成正比,失去得到此动力学方程的前提,所以不能求得k 值.8.本实验为什么可以用测得的反应液的电导率来代替浓度变化答:因为本实验的反应液中只有NaOH 和NaAc 两种强电解质,并且OH-离子的电导率比Ac-离子的电导率大许多.在反应溶液的浓度相当低的条件下,可近似地认为溶液的电导率与OH-离子的浓度成正比,所以可用测得的反应液的电导率来代替浓度变化.9.为什么本实验要求反应液一混合就开始记时此时反应液中的a 应为多少答: 因为本实验的速率方程积分式为: k=(k0-kt )/kat + k∞ , kt~(k0-kt)/t 直线的斜率m=1/ka 由知,k=1/ma,即速率常数k 与起始浓度成反比.所以必须一混合就开始记时,此时反应液中各反应物溶液的浓度为原溶液浓度的1/2.10.乙酸乙酯皂化反应为吸热反应,试问在实验过程中如何处置这一影响而使实验得到较好的结果答:将反应物溶液预先在恒温槽中恒温10分钟,然后取出迅速混合均匀,淋洗电极并将溶液倒入已恒温的大试管中进行测量;在处理数据时,舍去前8 分钟的数据,用8-40 分钟内的数据作直线拟合.11.本实验为何要在恒温条件下进行而且乙酸乙酯和NaOH 溶液混合前都要恒温答:因为乙酸乙酯皂化反应为吸热反应;反应速率常数是温度的函数,所以必须恒温.乙酸乙酯和NaOH 溶液混合前都恒温为的是使反应液尽快达到反应温度.12.各溶液在恒温及操作中为什么要塞好塞子答:一是防止乙酸乙酯挥发,二是防止NaOH 溶液吸收空气中的CO2,改变其浓度.13.在保证电导率与离子浓度成正比的前提下,乙酸乙酯和NaOH 溶液的浓度高些好还是低些好答:高些好.因为这样电导率变化值大,测量的相对误差小.14.二级反应的特点是什么答: 对反应物浓度相同的二级反应, 其特点是: 1) ( 半衰期与反应物初始浓度成反比,1/2=1/ka; t (2)速率常数的量纲是[浓度]-1[时间]-1.电动势的测定及其应用1.电池的电动势为什么不能直接用伏特计测量答:因为伏特计与电池连接后便构成了回路,电池中有电流通过.电流会引起化学变化,因而使电极极化,溶液浓度发生变化,电池的电势不能保持稳定.另外,电池本身有内阻,因而有电位降,所以伏特计量得的电位降不等于电池的电动势.2.为何测电动势要用对消法,对消法的原理是什么答:利用对消法可在电池无电流(或极小电流)通过时测其两极间的静态电势.此时电池反应在接近可逆的条件下进行,测得的的电势降为电池的平衡电势,即电动势. 对消法原理可由线路示意图说明:见教材第111 页3.怎样计算标准电极势"标准"是指什么条件答: 将待测电极与标准电极或参比电极组成电池并测定电池电动势, 然后利用电池和电极的能斯特方程便可计算待测电极的标准电极势,即E=φ 右-φ 左=φ 右°- RT/nFln(ane/aoe)-φ 参比φ 右°=E + RT/nFln(ane/aoe)+φ 参比。

镜片折射率最佳对照表

镜片折射率最佳对照表

镜片折射率最佳对照表
镜片折射率对照表是一种参考工具,可以帮助您了解不同折射率的镜片适合的度数范围。

请注意,这只是一个大致的参考,具体的选择还需要结合您的个人需求和验光师的建议。

以下是一个常见的镜片折射率对照表:
* 1.50折射率:通常适合0-200度的近视或远视眼镜。

* 1.56折射率:适合0-400度的近视或远视眼镜,这是最常见
的镜片折射率之一。

* 1.60折射率:适合200-600度的近视或远视眼镜,比1.56折射率的镜片更薄更轻。

* 1.67折射率:适合400-800度的近视或远视眼镜,是高度数
眼镜的常见选择。

* 1.74折射率:适合600度以上的近视或远视眼镜,是高度数
眼镜的理想选择,因为它比其他折射率的镜片更薄更轻。

请注意,这个对照表只是一个大致的参考,每个人的眼睛和视力状况都是独特的,所以最好在购买前咨询验光师的建议。

他们可以根据您的具体需求和**有其他的镜片折射率对照表**。

不同品牌的镜片,折射率会有一定的差别。

此外,除了常见的折射率如1.50、1.56、1.60、1.67和1.74外,还有一些其他的折射率如1.53、1.55、1.58等。

请注意,这些对照表只是参考,具体的选择还需要结合您的个人需求和验光师的建议。

视力状况,为您推荐最适合的镜片折射率。

关于太阳能电池减反射膜的研究报告

关于太阳能电池减反射膜的研究报告

关于太阳能电池减反射膜的研究报告作者:杨嘉贺(江西南昌理工学院南昌 330044)【摘要】在太阳电池表面形成一层减反射薄膜是提高太阳电池的光电转换效率比较可行且降低成本的方法。

应用PECVD(等离子体增强化学气相沉积)系统,采用SiH4和NH3气源以制备氮化硅薄膜。

研究探索了PECVD生长氮化硅薄膜的基本物化性质以及在沉积过程中反应压强、反应温度、硅烷氨气流量比和微波功率对薄膜性质的影响。

通过大量实验,分析了氮化硅薄膜的相对最佳沉积参数,并得出制作战反射膜的优化工艺。

【关键词】太阳电池;PECVD减反射;氮化硅薄膜一、引言太阳能光伏技术是将太阳能转化为电力的技术,其核心是半导体物质的光电效应。

最常用的半导体材料是硅。

光伏电池由P型和N型半导体构成,一个为正极,一个为负极。

阳光照射在半导体上时,两极交界处产生电流,阳光强度越大,电流就越强。

太阳能光伏系统不仅只在强烈阳光下运作,在阴天也能发电。

晶体硅是当前太阳能光伏电池的主流。

目前晶体硅电池光电转换效率可以达到20%,并已实现大规模生产。

除效率外,光伏电池的厚度也很重要。

薄的硅片(wafer)意味着较少的硅材料消耗,从而可降低成本。

在查阅了大量国内外相关文献,并结合我国对晶体硅太阳电池技术开发的迫切需要,在制备太阳电池减反射膜(氮化硅薄膜)的工艺中,对气体流量比、微波功率、沉积压强和温度对减反射膜性质的影响进行了研究,通过大量有效的工作及一系列工艺数据,得出了制作减反射膜,分析了氮化硅薄膜的相对最佳沉积参数和优化工艺。

二、减反射膜(增透膜)工作原理2.1基本概念:在了解减反射薄膜原理之前,要先了解几个简单的概念:第一,光在两种媒质界面上的振幅反射系数为(1-ρ)/(1+ρ),其中ρ为界面处两折射率之比。

第二,若反射光存在于折射率比相邻媒质更低的媒质内,则相移为180°;若该媒质的折射率高于相邻媒质的折射率,则相移为零。

第三,光因受薄膜上下两个表面的反射而分成2个分量,这2个分量将按如下方式重新合并,即当它们的相对相移为180°时,合振幅便是2个分量振幅之差;称为两光束发生相消干涉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.545 - 1.574
1.545 - 1.69 1.535 - 1.63 1.5026-1.6817
1.6350 1.6145
1.97
1.838
1.895
Page 1.4
MAN - 1.83 2.13 - 2.20
1.6362 - 1.6482
1.529 - 1.677
1.642
1.54065 1.576 1.613 1.47 1.98 1.637 - 1.649
2.155 2.40
MAN 0079
Compound
Barium Yellow Barytes (Barite, Blanc Fixe) Benzene Benzyl Alcohol Benzyl Benzoate Beryllium Oxide Biotite (Mica) Bitumen Black Pigments Blanc Fixe (Artificial Barytes) Blue Pigments Boehmite Bone Black Boracic Acid Borax Borax Boric Oxide Boro-silicate Crown Glass (Soda lime glass) Boron Oxide Boron Oxide Glass Brick Dust Brookite (Titanium Dioxide) Brown Pigments N-butanol Butanone Butter Fat Cadmium Iodide Calcium Metaborate
CONTENTS
C O N T E N T S Page i
CONTENTS
Dispersion & Refractive Index Guide
Page ii
MAN 0079
Refractive index list
CHAPTER1
Compound
Acanthite (Silver Sulphide) Acetal Acetone Adipic Acid Agate Albite Albite (Feldspar) Almandine (Garnet) Alumina Alumina trihydrate Aluminium Hydroxide (Nat. Boehmite) Aluminium Oxide (Corundum) Aluminium Silicate Aluminium Stearate Aluminum Sulphate Ammonium Chloride Ammonium Sulphate Ammonium Dihydrogen Phosphate Anatase (Titanium Dioxide) Andesine (Feldspar) Andradite (Garnet) Anglesitte (Lead Sulphate) Anhydrite (Calcium Sulphate)
Asphaltum (Bitumen) Azurite Baddeyelite (Zirconium Oxide) Barite (Barytes) Barium Carbonate (Witherite) Barium Chloride Barium Crown Glass (Light) (Medium) (Dense) Barium Fluoride Barium Oxide Barium Sulphate (Barite, Barytes) Barium Mono-sulphide Barium Titanate
1.63 (average) 1.64 - 1.67 1.65 - 1.70 1.456 1.4466 - 1.4687 1.469 1.459 1.50970 1.513 1.61-1.64 1.485 1.44 2.5831 - 2.7004
1.653 (average) 1.3993 1.38 1.4548 2.7 1.660
Formula
Ag S
(CH .CH .COOH) SiO Na2O.AI2O3.6SiO2 NaAlSi!O&
AI2O3 AI2O33H20 Al(OH) AlO(OH) Al O!
Al2O3 . SiO2 Al(C18H35O2)3 AI2(SO4)3 NH4CI NH4SO4 (NH4) H P O 2 2 6 TiO2
Sample dispersion &
refractive index guide
MAN 0079 Version3.1 April 1997
©Malvern Instruments Ltd. 1996, 1997.
Malvern Instruments makes every effort to ensure that this document is correct. However, due to Malvern Instruments policy of continual product development we are unable to guarantee the accuracy of this, or any other document after the date of publication. We therefore disclaim all liability for any changes, errors or omissions after the date of publication. No reproduction or transmission of any part of this publication is allowed without the express written permission of Malvern Instruments Ltd. Head Office: Malvern Instruments Ltd. Spring Lane South, Malvern. Worcestershire. WR14 1XZ U.K.
Tel + [44] (0) 1684-892456 Fax + [44] (0) 1684-892789
Printed in England
Contents
Chapter 1 - Refractive index list Chapter 2 - Particle dispersion techniques Chapter 3 - List of suppliers
Page 1.2
Dispersion & Refractive Index Guide
Formula
CaSO4.2H2O Na2O.2B2O3 CaAl2 Si2 O8 (Na,K)AlSi3 O8 Sb2O3
Sb2S3 CaCO3
As2O3
2CuCO3.Cu(OH)2 ZrO2 BaSO4 BaCO3 BaCI2.2H2O
BaF2 BaO BaSO4 BaS BaTiO3
Refractive index
1.519 - 1.531
1.501 1.577 -1.590
1.523 - 1.529
2.087 2.18 - 2.35 2.65 1.530 - 1.686
2.61 1.76 (V) 1.92 (I) 1.64 - 1.66
1.544 - 1.563
1.887
1.8771 - 1.8937
1.5698 - 1.6136
R E F R A C T I V E I N D E X L I S T Page 1.1
CHAPTER 1
Compound
Anhydrite (Gypsum) Anhydrous Borax Anorthite (Feldspar) Anorthoclase (Feldspar) Antimony Trioxide (Nat. Semarnontite) (Nat. Valentine) Antimony Vermilion Argonite (Calcium Carbonate) Arsenic Sulphur Glass Arsenous Oxide
([NaSi] 0.7-0.5 [CaAl] 0.3-0.5) AlSi2 O8
PbSO4
CaSO4
CHAPTER 1
Refractive index
2.2
1.48 1.36 1.433 1.544 - 1.553 1.529 1.527 - 1.538
1.830
1.760 1.577-1.595 1.50 - 1.56 1.64 - 1.67 1.76 - 1.768 1.765 1.65 1.49 1.47 1.642 1.523 1.52 2.5612 - 2.613
Formula
BaCrO4 BaSO4 C H6 6 C6H5CH2OH
BeO K(Mg,Fe)3 AlSi3O10(OH,F)2
BaSO4
AlO(OH) C + Ca3(PO4)2 B2O3.3H2O Na2 B4 O7 Na2O.2B2O3.10H2O B O2 3
B O2 3 B O2 3
TiO2
R E F R A C T I V E I N D E X L I S T Page 1.3
CHAPTER 1
Dispersion & Refractive Index Guide
Compound
Cadmium Oxide Cadmium Red Cadmium Red Lithopone Cadmium Sulfide (Greenockite) Cadmium Yellow Cadmium Yellow Lithopone Calcite (Calcium Carbonate) Calcium Carbide Calcium Carbonate Calcium Carbonate (Argonite) (Nat. Calcite) (Nat. Vaterite) Calcium Carbonate Hexahydrate Calcium Chloride Calcium Chlorite Calcium Fluoride (Fluorite) Calcium Hydroxide (Hydrated Lime) Calcium Hypochlorite Calcium Hypochlorite Tri-hydrate Calcium Magnesium Carbonate (Dolamite) Calcium Metasilicate (α) Calcium Metasilicate (β) (Nat. Wollastonite) Calcium Molybdate (Pawellite) Calcium Oxide (lime) (Calcia) Calcium per Oxide
相关文档
最新文档