2017年度江苏盐城市中考数学试卷含内容规范标准答案和解析版

合集下载

2017年江苏省盐城市中考真题数学

2017年江苏省盐城市中考真题数学

2017年江苏省盐城市中考真题数学一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2的绝对值是( )A.2B.-2C.1 2D.1 2解析:根据负数的绝对值等于它的相反数解答.-2的绝对值是2,即|-2|=2.答案:A.2.如图是某个几何体的主视图、左视图、俯视图,该几何体是( )A.圆柱B.球C.圆锥D.棱锥解析:根据三视图即可判断该几何体.由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥. 答案:C.3.下列图形中,是轴对称图形的是( )A.B.C.D.解析:根据轴对称图形的概念求解.D的图形沿中间线折叠,直线两旁的部分可重合,故选D.答案:D.4.数据6,5,7.5,8.6,7,6的众数是( )A.5B.6C.7D.8解析:直接利用众数的定义分析得出答案.∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.答案:B.5.下列运算中,正确的是( )A.7a+a=7a2B.a2·a3=a6C.a3÷a=a2D.(ab)2=ab2解析:根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.A、错误,根据合并同类项法则,7a+a=8a.B、错误,根据同底数幂的乘法,a2·a3=a5.C、正确,根据同底数幂的除法,a3÷a=a2.D、错误,根据积的乘方,(ab)2=a2b2.答案:C.6.如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A.y=12(x-2)2-2B.y=12(x-2)2+7C.y=12(x-2)2-5D.y=12(x-2)2+4解析:∵函数y=12(x-2)2+1的图象过点A(1,m),B(4,n),∴m=12(1-2)2+1=112,n=12(4-2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112 ),∴AC=4-1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC·AA′=3AA′=9,∴AA′=3,即将函数y=12(x-2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x-2)2+4.答案:D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.请写出一个无理数 .解析:根据无理数定义,随便找出一个无理数即可.是无理数(答案不唯一).(答案不唯一).8.分解因式a2b-a的结果为 .解析:根据提公因式法分解即可.a2b-a=a(ab-1).答案:a(ab-1).9. 2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 .解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.将57000用科学记数法表示为:5.7×104.答案:5.7×104.10.在实数范围内有意义,则x的取值范围是 .解析:根据被开方数大于等于0列式进行计算即可求解.根据题意得x-3≥0,解得x≥3.答案:x≥3.11.如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是 .解析:共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.上方的正六边形涂红色的概率是13.答案:13.12.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.解析:由三角形的外角的性质可知,∠1=90°+30°=120°.答案:120.13.若方程x2-4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为 . 解析:先根据根与系数的关系得到x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.答案:5.14.如图,将⊙O沿弦AB折叠,点C在¼AmB上,点D在»AB上,若∠ACB=70°,则∠ADB= °.解析:根据折叠的性质和圆内接四边形的性质即可得到结论.∵点C在¼AmB上,点D在»AB上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°.答案:110.15.如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B 运动的最短路径长为 .解析:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB∴B运动的最短路径长为==.答案:2.16.如图,曲线l是由函数6yx=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点,,,的直线与曲线l相交于点M、N,则△OMN的面积为 .解析:∵,),,),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴).在新的坐标系中,A(0,8),B(4,0), ∴直线AB 解析式为y ′=-2x ′+8,由286y x y x '=-'+⎧⎪⎨'=⎪'⎩,解得16x y '=⎧⎨'=⎩或32x y '=⎧⎨'=⎩, ∴M(1.6),N(3,2), ∴464112228OMN OBM OBN S S S =-⨯⨯⨯=-=⨯V V V . 答案:8.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.10220117-⎛⎫- ⎪⎝⎭.解析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.答案:原式=2+2-1=3.18.解不等式组:311442x x x x -≥+⎧⎨+-⎩<.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 答案:解不等式3x-1≥x+1,得:x ≥1, 解不等式x+4<4x-2,得:x >2, ∴不等式组的解集为x >2.19.先化简,再求值:35222x x x x +⎛⎫÷+- ⎪--⎝⎭,其中解析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.答案:原式()()2234539321222222333x x x x x x x x x x x x x x x +-+-+-=÷-=÷==----⎛⎫ ⎪⎝⎭--+--g ,当时,原式3===.20.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是 . 解析:(1)利用概率公式直接计算即可.答案:(1)∵对第二个字是选“重”还是选“穷”难以抉择, ∴若随机选择其中一个正确的概率=12. 故答案为:12.(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.解析:(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.答案:(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种, 所以小丽回答正确的概率=14.21.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数.解析:(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数.答案:(1)被调查的学生总人数为8÷20%=40(人).(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数.解析:(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数. 答案:(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°.(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.解析:(3)用800乘以样本中最想去A景点的人数所占的百分比即可.答案:(3)800×1440=280,所以估计“最想去景点B“的学生人数为280人.22.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形.解析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证.答案:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=12∠ABD,∠FDB=12∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形.(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.解析:(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.答案:(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.23.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论.答案:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据题意得:3500240011 x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?解析:(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.答案:(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60-35)×100(1+a)2=(60-35+11)×100,解得:a=0.2=20%或a=-2.2(不合题意,舍去).答:年增长率为20%.24.如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO.(不写作法与证明,保留作图痕迹)解析:(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可.答案:(1)如图①所示,射线OC即为所求.(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.解析:(2)添加如图所示辅助线,圆心O的运动路径长为C△OO1O2,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.答案:(2)如图,圆心O的运动路径长为C△OO1O2.过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴tan30BCAC===︒AB=2BC=18,∠ABC=60°,∴91827ABCC=+=+V∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵11BD BGO B O B=⎧⎨=⎩,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴1tan30O DBD===︒∴1927OO =--=-∵O 1D=OE=2,O 1D ⊥BC ,OE ⊥BC , ∴O 1D ∥OE ,且O 1D=OE ,∴四边形OEDO 1为平行四边形, ∵∠OED=90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形, 又OE=OF ,∴四边形OECF 为正方形,∵∠O 1GH=∠CDO 1=90°,∠ABC=60°, ∴∠GO 1D=120°,又∵∠FO 1D=∠O 2O 1G=90°,∴∠OO 1O 2=360°-90°-90°=60°=∠ABC , 同理,∠O 1OO 2=90°, ∴△OO 1O 2∽△CBA , ∴1212OO O ABCC O O C BC =V V79C -=,∴1215OO O C =V O 运动的路径长为25.如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G.(1)求证:BC 是⊙F 的切线.解析:(1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论. 答案:(1)连接EF ,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线.(2)若点A、D的坐标分别为A(0,-1),D(2,0),求⊙F的半径.解析:(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可. 答案:(2)连接FD,设⊙F的半径为r,则r2=(r-1)2+22,解得,r=52,即⊙F的半径为52.(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.解析:(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.答案:(3)AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=12AD+CD,∴AG=2FE=AD+2CD.26.探索问题并应用.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .解析:【探索发现】:由中位线知EF=12BC,ED=12AB,由12FEDBABCS EF DES AB BC=Vgg矩形可得.答案:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=12BC,ED=12AB,又∠B=90°,∴四边形FEDB是矩形,则1112211222FEDBABCBC ABS EF DES AB BC AB BC=== Vggg g矩形,故答案为:12.【拓展应用】如图②,在△ABC 中,BC=a ,BC 边上的高AD=h ,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 .(用含a ,h 的代数式表示) 解析:【拓展应用】:由△APN ∽△ABC 知PN AE BC AD =,可得aPN a PQ h=-,设PQ=x ,由224PQMNa h ahS PQ PN x h ⎛⎫==--+ ⎪⎝⎭g 矩形,据此可得.答案:【拓展应用】∵PN ∥BC ,∴△APN ∽△ABC ,∴PN AE BC AD =,即PN h PQa h-=, ∴aPN a PQ h=-,设PQ=x , 则2224PQMN a a a h ah S PQ PN x a x x ax x h h h ⎛⎫⎛⎫==-=-+=--+⎪ ⎪⎝⎭⎝⎭g 矩形, ∴当2h PQ =时,S 矩形PQMN 最大值为4ah. 故答案为:4ah.【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 解析:【灵活应用】:添加如图1辅助线,取BF 中点I ,FG 的中点K ,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF ≌△HED 、△CDG ≌△HDE 得AF=DH=16、CG=HE=20,从而判断出中位线IK 的两端点在线段AB 和DE 上,利用【探索发现】结论解答即可. 答案:【灵活应用】如图1,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 中点I ,FG 的中点K ,由题意知四边形ABCH 是矩形, ∵AB=32,BC=40,AE=20,CD=16, ∴EH=20、DH=16,∴AE=EH 、CD=DH , 在△AEF 和△HED 中,FAE DHE AE AHAEF HED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△HED(ASA), ∴AF=DH=16,同理△CDG ≌△HDE , ∴CG=HE=20, ∴242AB AFBI +==, ∵BI=24<32,∴中位线IK 的两端点在线段AB 和DE 上, 过点K 作KL ⊥BC 于点L ,由【探索发现】知矩形的最大面积为12×BG ·BF=12×(40+20)×(32+16)=720, 答:该矩形的面积为720.【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB=50cm ,BC=108cm ,CD=60cm ,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积. 解析:【实际应用】:延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,由tanB=tanC 知EB=EC 、BH=CH=54,EH=43BH=72,继而求得BE=CE=90,可判断中位线PQ 的两端点在线段AB 、CD 上,利用【拓展应用】结论解答可得. 答案:【实际应用】如图2,延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,∵tanB=tanC=43, ∴∠B=∠C , ∴EB=EC ,∵BC=108cm ,且EH ⊥BC ,∴BH=CH=12BC=54cm , ∵4tan 3EH B BH ==,∴44547233EH BH ==⨯=cm ,在Rt △BHE中,90BE ==cm ,∵AB=50cm ,∴AE=40cm ,∴BE 的中点Q 在线段AB 上, ∵CD=60cm , ∴ED=30cm ,∴CE 的中点P 在线段CD 上,∴中位线PQ 的两端点在线段AB 、CD 上, 由【拓展应用】知,矩形PQMN 的最大面积为14BC ·EH=1944cm 2, 答:该矩形的面积为1944cm 2.27.如图,在平面直角坐标系中,直线221y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =-++经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式.解析:(1)根据题意得到A(-4,0),C(0,2)代入212y x bx c =-++,于是得到结论. 答案:(1)根据题意得A(-4,0),C(0,2), ∵抛物线212y x bx c =-++经过A 、C 两点, ∴0621214b c c⎧=-⨯-+⎪⎨⎪=⎩,∴223b c ⎧=-⎪⎨⎪=⎩, ∴221322y x x =--+.(2)点D 为直线AC 上方抛物线上一动点.①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求12S S 的最大值.②过点D 作DF ⊥AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.解析:(2)①如图,令y=0,解方程得到x 1=-4,x 2=1,求得B(1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,根据相似三角形的性质即可得到结论.②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P(32-,0),得到PA=PC=PB=52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,情况一:如图,∠DCF=2∠BAC=∠DGC+∠CDG ,情况二,∠FDC=2∠BAC ,解直角三角形即可得到结论.答案:(2)①如图,令y=0, ∴2132220x x --+=, ∴x 1=-4,x 2=1, ∴B(1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,∴DM ∥BN ,∴△DME ∽△BNE , ∴12S DE DM S BE BN==, 设D(a ,213222a a --+),∴M(a ,12a+2), ∵B(1.0), ∴N(1,52), ∴()22121221425552a aS DM a S BN --===-++;∴当a=2时,12S S 的最大值是45. ②∵A(-4,0),B(1,0),C(0,2), ∴AB=5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(32-,0), ∴PA=PC=PB=52,∴∠CPO=2∠BAC , ∴tan ∠CPO=tan(2∠BAC)=43, 过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG , ∴∠CDG=∠BAC , ∴tan ∠CDG=tan ∠BAC=12, 即12RC DR =, 令D(a ,213222a a --+),∴DR=-a ,21322RC a a =--, ∴2131222a a a --=-, ∴a 1=0(舍去),a 2=-2, ∴x D =-2.情况二,∴∠FDC=2∠BAC , ∴tan ∠FDC=43, 设FC=4k ,∴DF=3k ,DC=5k , ∵tan 123k DGC FG ∠==, ∴FG=6k ,∴CG=2k ,, ∴,k ,DR =-=,∴1322k DR a RC a a ---==, ∴a 1=0(舍去),a 2=2911-, ∴x D =2911-. 综上所述,点D 的横坐标为-2或2911-.。

2017年各地中考试卷2017年江苏省盐城市中考数学试卷

2017年各地中考试卷2017年江苏省盐城市中考数学试卷

2017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥3.(3分)下列图形中,是轴对称图形的是()A.B.C.D.4.(3分)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.85.(3分)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab26.(3分)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)请写出一个无理数.8.(3分)分解因式a2b﹣a的结果为.9.(3分)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.12.(3分)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=°.13.(3分)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.14.(3分)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=°.15.(3分)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.16.(3分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:+()﹣1﹣20170.18.(6分)解不等式组:.19.(8分)先化简,再求值:÷(x+2﹣),其中x=3+.20.(8分)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.21.(8分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.22.(10分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.23.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.(10分)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.25.(10分)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC 与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F 恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.26.(12分)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别(用在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.27.(14分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•随州)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2017•盐城)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选(C)【点评】本题考查三视图,解题的关键是熟练掌握几种常见几何体的三视图,本题属于基础题型.3.(3分)(2017•盐城)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D的图形沿中间线折叠,直线两旁的部分可重合,故选:D.【点评】本题考查了轴对称图形,掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)(2017•盐城)数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.8【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.故选:B.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.5.(3分)(2017•盐城)下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2 D.(ab)2=ab2【分析】根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.【解答】解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.【点评】本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则,熟练掌握这些法则是解题的关键.6.(3分)(2017•盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017•盐城)请写出一个无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.8.(3分)(2017•盐城)分解因式a2b﹣a的结果为a(ab﹣1).【分析】根据提公因式法分解即可.【解答】解:a2b﹣a=a(ab﹣1),故答案为:a(ab﹣1).【点评】本题考查了分解因式,能正确分解因式是解此题的关键.9.(3分)(2017•盐城)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•盐城)若在实数范围内有意义,则x的取值范围是x ≥3.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.11.(3分)(2017•盐城)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【分析】共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.【解答】解:上方的正六边形涂红色的概率是,故答案为:.【点评】此题主要考查了概率,关键是掌握概率=所求情况数与总情况数之比.12.(3分)(2017•盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=120°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.(3分)(2017•盐城)若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为5.【分析】先根据根与系数的关系得到x1+x2=4,x1x2=1,然后把x1(1+x2)+x2展开得到x1+x2+x1x2,然后利用整体代入的方法计算即可.【解答】解:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2017•盐城)如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB=110°.【分析】根据折叠的性质和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.【点评】本题考查了折叠的性质和圆内接四边形的性质,熟练掌握折叠的直线是解题的关键.15.(3分)(2017•盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.【点评】本题考查旋转变换、轨迹.弧长公式、勾股定理等知识,解题的关键是确定旋转中心和旋转角的大小,属于中考常考题型.16.(3分)(2017•盐城)如图,曲线l 是由函数y=在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的,过点A (﹣4,4),B (2,2)的直线与曲线l 相交于点M 、N ,则△OMN 的面积为 8 .【分析】由题意A (﹣4,4),B (2,2),可知OA ⊥OB ,建立如图新的坐标系(OB 为x ′轴,OA 为y′轴,利用方程组求出M 、N 的坐标,根据S △OMN =S △OBM ﹣S △OBN 计算即可.【解答】解:∵A (﹣4,4),B (2,2), ∴OA ⊥OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1,6),N(3,2),∴S=S△OBM﹣S△OBN=•4•6﹣•4•2=8,△OMN故答案为8【点评】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)(2017•盐城)计算:+()﹣1﹣20170.【分析】首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:原式=2+2﹣1=3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)(2017•盐城)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,∴不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2017•盐城)先化简,再求值:÷(x+2﹣),其中x=3+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷(﹣)=÷=•=,当x=3+时,原式===.【点评】本题主要考查分式的化简求值,根据分式的混合运算顺序和法则将原式化简是解题的关键.20.(8分)(2017•盐城)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【分析】(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.【解答】解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.【点评】此题考查了列表法或树状图法求概率.通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求事件A或B的概率.21.(8分)(2017•盐城)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【解答】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.22.(10分)(2017•盐城)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【分析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.【点评】本题主要考查矩形的性质、平行四边形、菱形,熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.23.(10分)(2017•盐城)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:=,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.【点评】本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)找准等量关系,列出一元二次方程.24.(10分)(2017•盐城)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【分析】(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.【解答】解:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,∴C=9+9+18=27+9,△ABC∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.【点评】本题主要考查作图﹣复杂作图、切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质,熟练掌握切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质是解题的关键.25.(10分)(2017•盐城)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y 轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【解答】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.【点评】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.26.(12分)(2017•盐城)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别(用在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC 上且面积最大的矩形PQMN,求该矩形的面积.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩=PQ•PN═﹣(x﹣)2+,据此可得;形PQMN【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,矩形PQMN最大值为,∴当PQ=时,S矩形PQMN故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】。

(精品word版)2017年江苏省盐城市中考真题数学

(精品word版)2017年江苏省盐城市中考真题数学

2017年江苏省盐城市中考真题数学一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2的绝对值是( )A.2B.-2C.1 2D.1 2解析:根据负数的绝对值等于它的相反数解答.-2的绝对值是2,即|-2|=2.答案:A.2.如图是某个几何体的主视图、左视图、俯视图,该几何体是( )A.圆柱B.球C.圆锥D.棱锥解析:根据三视图即可判断该几何体.由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥. 答案:C.3.下列图形中,是轴对称图形的是( )A.B.C.D.解析:根据轴对称图形的概念求解.D的图形沿中间线折叠,直线两旁的部分可重合,故选D.答案:D.4.数据6,5,7.5,8.6,7,6的众数是( )A.5B.6C.7D.8解析:直接利用众数的定义分析得出答案.∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.答案:B.5.下列运算中,正确的是( )A.7a+a=7a2B.a2·a3=a6C.a3÷a=a2D.(ab)2=ab2解析:根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.A、错误,根据合并同类项法则,7a+a=8a.B、错误,根据同底数幂的乘法,a2·a3=a5.C、正确,根据同底数幂的除法,a3÷a=a2.D、错误,根据积的乘方,(ab)2=a2b2.答案:C.6.如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A.y=12(x-2)2-2B.y=12(x-2)2+7C.y=12(x-2)2-5D.y=12(x-2)2+4解析:∵函数y=12(x-2)2+1的图象过点A(1,m),B(4,n),∴m=12(1-2)2+1=112,n=12(4-2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112 ),∴AC=4-1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC·AA′=3AA′=9,∴AA′=3,即将函数y=12(x-2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x-2)2+4.答案:D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.请写出一个无理数 .解析:根据无理数定义,随便找出一个无理数即可.(答案不唯一).答案不唯一).8.分解因式a2b-a的结果为 .解析:根据提公因式法分解即可.a2b-a=a(ab-1).答案:a(ab-1).9. 2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 .解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.将57000用科学记数法表示为:5.7×104.答案:5.7×104.10.x的取值范围是 .解析:根据被开方数大于等于0列式进行计算即可求解.根据题意得x-3≥0,解得x≥3.答案:x≥3.11.如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是 .解析:共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.上方的正六边形涂红色的概率是13.答案:13.12.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.解析:由三角形的外角的性质可知,∠1=90°+30°=120°.答案:120.13.若方程x2-4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为 .解析:先根据根与系数的关系得到x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.答案:5.14.如图,将⊙O沿弦AB折叠,点C在AmB上,点D在AB上,若∠ACB=70°,则∠ADB= °.解析:根据折叠的性质和圆内接四边形的性质即可得到结论.∵点C在AmB上,点D在AB上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°.答案:110.15.如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B 运动的最短路径长为 .解析:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB∴B运动的最短路径长为9013131802π==.答案:2.16.如图,曲线l是由函数6yx=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点,的直线与曲线l相交于点M、N,则△OMN的面积为 .解析:∵,,∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴).在新的坐标系中,A(0,8),B(4,0), ∴直线AB 解析式为y ′=-2x ′+8,由286y x y x '=-'+⎧⎪⎨'=⎪'⎩,解得16x y '=⎧⎨'=⎩或32x y '=⎧⎨'=⎩, ∴M(1.6),N(3,2), ∴464112228OMNOBMOBNSSS=-⨯⨯⨯=-=⨯. 答案:8.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.10220117-⎛⎫- ⎪⎝⎭.解析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.答案:原式=2+2-1=3.18.解不等式组:311442x x x x -≥+⎧⎨+-⎩<.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 答案:解不等式3x-1≥x+1,得:x ≥1, 解不等式x+4<4x-2,得:x >2, ∴不等式组的解集为x >2.19.先化简,再求值:35222x x x x +⎛⎫÷+- ⎪--⎝⎭,其中解析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.答案:原式()()2234539321222222333x x x x x x x x x x x x x x x +-+-+-=÷-=÷==----⎛⎫ ⎪⎝⎭--+--,当3===.20.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是 . 解析:(1)利用概率公式直接计算即可.答案:(1)∵对第二个字是选“重”还是选“穷”难以抉择, ∴若随机选择其中一个正确的概率=12. 故答案为:12.(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.解析:(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.答案:(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种, 所以小丽回答正确的概率=14.21.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数.解析:(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数.答案:(1)被调查的学生总人数为8÷20%=40(人).(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数.解析:(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数. 答案:(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°.(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.解析:(3)用800乘以样本中最想去A景点的人数所占的百分比即可.答案:(3)800×1440=280,所以估计“最想去景点B“的学生人数为280人.22.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形.解析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证.答案:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=12∠ABD,∠FDB=12∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形.(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.解析:(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.答案:(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.23.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论.答案:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据题意得:3500240011 x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?解析:(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.答案:(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60-35)×100(1+a)2=(60-35+11)×100,解得:a=0.2=20%或a=-2.2(不合题意,舍去).答:年增长率为20%.24.如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO.(不写作法与证明,保留作图痕迹)解析:(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可.答案:(1)如图①所示,射线OC即为所求.(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.解析:(2)添加如图所示辅助线,圆心O的运动路径长为C△OO1O2,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.答案:(2)如图,圆心O的运动路径长为C△OO1O2.过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴tan30BCAC===︒AB=2BC=18,∠ABC=60°,∴91827ABCC=+=+,∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵11BD BGO B O B=⎧⎨=⎩,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴1tan30O DBD===︒∴1927OO =---∵O 1D=OE=2,O 1D ⊥BC ,OE ⊥BC , ∴O 1D ∥OE ,且O 1D=OE ,∴四边形OEDO 1为平行四边形, ∵∠OED=90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形, 又OE=OF ,∴四边形OECF 为正方形,∵∠O 1GH=∠CDO 1=90°,∠ABC=60°, ∴∠GO 1D=120°,又∵∠FO 1D=∠O 2O 1G=90°,∴∠OO 1O 2=360°-90°-90°=60°=∠ABC , 同理,∠O 1OO 2=90°, ∴△OO 1O 2∽△CBA , ∴1212OO O ABCC O O CBC=122739OO O C =+, ∴1215OO O C=O 运动的路径长为25.如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G.(1)求证:BC 是⊙F 的切线.解析:(1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论. 答案:(1)连接EF ,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线.(2)若点A、D的坐标分别为A(0,-1),D(2,0),求⊙F的半径.解析:(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可. 答案:(2)连接FD,设⊙F的半径为r,则r2=(r-1)2+22,解得,r=52,即⊙F的半径为52.(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.解析:(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.答案:(3)AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°, ∴四边形RCEF 是矩形, ∴EF=RC=RD+CD , ∵FR ⊥AD , ∴AR=RD , ∴EF=RD+CD=12AD+CD , ∴AG=2FE=AD+2CD.26.探索问题并应用.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE 、EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 . 解析:【探索发现】:由中位线知EF=12BC ,ED=12AB ,由12FEDB ABC S EF DE S AB BC =矩形可得. 答案:【探索发现】∵EF 、ED 为△ABC 中位线, ∴ED ∥AB ,EF ∥BC ,EF=12BC ,ED=12AB , 又∠B=90°,∴四边形FEDB 是矩形,则1112211222FEDB ABC BC AB S EFDE S AB BC AB BC ===矩形,故答案为:12.【拓展应用】如图②,在△ABC 中,BC=a ,BC 边上的高AD=h ,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 .(用含a ,h 的代数式表示) 解析:【拓展应用】:由△APN ∽△ABC 知PN AE BC AD =,可得aPN a PQ h=-,设PQ=x ,由224PQMNa h ahS PQ PN x h ⎛⎫==--+⎪⎝⎭矩形,据此可得. 答案:【拓展应用】∵PN ∥BC ,∴△APN ∽△ABC ,∴PN AE BC AD =,即PN h PQa h-=, ∴aPN a PQ h=-,设PQ=x , 则2224PQMN a a a h ah S PQ PN x a x x ax x h h h ⎛⎫⎛⎫==-=-+=--+ ⎪ ⎪⎝⎭⎝⎭矩形,∴当2h PQ =时,S 矩形PQMN 最大值为4ah. 故答案为:4ah.【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 解析:【灵活应用】:添加如图1辅助线,取BF 中点I ,FG 的中点K ,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF ≌△HED 、△CDG ≌△HDE 得AF=DH=16、CG=HE=20,从而判断出中位线IK 的两端点在线段AB 和DE 上,利用【探索发现】结论解答即可. 答案:【灵活应用】如图1,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 中点I ,FG 的中点K ,由题意知四边形ABCH 是矩形, ∵AB=32,BC=40,AE=20,CD=16, ∴EH=20、DH=16,∴AE=EH 、CD=DH , 在△AEF 和△HED 中,FAE DHE AE AHAEF HED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△HED(ASA), ∴AF=DH=16,同理△CDG ≌△HDE , ∴CG=HE=20, ∴242AB AFBI +==, ∵BI=24<32,∴中位线IK 的两端点在线段AB 和DE 上, 过点K 作KL ⊥BC 于点L ,由【探索发现】知矩形的最大面积为12×BG ·BF=12×(40+20)×(32+16)=720, 答:该矩形的面积为720.【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB=50cm ,BC=108cm ,CD=60cm ,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积. 解析:【实际应用】:延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,由tanB=tanC 知EB=EC 、BH=CH=54,EH=43BH=72,继而求得BE=CE=90,可判断中位线PQ 的两端点在线段AB 、CD 上,利用【拓展应用】结论解答可得. 答案:【实际应用】如图2,延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,∵tanB=tanC=43, ∴∠B=∠C , ∴EB=EC ,∵BC=108cm ,且EH ⊥BC ,∴BH=CH=12BC=54cm , ∵4tan 3EH B BH ==, ∴44547233EH BH ==⨯=cm ,在Rt △BHE中,90BE =cm ,∵AB=50cm ,∴AE=40cm ,∴BE 的中点Q 在线段AB 上, ∵CD=60cm , ∴ED=30cm ,∴CE 的中点P 在线段CD 上,∴中位线PQ 的两端点在线段AB 、CD 上, 由【拓展应用】知,矩形PQMN 的最大面积为14BC ·EH=1944cm 2, 答:该矩形的面积为1944cm 2.27.如图,在平面直角坐标系中,直线221y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =-++经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式.解析:(1)根据题意得到A(-4,0),C(0,2)代入212y x bx c =-++,于是得到结论. 答案:(1)根据题意得A(-4,0),C(0,2), ∵抛物线212y x bx c =-++经过A 、C 两点, ∴0621214b c c⎧=-⨯-+⎪⎨⎪=⎩,∴223b c ⎧=-⎪⎨⎪=⎩, ∴221322y x x =--+.(2)点D 为直线AC 上方抛物线上一动点.①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求12S S 的最大值.②过点D 作DF ⊥AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.解析:(2)①如图,令y=0,解方程得到x 1=-4,x 2=1,求得B(1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,根据相似三角形的性质即可得到结论.②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P(32-,0),得到PA=PC=PB=52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,情况一:如图,∠DCF=2∠BAC=∠DGC+∠CDG ,情况二,∠FDC=2∠BAC ,解直角三角形即可得到结论.答案:(2)①如图,令y=0, ∴2132220x x --+=, ∴x 1=-4,x 2=1, ∴B(1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,∴DM ∥BN ,∴△DME ∽△BNE , ∴12S DE DMS BE BN==, 设D(a ,213222a a --+),∴M(a ,12a+2), ∵B(1.0), ∴N(1,52), ∴()22121221425552a aS DM a S BN --===-++;∴当a=2时,12S S 的最大值是45.②∵A(-4,0),B(1,0),C(0,2), ∴AB=5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(32-,0), ∴PA=PC=PB=52,∴∠CPO=2∠BAC , ∴tan ∠CPO=tan(2∠BAC)=43, 过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG , ∴∠CDG=∠BAC , ∴tan ∠CDG=tan ∠BAC=12, 即12RC DR =, 令D(a ,213222a a --+),∴DR=-a ,21322RC a a =--, ∴2131222a a a --=-, ∴a 1=0(舍去),a 2=-2, ∴x D =-2.情况二,∴∠FDC=2∠BAC , ∴tan ∠FDC=43, 设FC=4k ,∴DF=3k ,DC=5k , ∵tan 123k DGC FG ∠==, ∴FG=6k ,∴CG=2k ,, ∴RC=5,RG=5k ,55DR k k =-=,∴1322DR a RC a a ---==, ∴a 1=0(舍去),a 2=2911-, ∴x D =2911-. 综上所述,点D 的横坐标为-2或2911-.。

盐城市中考数学试卷包含答案与解析

盐城市中考数学试卷包含答案与解析

盐城市中考数学试卷包含答案与解析Love and liking, January 6, 20192017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题;每小题3分;共18分.在每小题给出的四个选项中;只有一项是符合题目要求的.1.3分﹣2的绝对值是A.2 B.﹣2 C.D.2.3分如图是某个几何体的主视图、左视图、俯视图;该几何体是A.圆柱B.球 C.圆锥D.棱锥3.3分下列图形中;是轴对称图形的是A.B.C.D.4.3分数据6;5;7.5;8.6;7;6的众数是A.5 B.6 C.7 D.85.3分下列运算中;正确的是A.7a+a=7a2B.a2 a3=a6C.a3÷a=a2D.ab2=ab26.3分如图;将函数y=x﹣22+1的图象沿y轴向上平移得到一条新函数的图象;其中点A1;m;B4;n平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9图中的阴影部分;则新图象的函数表达式是A.B.C.D.二、填空题每题3分;满分30分;将答案填在答题纸上7.3分请写出一个无理数.8.3分分解因式a2b﹣a的结果为.9.3分2016年12月30日;盐城市区内环高架快速路网二期工程全程全线通车;至此;已通车的内环高架快速路里程达57000米;用科学记数法表示数57000为.10.3分若在实数范围内有意义;则x的取值范围是.11.3分如图;是由大小完全相同的正六边形组成的图形;小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色;则上方的正六边形涂红色的概率是.12.3分在“三角尺拼角”实验中;小明同学把一副三角尺按如图所示的方式放置;则∠1=°.13.3分若方程x2﹣4x+1=0的两根是x1;x2;则x11+x2+x2的值为.14.3分如图;将⊙O沿弦AB折叠;点C在上;点D在上;若∠ACB=70°;则∠ADB=°.15.3分如图;在边长为1的小正方形网格中;将△ABC绕某点旋转到△A'B'C'的位置;则点B运动的最短路径长为.16.3分如图;曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的;过点A﹣4;4;B2;2的直线与曲线l相交于点M、N;则△OMN的面积为.三、解答题本大题共11小题;共102分.解答应写出文字说明、证明过程或演算步骤. 17.6分计算:+﹣1﹣20170.18.6分解不等式组:.19.8分先化简;再求值:÷x+2﹣;其中x=3+.20.8分为了编撰祖国的优秀传统文化;某校组织了一次“诗词大会”;小明和小丽同时参加;其中;有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗;其答案为“山重水复疑无路”.1小明回答该问题时;对第二个字是选“重”还是选“穷”难以抉择;若随机选择其中一个;则小明回答正确的概率是;2小丽回答该问题时;对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择;若分别随机选择;请用列表或画树状图的方法求小丽回答正确的概率.21.8分“大美湿地;水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生;要求每位同学选择且只能选择一个最想去的景点;下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息;解答下列问题:1求被调查的学生总人数;2补全条形统计图;并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;3若该校共有800名学生;请估计“最想去景点B“的学生人数.22.10分如图;矩形ABCD中;∠ABD、∠CDB的平分线BE、DF分别交边AD、BC 于点E、F.1求证:四边形BEDF是平行四边形;2当∠ABE为多少度时;四边形BEDF是菱形请说明理由.23.10分某商店在2014年至2016年期间销售一种礼盒.2014年;该商店用3500元购进了这种礼盒并且全部售完;2016年;这种礼盒的进价比2014年下降了11元/盒;该商店用2400元购进了与2014年相同数量的礼盒也全部售完;礼盒的售价均为60元/盒.12014年这种礼盒的进价是多少元/盒2若该商店每年销售这种礼盒所获利润的年增长率相同;问年增长率是多少24.10分如图;△ABC是一块直角三角板;且∠C=90°;∠A=30°;现将圆心为点O的圆形纸片放置在三角板内部.1如图①;当圆形纸片与两直角边AC、BC都相切时;试用直尺与圆规作出射线CO;不写作法与证明;保留作图痕迹2如图②;将圆形纸片沿着三角板的内部边缘滚动1周;回到起点位置时停止;若BC=9;圆形纸片的半径为2;求圆心O运动的路径长.25.10分如图;在平面直角坐标系中;Rt△ABC的斜边AB在y轴上;边AC与x轴交于点D;AE平分∠BAC交边BC于点E;经过点A、D、E的圆的圆心F恰好在y轴上;⊙F与y轴相交于另一点G.1求证:BC是⊙F的切线;2若点A、D的坐标分别为A0;﹣1;D2;0;求⊙F的半径;3试探究线段AG、AD、CD三者之间满足的等量关系;并证明你的结论.26.12分探索发现如图①;是一张直角三角形纸片;∠B=60°;小明想从中剪出一个以∠B为内角且面积最大的矩形;经过多次操作发现;当沿着中位线DE、EF剪下时;所得的矩形的面积最大;随后;他通过证明验证了其正确性;并得出:矩形的最大面积与原三角形面积的比值为.拓展应用如图②;在△ABC中;BC=a;BC边上的高AD=h;矩形PQMN的顶点P、N分别在边AB、AC上;顶点Q、M在边BC上;则矩形PQMN面积的最大值为.用含a;h的代数式表示灵活应用如图③;有一块“缺角矩形”ABCDE;AB=32;BC=40;AE=20;CD=16;小明从中剪出了一个面积最大的矩形∠B为所剪出矩形的内角;求该矩形的面积.实际应用如图④;现有一块四边形的木板余料ABCD;经测量AB=50cm;BC=108cm;CD=60cm;且tanB=tanC=;木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN;求该矩形的面积.27.14分如图;在平面直角坐标系中;直线y=x+2与x轴交于点A;与y轴交于点C;抛物线y=x2+bx+c经过A、C两点;与x轴的另一交点为点B.1求抛物线的函数表达式;2点D为直线AC上方抛物线上一动点;①连接BC、CD;设直线BD交线段AC于点E;△CDE的面积为S1;△BCE的面积为S2;求的最大值;②过点D作DF⊥AC;垂足为点F;连接CD;是否存在点D;使得△CDF中的某个角恰好等于∠BAC的2倍若存在;求点D的横坐标;若不存在;请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题;每小题3分;共18分.在每小题给出的四个选项中;只有一项是符合题目要求的.1.3分2017 随州﹣2的绝对值是A.2 B.﹣2 C.D.考点15:绝对值.分析根据负数的绝对值等于它的相反数解答.解答解:﹣2的绝对值是2;即|﹣2|=2.故选:A.点评本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.3分2017 盐城如图是某个几何体的主视图、左视图、俯视图;该几何体是A.圆柱B.球 C.圆锥D.棱锥考点U3:由三视图判断几何体.分析根据三视图即可判断该几何体.解答解:由于主视图与左视图是三角形;俯视图是圆;故该几何体是圆锥;故选C点评本题考查三视图;解题的关键是熟练掌握几种常见几何体的三视图;本题属于基础题型.3.3分2017 盐城下列图形中;是轴对称图形的是A.B.C.D.考点P3:轴对称图形.分析根据轴对称图形的概念求解.解答解:D的图形沿中间线折叠;直线两旁的部分可重合;故选:D.点评本题考查了轴对称图形;掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴;图形两部分折叠后可重合.4.3分2017 盐城数据6;5;7.5;8.6;7;6的众数是A.5 B.6 C.7 D.8考点W5:众数.分析直接利用众数的定义分析得出答案.解答解:∵数据6;5;7.5;8.6;7;6中;6出现次数最多;故6是这组数据的众数.故选:B.点评此题主要考查了众数的定义;正确把握定义是解题关键.5.3分2017 盐城下列运算中;正确的是A.7a+a=7a2B.a2 a3=a6C.a3÷a=a2D.ab2=ab2考点47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.分析根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.解答解:A、错误、7a+a=8a.B、错误.a2 a3=a5.C、正确.a3÷a=a2.D、错误.ab2=a2b2故选C.点评本题考查合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则;熟练掌握这些法则是解题的关键.6.3分2017 盐城如图;将函数y=x﹣22+1的图象沿y轴向上平移得到一条新函数的图象;其中点A1;m;B4;n平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9图中的阴影部分;则新图象的函数表达式是A.B.C.D.考点H6:二次函数图象与几何变换.分析先根据二次函数图象上点的坐标特征求出A、B两点的坐标;再过A作AC∥x轴;交B′B的延长线于点C;则C4;1;AC=4﹣1=3;根据平移的性质以及曲线段AB扫过的面积为9图中的阴影部分;得出AA′=3;然后根据平移规律即可求解.解答解:∵函数y=x﹣22+1的图象过点A1;m;B4;n;∴m=1﹣22+1=1;n=4﹣22+1=3;∴A1;1;B4;3;过A作AC∥x轴;交B′B的延长线于点C;则C4;1;∴AC=4﹣1=3;∵曲线段AB扫过的面积为9图中的阴影部分;∴AC AA′=3AA′=9;∴AA′=3;即将函数y=x﹣22+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象;∴新图象的函数表达式是y=x﹣22+4.故选D.点评此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识;根据已知得出AA′是解题关键.二、填空题每题3分;满分30分;将答案填在答题纸上7.3分2017 盐城请写出一个无理数.考点26:无理数.分析根据无理数定义;随便找出一个无理数即可.解答解:是无理数.故答案为:.点评本题考查了无理数;牢记无理数的定义是解题的关键.8.3分2017 盐城分解因式a2b﹣a的结果为aab﹣1.考点55:提公因式法与公式法的综合运用.分析根据提公因式法分解即可.解答解:a2b﹣a=aab﹣1;故答案为:aab﹣1.点评本题考查了分解因式;能正确分解因式是解此题的关键.9.3分2017 盐城2016年12月30日;盐城市区内环高架快速路网二期工程全程全线通车;至此;已通车的内环高架快速路里程达57000米;用科学记数法表示数57000为5.7×104.考点1I:科学记数法—表示较大的数.分析科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数.确定n的值时;要看把原数变成a时;小数点移动了多少位;n的绝对值与小数点移动的位数相同.当原数绝对值≥1时;n是非负数;当原数的绝对值<1时;n是负数.解答解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.点评此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数;表示时关键要正确确定a的值以及n的值.10.3分2017 盐城若在实数范围内有意义;则x的取值范围是x≥3.考点72:二次根式有意义的条件.分析根据被开方数大于等于0列式进行计算即可求解.解答解:根据题意得x﹣3≥0;解得x≥3.故答案为:x≥3.点评本题考查了二次根式有意义的条件;知识点为:二次根式的被开方数是非负数.11.3分2017 盐城如图;是由大小完全相同的正六边形组成的图形;小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色;则上方的正六边形涂红色的概率是.考点X4:概率公式.分析共有3种情况;上方的正六边形涂红色的情况只有1种;利用概率公式可得答案.解答解:上方的正六边形涂红色的概率是;故答案为:.点评此题主要考查了概率;关键是掌握概率=所求情况数与总情况数之比.12.3分2017 盐城在“三角尺拼角”实验中;小明同学把一副三角尺按如图所示的方式放置;则∠1=120°.考点K8:三角形的外角性质;K7:三角形内角和定理.分析根据三角形的外角的性质计算即可.解答解:由三角形的外角的性质可知;∠1=90°+30°=120°;故答案为:120.点评本题考查的是三角形的外角的性质;掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.3分2017 盐城若方程x2﹣4x+1=0的两根是x1;x2;则x11+x2+x2的值为5.考点AB:根与系数的关系.专题11 :计算题.分析先根据根与系数的关系得到x1+x2=4;x1x2=1;然后把x11+x2+x2展开得到x1+x2+x1x2;然后利用整体代入的方法计算即可.解答解:根据题意得x1+x2=4;x1x2=1;所以x11+x2+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.点评本题考查了根与系数的关系:若x1;x2是一元二次方程ax2+bx+c=0a≠0的两根时;x1+x2=﹣;x1x2=.14.3分2017 盐城如图;将⊙O沿弦AB折叠;点C在上;点D在上;若∠ACB=70°;则∠ADB=110°.考点M5:圆周角定理.分析根据圆周角定理和圆内接四边形的性质即可得到结论.解答解:∵点C 在上;点D 在上;若∠ACB=70°;∴∠ADB +∠ACB=180°;∴∠ADB=110°;故答案为:110.点评本题考查了圆周角定理:在同圆或等圆中;同弧或等弧所对的圆周角相等;都等于这条弧所对的圆心角的一半.15.3分2017 盐城如图;在边长为1的小正方形网格中;将△ABC 绕某点旋转到△A'B'C'的位置;则点B 运动的最短路径长为 π . 考点O4:轨迹;R2:旋转的性质. 分析如图作线段AA′、CC′的垂直平分线相交于点P ;点P 即为旋转中心;观察图象可知;旋转角为90°逆时针旋转时B 运动的路径长最短解答解:如图作线段AA′、CC′的垂直平分线相交于点P ;点P 即为旋转中心;观察图象可知;旋转角为90°逆时针旋转时B 运动的路径长最短;PB==; ∴B 运动的最短路径长为==π;故答案为π.点评本题考查旋转变换、轨迹.弧长公式、勾股定理等知识;解题的关键是确定旋转中心和旋转角的大小;属于中考常考题型.16.3分2017 盐城如图;曲线l 是由函数y=在第一象限内的图象绕坐标原点O 逆时针旋转45°得到的;过点A ﹣4;4;B2;2的直线与曲线l 相交于点M 、N ;则△OMN 的面积为 8 .考点R7:坐标与图形变化﹣旋转;G5:反比例函数系数k 的几何意义.分析由题意A ﹣4;4;B2;2;可知OA ⊥OB ;建立如图新的坐标系OB 为x′轴;OA 为y′轴;利用方程组求出M 、N 的坐标;根据S △OMN =S △OBM ﹣S △OBN 计算即可.解答解:∵A ﹣4;4;B2;2;∴OA ⊥OB ; 建立如图新的坐标系OB 为x′轴;OA 为y′轴.在新的坐标系中;A0;8;B4;0;∴直线AB 解析式为y′=﹣2x′+8; 由;解得或;∴M1.6;N3;2; ∴S △OMN =S △OBM ﹣S △OBN = 4 6﹣ 4 2=8;故答案为8点评本题考查坐标与图形的性质、反比例函数的性质等知识;解题的关键是学会建立新的坐标系解决问题;属于中考填空题中的压轴题.三、解答题本大题共11小题;共102分.解答应写出文字说明、证明过程或演算步骤. 17.6分2017 盐城计算:+﹣1﹣20170.考点2C :实数的运算;6E :零指数幂;6F :负整数指数幂.分析首先计算开方;乘方、然后计算乘法;最后从左向右依次计算;求出算式的值是多少即可.解答解:原式=2+2﹣1=3.点评此题主要考查了实数的运算;要熟练掌握;解答此题的关键是要明确:在进行实数运算时;和有理数运算一样;要从高级到低级;即先算乘方、开方;再算乘除;最后算加减;有括号的要先算括号里面的;同级运算要按照从左到右的顺序进行.另外;有理数的运算律在实数范围内仍然适用.18.6分2017 盐城解不等式组:.考点CB :解一元一次不等式组.分析分别求出每一个不等式的解集;根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解答解:解不等式3x﹣1≥x+1;得:x≥1;解不等式x+4<4x﹣2;得:x>2;∴不等式组的解集为x>2.点评本题考查的是解一元一次不等式组;正确求出每一个不等式解集是基础;熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.8分2017 盐城先化简;再求值:÷x+2﹣;其中x=3+.考点6D:分式的化简求值.专题11 :计算题;513:分式.分析原式括号中两项通分并利用同分母分式的减法法则计算;约分得到最简结果;把x 的值代入计算即可求出值.解答解:原式=÷﹣=÷==;当x=3+时;原式===.点评本题主要考查分式的化简求值;根据分式的混合运算顺序和法则将原式化简是解题的关键.20.8分2017 盐城为了编撰祖国的优秀传统文化;某校组织了一次“诗词大会”;小明和小丽同时参加;其中;有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗;其答案为“山重水复疑无路”.1小明回答该问题时;对第二个字是选“重”还是选“穷”难以抉择;若随机选择其中一个;则小明回答正确的概率是;2小丽回答该问题时;对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择;若分别随机选择;请用列表或画树状图的方法求小丽回答正确的概率.考点X6:列表法与树状图法;X4:概率公式.分析1利用概率公式直接计算即可;2画出树状图得到所有可能的结果;再找到回答正确的数目即可求出小丽回答正确的概率.解答解:1∵对第二个字是选“重”还是选“穷”难以抉择;∴若随机选择其中一个正确的概率=;故答案为:;2画树形图得:由树状图可知共有4种可能结果;其中正确的有1种;所以小丽回答正确的概率=.点评此题考查了列表法或树状图法求概率.通过列表法或树状图法展示所有等可能的结果求出n;再从中选出符合事件A或B的结果数目m;然后根据概率公式求事件A或B的概率.21.8分2017 盐城“大美湿地;水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生;要求每位同学选择且只能选择一个最想去的景点;下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息;解答下列问题:1求被调查的学生总人数;2补全条形统计图;并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;3若该校共有800名学生;请估计“最想去景点B“的学生人数.考点VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.专题31 :数形结合.分析1用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;2先计算出最想去D景点的人数;再补全条形统计图;然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;3用800乘以样本中最想去A景点的人数所占的百分比即可.解答解:1被调查的学生总人数为8÷20%=40人;2最想去D景点的人数为40﹣8﹣14﹣4﹣6=8人;补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;3800×=280;所以估计“最想去景点B“的学生人数为280人.点评本题考查了条形统计图:条形统计图是用线段长度表示数据;根据数量的多少画成长短不同的矩形直条;然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小;便于比较.22.10分2017 盐城如图;矩形ABCD中;∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.1求证:四边形BEDF是平行四边形;2当∠ABE为多少度时;四边形BEDF是菱形请说明理由.考点LB:矩形的性质;L7:平行四边形的判定与性质;L9:菱形的判定.分析1由矩形可得∠ABD=∠CDB;结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB;即可知BE∥DF;根据AD∥BC即可得证;2当∠ABE=30°时;四边形BEDF是菱形;由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°;结合∠A=90°可得∠EDB=∠EBD=30°;即EB=ED;即可得证.解答证明:1∵四边形ABCD是矩形;∴AB∥DC、AD∥BC;∴∠ABD=∠CDB;∵BE平分∠ABD、DF平分∠BDC;∴∠EBD=∠ABD;∠FDB=∠BDC;∴∠EBD=∠FDB;∴BE∥DF;又∵AD∥BC;∴四边形BEDF是平行四边形;2当∠ABE=30°时;四边形BEDF是菱形;∵BE平分∠ABD;∴∠ABD=2∠ABE=60°;∠EBD=∠ABE=30°;∵四边形ABCD是矩形;∴∠A=90°;∴∠EDB=90°﹣∠ABD=30°;∴∠EDB=∠EBD=30°;∴EB=ED;又∵四边形BEDF是平行四边形;∴四边形BEDF是菱形.点评本题主要考查矩形的性质、平行四边形、菱形;熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.23.10分2017 盐城某商店在2014年至2016年期间销售一种礼盒.2014年;该商店用3500元购进了这种礼盒并且全部售完;2016年;这种礼盒的进价比2014年下降了11元/盒;该商店用2400元购进了与2014年相同数量的礼盒也全部售完;礼盒的售价均为60元/盒.12014年这种礼盒的进价是多少元/盒2若该商店每年销售这种礼盒所获利润的年增长率相同;问年增长率是多少考点AD:一元二次方程的应用;B7:分式方程的应用.分析1设2014年这种礼盒的进价为x元/盒;则2016年这种礼盒的进价为x﹣11元/盒;根据2014年花3500元与2016年花2400元购进的礼盒数量相同;即可得出x的分式方程;解之经检验后即可得出结论;2设年增长率为m;根据数量=总价÷单价求出2014年的购进数量;再根据2014年的销售利润×1+增长率2=2016年的销售利润;即可得出m的一元二次方程;解之即可得出结论.解答解:1设2014年这种礼盒的进价为x元/盒;则2016年这种礼盒的进价为x﹣11元/盒;根据题意得:=;解得:x=35;经检验;x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.2设年增长率为m;2014年的销售数量为3500÷35=100盒.根据题意得:60﹣35×1001+a2=60﹣35+11×100;解得:a=0.2=20%或a=﹣2.2不合题意;舍去.答:年增长率为20%.点评本题考查了一元二次方程的应用以及分式方程的应用;解题的关键是:1找准等量关系;列出分式方程;2找准等量关系;列出一元二次方程.24.10分2017 盐城如图;△ABC是一块直角三角板;且∠C=90°;∠A=30°;现将圆心为点O的圆形纸片放置在三角板内部.1如图①;当圆形纸片与两直角边AC、BC都相切时;试用直尺与圆规作出射线CO;不写作法与证明;保留作图痕迹2如图②;将圆形纸片沿着三角板的内部边缘滚动1周;回到起点位置时停止;若BC=9;圆形纸片的半径为2;求圆心O运动的路径长.考点O4:轨迹;MC:切线的性质;N3:作图—复杂作图.分析1作∠ACB的平分线得出圆的一条弦;再作此弦的中垂线可得圆心O;作射线CO 即可;2添加如图所示辅助线;圆心O的运动路径长为;先求出△ABC的三边长度;得出其周长;证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形;得出∠OO1O2=60°=∠ABC、∠O1OO2=90°;从而知△OO1O2∽△CBA;利用相似三角形的性质即可得出答案.解答解:1如图①所示;射线OC即为所求;2如图;圆心O的运动路径长为;过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB;垂足分别为点D、F、G;过点O作OE⊥BC;垂足为点E;连接O2B;过点O2作O2H⊥AB;O2I⊥AC;垂足分别为点H、I;在Rt△ABC中;∠ACB=90°、∠A=30°;∴AC===9;AB=2BC=18;∠ABC=60°;∴C=9+9+18=27+9;△ABC∵O1D⊥BC、O1G⊥AB;∴D、G为切点;∴BD=BG;在Rt△O1BD和Rt△O1BG中;∵;∴△O1BD≌△O1BGHL;∴∠O1BG=∠O1BD=30°;在Rt△O1BD中;∠O1DB=90°;∠O1BD=30°;∴BD===2;∴OO1=9﹣2﹣2=7﹣2;∵O1D=OE=2;O1D⊥BC;OE⊥BC;∴O1D∥OE;且O1D=OE;∴四边形OEDO1为平行四边形;∵∠OED=90°;∴四边形OEDO1为矩形;同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形;又OE=OF;∴四边形OECF为正方形;∵∠O1GH=∠CDO1=90°;∠ABC=60°;∴∠GO1D=120°;又∵∠FO1D=∠O2O1G=90°;∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC;同理;∠O1OO2=90°;∴△OO1O2∽△CBA;∴=;即=;∴=15+;即圆心O运动的路径长为15+.点评本题主要考查作图﹣复杂作图、切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质;熟练掌握切线的判定与性质、矩形和正方形的判定与性质及相似三角形的判定与性质是解题的关键.25.10分2017 盐城如图;在平面直角坐标系中;Rt△ABC的斜边AB在y轴上;边AC 与x轴交于点D;AE平分∠BAC交边BC于点E;经过点A、D、E的圆的圆心F恰好在y轴上;⊙F与y轴相交于另一点G.1求证:BC是⊙F的切线;2若点A、D的坐标分别为A0;﹣1;D2;0;求⊙F的半径;3试探究线段AG、AD、CD三者之间满足的等量关系;并证明你的结论.考点MR:圆的综合题.分析1连接EF;根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC;得到FE ∥AC;根据平行线的性质得到∠FEB=∠C=90°;证明结论;2连接FD;设⊙F的半径为r;根据勾股定理列出方程;解方程即可;3作FR⊥AD于R;得到四边形RCEF是矩形;得到EF=RC=RD+CD;根据垂径定理解答即可.解答1证明:连接EF;∵AE平分∠BAC;∴∠FAE=∠CAE;∵FA=FE;∴∠FAE=∠FEA;∴∠FEA=∠EAC;∴FE∥AC;∴∠FEB=∠C=90°;即BC是⊙F的切线;2解:连接FD;设⊙F的半径为r;则r2=r﹣12+22;解得;r=;即⊙F的半径为;3解:AG=AD+2CD.证明:作FR⊥AD于R;则∠FRC=90°;又∠FEC=∠C=90°;∴四边形RCEF是矩形;∴EF=RC=RD+CD;∵FR⊥AD;∴AR=RD;∴EF=RD+CD=AD+CD;∴AG=2FE=AD+2CD.点评本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质;掌握切线的判定定理是解题的关键.26.12分2017 盐城探索发现如图①;是一张直角三角形纸片;∠B=60°;小明想从中剪出一个以∠B为内角且面积最大的矩形;经过多次操作发现;当沿着中位线DE、EF剪下时;所得的矩形的面积最大;随后;他通过证明验证了其正确性;并得出:矩形的最大面积与原三角形面积的比值为.拓展应用如图②;在△ABC中;BC=a;BC边上的高AD=h;矩形PQMN的顶点P、N分别在边AB、AC上;顶点Q、M在边BC上;则矩形PQMN面积的最大值为.用含a;h的代数式表示灵活应用如图③;有一块“缺角矩形”ABCDE;AB=32;BC=40;AE=20;CD=16;小明从中剪出了一个面积最大的矩形∠B为所剪出矩形的内角;求该矩形的面积.实际应用如图④;现有一块四边形的木板余料ABCD;经测量AB=50cm;BC=108cm;CD=60cm;且tanB=tanC=;木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN;求该矩形的面积.考点LO:四边形综合题.分析探索发现:由中位线知EF=BC、ED=AB、由=可得;=PQ 拓展应用:由△APN∽△ABC知=;可得PN=a﹣PQ;设PQ=x;由S矩形PQMNPN═﹣x﹣2+;据此可得;灵活应用:添加如图1辅助线;取BF中点I;FG的中点K;由矩形性质知AE=EH=20、CD=DH=16;分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20;从而判断出中位线IK的两端点在线段AB和DE上;利用探索发现结论解答即可;。

【精校】2017年江苏省盐城市中考真题数学

【精校】2017年江苏省盐城市中考真题数学

2017年江苏省盐城市中考真题数学一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2的绝对值是( )A.2B.-2C.1 2D.1 2解析:根据负数的绝对值等于它的相反数解答.-2的绝对值是2,即|-2|=2.答案:A.2.如图是某个几何体的主视图、左视图、俯视图,该几何体是( )A.圆柱B.球C.圆锥D.棱锥解析:根据三视图即可判断该几何体.由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥. 答案:C.3.下列图形中,是轴对称图形的是( )A.B.C.D.解析:根据轴对称图形的概念求解.D的图形沿中间线折叠,直线两旁的部分可重合,故选D.答案:D.4.数据6,5,7.5,8.6,7,6的众数是( )A.5B.6C.7D.8解析:直接利用众数的定义分析得出答案.∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.答案:B.5.下列运算中,正确的是( )A.7a+a=7a2B.a2·a3=a6C.a3÷a=a2D.(ab)2=ab2解析:根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.A、错误,根据合并同类项法则,7a+a=8a.B、错误,根据同底数幂的乘法,a2·a3=a5.C、正确,根据同底数幂的除法,a3÷a=a2.D、错误,根据积的乘方,(ab)2=a2b2.答案:C.6.如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A.y=12(x-2)2-2B.y=12(x-2)2+7C.y=12(x-2)2-5D.y=12(x-2)2+4解析:∵函数y=12(x-2)2+1的图象过点A(1,m),B(4,n),∴m=12(1-2)2+1=112,n=12(4-2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112 ),∴AC=4-1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC·AA′=3AA′=9,∴AA′=3,即将函数y=12(x-2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x-2)2+4.答案:D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.请写出一个无理数 .解析:根据无理数定义,随便找出一个无理数即可.是无理数(答案不唯一).(答案不唯一).8.分解因式a2b-a的结果为 .解析:根据提公因式法分解即可.a2b-a=a(ab-1).答案:a(ab-1).9. 2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 .解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.将57000用科学记数法表示为:5.7×104.答案:5.7×104.10.在实数范围内有意义,则x的取值范围是 .解析:根据被开方数大于等于0列式进行计算即可求解.根据题意得x-3≥0,解得x≥3.答案:x≥3.11.如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是 .解析:共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.上方的正六边形涂红色的概率是13.答案:13.12.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.解析:由三角形的外角的性质可知,∠1=90°+30°=120°.答案:120.13.若方程x2-4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为 . 解析:先根据根与系数的关系得到x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.答案:5.14.如图,将⊙O沿弦AB折叠,点C在¼AmB上,点D在»AB上,若∠ACB=70°,则∠ADB= °.解析:根据折叠的性质和圆内接四边形的性质即可得到结论.∵点C在¼AmB上,点D在»AB上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°.答案:110.15.如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B 运动的最短路径长为 .解析:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB∴B运动的最短路径长为==.答案:2.16.如图,曲线l是由函数6yx=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点,,,的直线与曲线l相交于点M、N,则△OMN的面积为 .解析:∵,),,),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴).在新的坐标系中,A(0,8),B(4,0), ∴直线AB 解析式为y ′=-2x ′+8,由286y x y x '=-'+⎧⎪⎨'=⎪'⎩,解得16x y '=⎧⎨'=⎩或32x y '=⎧⎨'=⎩, ∴M(1.6),N(3,2), ∴464112228OMN OBM OBN S S S =-⨯⨯⨯=-=⨯V V V . 答案:8.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.10220117-⎛⎫- ⎪⎝⎭.解析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.答案:原式=2+2-1=3.18.解不等式组:311442x x x x -≥+⎧⎨+-⎩<.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 答案:解不等式3x-1≥x+1,得:x ≥1, 解不等式x+4<4x-2,得:x >2, ∴不等式组的解集为x >2.19.先化简,再求值:35222x x x x +⎛⎫÷+- ⎪--⎝⎭,其中解析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.答案:原式()()2234539321222222333x x x x x x x x x x x x x x x +-+-+-=÷-=÷==----⎛⎫ ⎪⎝⎭--+--g ,当时,原式3===.20.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是 . 解析:(1)利用概率公式直接计算即可.答案:(1)∵对第二个字是选“重”还是选“穷”难以抉择, ∴若随机选择其中一个正确的概率=12. 故答案为:12.(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.解析:(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.答案:(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种, 所以小丽回答正确的概率=14.21.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数.解析:(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数.答案:(1)被调查的学生总人数为8÷20%=40(人).(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数.解析:(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数. 答案:(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°.(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.解析:(3)用800乘以样本中最想去A景点的人数所占的百分比即可.答案:(3)800×1440=280,所以估计“最想去景点B“的学生人数为280人.22.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形.解析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证.答案:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=12∠ABD,∠FDB=12∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形.(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.解析:(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.答案:(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.23.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论.答案:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x-11)元/盒,根据题意得:3500240011 x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?解析:(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.答案:(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60-35)×100(1+a)2=(60-35+11)×100,解得:a=0.2=20%或a=-2.2(不合题意,舍去).答:年增长率为20%.24.如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO.(不写作法与证明,保留作图痕迹)解析:(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可.答案:(1)如图①所示,射线OC即为所求.(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.解析:(2)添加如图所示辅助线,圆心O的运动路径长为C△OO1O2,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.答案:(2)如图,圆心O的运动路径长为C△OO1O2.过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴tan30BCAC===︒AB=2BC=18,∠ABC=60°,∴91827ABCC=+=+V∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵11BD BGO B O B=⎧⎨=⎩,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴1tan30O DBD===︒∴1927OO =--=-∵O 1D=OE=2,O 1D ⊥BC ,OE ⊥BC , ∴O 1D ∥OE ,且O 1D=OE ,∴四边形OEDO 1为平行四边形, ∵∠OED=90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形, 又OE=OF ,∴四边形OECF 为正方形,∵∠O 1GH=∠CDO 1=90°,∠ABC=60°, ∴∠GO 1D=120°,又∵∠FO 1D=∠O 2O 1G=90°,∴∠OO 1O 2=360°-90°-90°=60°=∠ABC , 同理,∠O 1OO 2=90°, ∴△OO 1O 2∽△CBA , ∴1212OO O ABCC O O C BC =V V79C -=,∴1215OO O C =V O 运动的路径长为25.如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G.(1)求证:BC 是⊙F 的切线.解析:(1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论. 答案:(1)连接EF ,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线.(2)若点A、D的坐标分别为A(0,-1),D(2,0),求⊙F的半径.解析:(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可. 答案:(2)连接FD,设⊙F的半径为r,则r2=(r-1)2+22,解得,r=52,即⊙F的半径为52.(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.解析:(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.答案:(3)AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=12AD+CD,∴AG=2FE=AD+2CD.26.探索问题并应用.【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .解析:【探索发现】:由中位线知EF=12BC,ED=12AB,由12FEDBABCS EF DES AB BC=Vgg矩形可得.答案:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=12BC,ED=12AB,又∠B=90°,∴四边形FEDB是矩形,则1112211222FEDBABCBC ABS EF DES AB BC AB BC=== Vggg g矩形,故答案为:12.【拓展应用】如图②,在△ABC 中,BC=a ,BC 边上的高AD=h ,矩形PQMN 的顶点P 、N 分别在边AB 、AC 上,顶点Q 、M 在边BC 上,则矩形PQMN 面积的最大值为 .(用含a ,h 的代数式表示) 解析:【拓展应用】:由△APN ∽△ABC 知PN AE BC AD =,可得aPN a PQ h=-,设PQ=x ,由224PQMNa h ahS PQ PN x h ⎛⎫==--+ ⎪⎝⎭g 矩形,据此可得.答案:【拓展应用】∵PN ∥BC ,∴△APN ∽△ABC ,∴PN AE BC AD =,即PN h PQa h-=, ∴aPN a PQ h=-,设PQ=x , 则2224PQMN a a a h ah S PQ PN x a x x ax x h h h ⎛⎫⎛⎫==-=-+=--+⎪ ⎪⎝⎭⎝⎭g 矩形, ∴当2h PQ =时,S 矩形PQMN 最大值为4ah. 故答案为:4ah.【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 解析:【灵活应用】:添加如图1辅助线,取BF 中点I ,FG 的中点K ,由矩形性质知AE=EH=20、CD=DH=16,分别证△AEF ≌△HED 、△CDG ≌△HDE 得AF=DH=16、CG=HE=20,从而判断出中位线IK 的两端点在线段AB 和DE 上,利用【探索发现】结论解答即可. 答案:【灵活应用】如图1,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 中点I ,FG 的中点K ,由题意知四边形ABCH 是矩形, ∵AB=32,BC=40,AE=20,CD=16, ∴EH=20、DH=16,∴AE=EH 、CD=DH , 在△AEF 和△HED 中,FAE DHE AE AHAEF HED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△HED(ASA), ∴AF=DH=16,同理△CDG ≌△HDE , ∴CG=HE=20, ∴242AB AFBI +==, ∵BI=24<32,∴中位线IK 的两端点在线段AB 和DE 上, 过点K 作KL ⊥BC 于点L ,由【探索发现】知矩形的最大面积为12×BG ·BF=12×(40+20)×(32+16)=720, 答:该矩形的面积为720.【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB=50cm ,BC=108cm ,CD=60cm ,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积. 解析:【实际应用】:延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,由tanB=tanC 知EB=EC 、BH=CH=54,EH=43BH=72,继而求得BE=CE=90,可判断中位线PQ 的两端点在线段AB 、CD 上,利用【拓展应用】结论解答可得. 答案:【实际应用】如图2,延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,∵tanB=tanC=43, ∴∠B=∠C , ∴EB=EC ,∵BC=108cm ,且EH ⊥BC ,∴BH=CH=12BC=54cm , ∵4tan 3EH B BH ==,∴44547233EH BH ==⨯=cm ,在Rt △BHE中,90BE ==cm ,∵AB=50cm ,∴AE=40cm ,∴BE 的中点Q 在线段AB 上, ∵CD=60cm , ∴ED=30cm ,∴CE 的中点P 在线段CD 上,∴中位线PQ 的两端点在线段AB 、CD 上, 由【拓展应用】知,矩形PQMN 的最大面积为14BC ·EH=1944cm 2, 答:该矩形的面积为1944cm 2.27.如图,在平面直角坐标系中,直线221y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =-++经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式.解析:(1)根据题意得到A(-4,0),C(0,2)代入212y x bx c =-++,于是得到结论. 答案:(1)根据题意得A(-4,0),C(0,2), ∵抛物线212y x bx c =-++经过A 、C 两点, ∴0621214b c c⎧=-⨯-+⎪⎨⎪=⎩,∴223b c ⎧=-⎪⎨⎪=⎩, ∴221322y x x =--+.(2)点D 为直线AC 上方抛物线上一动点.①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求12S S 的最大值.②过点D 作DF ⊥AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.解析:(2)①如图,令y=0,解方程得到x 1=-4,x 2=1,求得B(1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,根据相似三角形的性质即可得到结论.②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P(32-,0),得到PA=PC=PB=52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,情况一:如图,∠DCF=2∠BAC=∠DGC+∠CDG ,情况二,∠FDC=2∠BAC ,解直角三角形即可得到结论.答案:(2)①如图,令y=0, ∴2132220x x --+=, ∴x 1=-4,x 2=1, ∴B(1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,∴DM ∥BN ,∴△DME ∽△BNE , ∴12S DE DM S BE BN==, 设D(a ,213222a a --+),∴M(a ,12a+2), ∵B(1.0), ∴N(1,52), ∴()22121221425552a aS DM a S BN --===-++;∴当a=2时,12S S 的最大值是45. ②∵A(-4,0),B(1,0),C(0,2), ∴AB=5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(32-,0), ∴PA=PC=PB=52,∴∠CPO=2∠BAC , ∴tan ∠CPO=tan(2∠BAC)=43, 过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG , ∴∠CDG=∠BAC , ∴tan ∠CDG=tan ∠BAC=12, 即12RC DR =, 令D(a ,213222a a --+),∴DR=-a ,21322RC a a =--, ∴2131222a a a --=-, ∴a 1=0(舍去),a 2=-2,∴x D =-2.情况二,∴∠FDC=2∠BAC ,∴tan ∠FDC=43, 设FC=4k ,∴DF=3k ,DC=5k , ∵tan 123k DGC FG ∠==, ∴FG=6k ,∴CG=2k ,, ∴,k ,DR =-=,∴1322k DR a RC a a ---==, ∴a 1=0(舍去),a 2=2911-, ∴x D =2911-. 综上所述,点D 的横坐标为-2或2911-.考试考高分的小窍门 1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。

盐城市2017年中考数学试卷及答案解析

盐城市2017年中考数学试卷及答案解析

23. (本小题满分 10 分)某商店在 2014 年至 2016 年期间销售一种礼盒.2014 年,该商店用 3500 元购进了 这种礼盒并且全部售完;2016 年,这种礼盒的进价比 2014 年下降了 11 元/盒,该商店用 2400 元购进了与 2014 年相同数量的礼盒也全部售完,礼盒的售价均为 60 元/盒.
10. x≥3 【解析】由二次根式有意义可知,x-3≥0,x≥3.
11. 1 【解析】用红色,蓝色,黄色给正六边形涂色,上方的正六边形涂红色的概率为1.
3
3
12. 120° 【解析】如解图,∵AB∥DE,∴∠EFC=∠A=60°.∵∠EFC+∠1=180°,∴∠1=180°
-∠EFC =120°.
第 12 题解图
n)平移后的对应点分别为点 A′、B′,若曲线段 AB 扫过的面积为 9(图中的阴影部分),则新图象的函数表达式
是( )
A. y=1(x-2)2-2 2
B. y=1(x-2)2+7 2
C. y=1(x-2)2-5 2
D. y=1(x-2)2+4 2
第 6 题图 二、填空题(本大题共有 10 小题,每小题 3 分,共 30 分) 7. 请写出一个无理数________. 8. 分解因式 a2b-a 的结果为________. 9. 2016 年 12 月 30 日,盐城市区内环高架快速路网二期工程全线通车,至此,已通车的内环高架快速 路里程达 57000 米,用科学记数法表示数 57000 为________.
13. 5 【解析】∵x1(1+x2)+x2=x1+x1x2+x2,只需求出 x1x2 与 x1+x2.∵方程 x2-4x+1=0 的两个根
是 x1、x2,∴x1+x2=--4=4,x1x2=1=1,∴x1(1+x2)+x2=x1+x1x2+x2=4+1=5.

江苏省盐城市2017年中考数学试题(图片版)

江苏省盐城市2017年中考数学试题(图片版)

知己知彼,百战不殆。

《孙子兵法·谋攻》樱落学校曾泽平
青海一中李清
1、黄鹂方才唱罢,摘村庄的上空,摘树林子里,摘人家的土场上,一群花喜鹊便穿戴着黑白相间的朴素裙裾而闪亮登场,然后,便一天喜气的叽叽喳喳,叽叽喳喳叫起来。

2、摘湖的周围有些像薄荷的小草,浓郁时,竟发出泥土的气息!仔细看几朵小花衬着绿绿的小草显得格外美丽。

夏天,大大的荷叶保护着那一朵朵娇粉的荷花。

摘整个湖泊中格外显眼。

如果你用手希望对您有帮助,谢谢来捧一捧这里的水,那可真是凉爽它会让你瞬间感到非常凉爽、清新。

指豁出性命,进行激烈的搏斗。

比喻尽最大的力量,极度的努力,去实现自己的目标。

逆水行舟,不进则退。

人生能有几回搏,此时不搏何时搏。

——容国团 .生当作人杰,死亦为鬼雄。

——李清照贝多芬拼搏成长大作曲家贝多芬小时候由于家庭贫困没能上学,十七岁时患了伤寒和天花之后,肺病、关节炎、黄热病、结膜炎等又接踵而至,二十六岁不幸失去了听觉,爱情上也屡遭挫折,在这种境遇下,贝多芬发誓“要扼住生命的咽喉”。

在与生命的顽强拼搏中,他的意志占了上风,在乐曲创作事业上,他的生命之火燃烧得越来越旺盛了。

2017年江苏省盐城市中考数学试题及答案--等腰三角形

2017年江苏省盐城市中考数学试题及答案--等腰三角形

绝密★启用前盐城市二○一一年高中阶段教育招生统一考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-2的绝对值是 A .-2B .- 12C .2D .122.下列运算正确的是 A .x 2+ x 3= x 5B .x 4²x 2 = x 6C .x 6÷x 2 = x 3D .( x 2)3 = x 83.下面四个几何体中,俯视图为四边形的是4.已知a -b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .55.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离6.对于反比例函数y = 1x ,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30B .众数为29C .中位数为31D .极差为58.小亮从家步行到公交车站台,等公交车去学校.A B C D2折线表示小亮的行程s (km)与所花时间t (min)之间的函 数关系. 下列说法错误..的是 A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9.27的立方根为 ▲ .10.某服装原价为a 元,降价10%后的价格为 ▲ 元.11.“任意打开一本200页的数学书,正好是第35页”,这是 ▲ 事件(选填“随机”或“必然”).12.据报道,今年全国高考计划招生675万人.675万这个数用 科学记数法可表示为 ▲ .13.化简:x 2 - 9x - 3= ▲ .14.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4). 将△ABC 沿y 轴翻折到第一象限,则点C 的 对应点C ′的坐标是 ▲ . 15.将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形ABCD ,则四边形ABCD 的形状是 ▲ .16.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =5,则AB 的长为 ▲ .17.如图,已知正方形ABCD 的边长为12cm ,E 为CD 边上一点,DE =5cm .以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路径长为 ▲ cm . 18.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右 第n 个数,则(5,4)与(15,7)表示 的两数之积是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文DCB A F ED CB A(第15题图) (第16题图) (第17题图)AB CD E111122663263323第1排第2排第3排第4排第5排(第14题图)3字说明、推理过程或演算步骤) 19.(本题满分8分)(1)计算:(3)0- (12 )-2 +tan45°; (2)解方程:x x -1 - 31-x= 2.20.(本题满分8分)解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来.21.(本题满分8分)小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.22.(本题满分8分)为迎接建党90周年,某校组织了以“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?23.(本题满分10分)已知二次函数y = -12x 2-x +32.(1)在给定的直角坐标系中,画出这个函数的图象; (2)根据图象,写出当y< 0时,x 的取值范围;(3)若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.24.(本题满分10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°. 使用发现,光线最佳时作品成绩扇形统计图60分 %100分 10%90分30%80分%70分20%成绩/分100908070604灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ? (结果精确到0.1cm ,参考数据:3≈1.732)25.(本题满分10分)如图,在△ABC 中,∠C =90°,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F . (1)若AC =6,AB =10,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四边形,试判断四边形OFDE 的形状, 并说明理由.26.(本题满分10分)利民商店经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?27.(本题满分12分)情境观察A5将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C ′D ,如图1所示.将△A′C ′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′)、B 在同一条直线上,如图2所示.观察图2可知:与BC 相等的线段是 ▲ ,∠CAC ′= ▲ °.问题探究如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论. 拓展延伸如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H . 若AB =k AE ,AC =k AF ,试探究HE 与HF之间的数量关系,并说明理由.28.(本题满分12分)如图,已知一次函数y =-x +7与正比例函数y = 43x 的图象交于点A ,且与x 轴交于点B .图4MNGFECBAH图3AB CEFGPQ 图1 图2C'A'B A DCABCDBCD A (A')C'6(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.盐城市二○一一年高中阶段教育招生统一考试数学试题参考答案(备用图)7二、填空题(每小题3分,共30分)9.3 10.0.9a 11.随机 12.6.75³10613.x +3 14.(3,1)15.等腰梯形 16.10 17.132π(也可写成6.5π)18.2 3三、解答题19.(1)解:原式=1-4+1=-2.(2)解:去分母,得 x +3=2(x -1) . 解之,得x =5. 经检验,x =5是原方程的解.20.解:解不等式x +23<1,得x <1; 解不等式2(1-x )≤5,得x ≥-32;∴原不等式组的解集是- 32≤x <1.解集在数轴上表示为21.解:解法一:画树状图:P (红色水笔和白色橡皮配套)= 16.P (红色水笔和白色橡皮配套)= 16.22.解:(1)∵24÷20%=120(份),∴本次抽取了120份作品.开始蓝黑结果白 灰橡皮 水笔 白 灰白 灰(红,白) (红,灰) (蓝,白) (蓝,灰) (黑,白) (黑,灰)8补全两幅统计图 (补全条形统计图1分,扇形统计图2分)(2)∵900³(30%+10%)=360(份);∴估计该校学生比赛成绩达到90分以上(含90分)的作品有360份. 23.解:(1)画图(如图);(2)当y< 0时,x 的取值范围是x <-3或x >1;(3)平移后图象所对应的函数关系式为y =- 12(x -2)2+2(或写成y =- 12x 2+2x ).24.解:过点B 作BF ⊥CD 于F ,作BG ⊥AD 于G .在Rt △BCF 中,∠CBF =30°,∴CF =BC ²sin 30°= 30³12 =15.在Rt △ABG 中,∠BAG =60°,∴BG =AB ²sin 60°= 40³32 = 20 3.∴CE =CF +FD +DE =15+203+2=17+203≈51.64≈51.6(cm )cm. 答:此时灯罩顶端C 到桌面的高度CE 约是51.6cm. 25.解:(1)连接OD . 设⊙O 的半径为r . ∵BC 切⊙O 于点D ,∴OD ⊥BC .∵∠C =90°,∴OD ∥AC ,∴△OBD ∽△ABC .∴OD AC = OB AB ,即 r 6 = 10-r10. 解得r = 154, ∴⊙O 的半径为154.(2)四边形OFDE 是菱形.∵四边形BDEF 是平行四边形,∴∠DEF =∠B .∵∠DEF =12∠DOB ,∴∠B =12∠DOB .∵∠ODB =90°,∴∠DOB +∠B =90°,∴∠DOB =60°.∵DE ∥AB ,∴∠ODE =60°.∵OD =OE ,∴△ODE 是等边三角形.∴OD =DE .∵OD =OF ,∴DE =OF .∴四边形OFDE 是平行四边形. ∵OE =OF ,∴平行四边形OFDE 是菱形.26.解:(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元.根据题意,得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19 解得⎩⎨⎧x =2y =311OA成绩/分70分20%80分35%90分30%100分 10%60分 5%答:甲商品的进货单价是2元,乙商品的进货单价是3元.(2)设商店每天销售甲、乙两种商品获取的利润为s 元,则s =(1-m )(500+100³m 0.1)+(5-3-m )(300+100³m0.1)即 s =-2000m 2+2200m +1100 =-2000(m -0.55)2+1705. ∴当m =0.55时,s 有最大值,最大值为1705.答:当m 定为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1705元.27.解:情境观察AD (或A′D ),90 问题探究结论:EP =FQ .证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE =90°.∴∠BAG +∠EAP =90°.∵AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP . ∵EP ⊥AG ,∴∠AGB =∠EP A =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . 同理AG =FQ . ∴EP =FQ . 拓展延伸结论: HE =HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q . ∵四边形ABME 是矩形,∴∠BAE =90°,∴∠BAG +∠EAP =90°.AG ⊥BC ,∴∠BAG +∠ABG =90°, ∴∠ABG =∠EAP .∵∠AGB =∠EP A =90°,∴△ABG ∽△EAP ,∴AG EP = ABEA .同理△ACG ∽△F AQ ,∴AG FP = ACF A .∵AB =k AE ,AC =k AF ,∴AB EA = AC F A =k ,∴AG EP = AGFP. ∴EP =FQ .∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF28.解:(1)根据题意,得⎩⎪⎨⎪⎧y =-x +7y=43x,解得 ⎩⎨⎧x =3y =4,∴A (3,4) .令y =-x +7=0,得x =7.∴B (7,0).(2)①当P 在OC 上运动时,0≤t <4.Q P H ABCEFGNM10由S △APR =S 梯形COBA -S △ACP -S △POR -S △ARB =8,得 12(3+7)³4-12³3³(4-t )- 12t(7-t )- 12t ³4=8 整理,得t 2-8t +12=0, 解之得t 1=2,t 2=6(舍) 当P 在CA 上运动,4≤t <7.由S △APR = 12³(7-t ) ³4=8,得t =3(舍)∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8. ②当P 在OC 上运动时,0≤t <4. ∴AP=(4-t )2+32,AQ=2t ,PQ=7-t 当AP =AQ 时, (4-t )2+32=2(4-t )2, 整理得,t 2-8t +7=0. ∴t =1, t =7(舍) 当AP=PQ 时,(4-t )2+32=(7-t )2, 整理得,6t =24. ∴t =4(舍去) 当AQ=PQ 时,2(4-t )2=(7-t )2整理得,t 2-2t -17=0 ∴t =1±3 2 (舍)当P 在CA 上运动时,4≤t <7. 过A 作AD ⊥OB 于D ,则AD =BD =4.设直线l 交AC 于E ,则QE ⊥AC ,AE =RD =t -4,AP =7-t .由cos ∠OAC= AE AQ = ACAO ,得AQ = 53(t -4).当AP=AQ 时,7-t = 53(t -4),解得t = 418.当AQ=PQ 时,AE =PE ,即AE = 12AP得t -4= 12(7-t ),解得t =5.当AP=PQ 时,过P 作PF ⊥AQ 于F AF = 12AQ = 12³53(t -4).在Rt △APF 中,由cos ∠P AF =AFAP = 35,得AF = 35AP 即 12³53(t -4)= 35³(7-t ),解得t= 22643.∴综上所述,t=1或 418或5或 22643时,△APQ 是等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省盐城市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.2 B.﹣2 C.D.2.如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥3.下列图形中,是轴对称图形的是()A.B.C.D.4.数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.85.下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2D.(ab)2=ab26.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.请写出一个无理数.8.分解因式a2b﹣a的结果为.9.2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.10.若在实数范围内有意义,则x的取值范围是.11.如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.12.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.13.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为.14.如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB= °.15.如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.16.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.计算: +()﹣1﹣20170.18.解不等式组:.19.先化简,再求值:÷(x+2﹣),其中x=3+.20.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.21.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.22.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.23.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.25.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F 的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.26.【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.27.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2017年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱B.球C.圆锥D.棱锥【考点】U3:由三视图判断几何体.【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选(C)3.下列图形中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:D的图形沿中间线折叠,直线两旁的部分可重合,故选:D.4.数据6,5,7.5,8.6,7,6的众数是()A.5 B.6 C.7 D.8【考点】W5:众数.【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据6,5,7.5,8.6,7,6中,6出现次数最多,故6是这组数据的众数.故选:B.5.下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6 C.a3÷a=a2D.(ab)2=ab2【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据合并同类项法则、同底数幂的乘法、除法法则、积的乘方法则一一计算即可判断.【解答】解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.6.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.请写出一个无理数.【考点】26:无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.8.分解因式a2b﹣a的结果为a(ab﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】根据提公因式法分解即可.【解答】解:a2b﹣a=a(ab﹣1),故答案为:a(ab﹣1).9.2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.10.若在实数范围内有意义,则x的取值范围是x≥3 .【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.11.如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【考点】X4:概率公式.【分析】共有3种情况,上方的正六边形涂红色的情况只有1种,利用概率公式可得答案.【解答】解:上方的正六边形涂红色的概率是,故答案为:.12.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= 120 °.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.13.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为 5 .【考点】AB:根与系数的关系.【分析】先根据根与系数的关系得到x1+x2=4,x1x2=1,然后把x1(1+x2)+x2展开得到x1+x2+x1x2,然后利用整体代入的方法计算即可.【解答】解:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.故答案为5.14.如图,将⊙O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB= 110 °.【考点】M5:圆周角定理.【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.【解答】解:∵点C在上,点D在上,若∠ACB=70°,∴∠ADB+∠ACB=180°,∴∠ADB=110°,故答案为:110.15.如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.【考点】O4:轨迹;R2:旋转的性质.【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB==,∴B运动的最短路径长为==π,故答案为π.16.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为8 .【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k 的几何意义.【分析】由题意A(﹣4,4),B(2,2),可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出M、N的坐标,根据S△OMN=S△OBM﹣S△OBN计算即可.【解答】解:∵A(﹣4,4),B(2,2),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1.6),N(3,2),∴S△OMN=S△OBM﹣S△OBN=•4•6﹣•4•2=8,故答案为8三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.计算: +()﹣1﹣20170.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:原式=2+2﹣1=3.18.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,∴不等式组的解集为x>2.19.先化简,再求值:÷(x+2﹣),其中x=3+.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷(﹣)=÷=•=,当x=3+时,原式===.20.为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.【解答】解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.21.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【解答】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人.22.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【考点】LB:矩形的性质;L7:平行四边形的判定与性质;L9:菱形的判定.【分析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.23.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得: =,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.24.如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【考点】O4:轨迹;MC:切线的性质;N3:作图—复杂作图.【分析】(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.【解答】解:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===9,AB=2BC=18,∠ABC=60°,∴C △ABC=9+9+18=27+9,∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD===2,∴OO 1=9﹣2﹣2=7﹣2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴=,即=,∴=15+,即圆心O运动的路径长为15+.25.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F 的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.【考点】MR:圆的综合题.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【解答】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.26.【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【考点】LO:四边形综合题.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形PQMN=PQ•PN═﹣(x﹣)2+,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,则S矩形PQMN=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,∴当PQ=时,S矩形PQMN最大值为,故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.27.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据题意得到A(﹣4,0),C(0,2)代入y=﹣x2+bx+c,于是得到结论;(2)①如图,令y=0,解方程得到x1=﹣4,x2=1,求得B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,根据相似三角形的性质即可得到结论;②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点P,求得P(﹣,0),得到PA=PC=PB=,过作x轴的平行线交y轴于R,交AC的延线于G,情况一:如图,∠DCF=2∠BAC=∠DGC+∠CDG,情况二,∠FDC=2∠BAC,解直角三角形即可得到结论.【解答】解:(1)根据题意得A(﹣4,0),C(0,2),∵抛物线y=﹣x2+bx+c经过A、C两点,∴,∴,∴y=﹣x2﹣x+2;(2)①如图,令y=0,∴﹣x2﹣x+2=0,∴x1=﹣4,x2=1,∴B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,∴DM∥BN,∴△DME∽△BNE,∴==,设D(a,=﹣a2﹣a+2),∴M(a, a+2),∵B(1.0),∴N(1,),∴==(a+2)2+;∴当a=2时,的最大值是;②∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(﹣,0),∴PA=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,过作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,情况二,∴∠FDC=2∠BAC,∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC==,∴FG=6k,∴CG=2k,DG=3k,∴∴RC=k,RG=k,DR=3k﹣k=k,∴==,∴a1=0(舍去),a2=,点D的横坐标为﹣2或﹣.2017年7月1日。

相关文档
最新文档