石墨烯用几种不同分散剂处理
石墨烯分散剂提高石墨烯粉体分散的原理

石墨烯分散剂提高石墨烯粉体分散的原理
石墨烯粉体粒径越小,表面积越大,表面能越高,配位严重不足,使它在浆料中更容易团聚,即使在研磨时候能做到分散,但是过后将再次团聚,因此湿法研磨分散能否成功得到纳米级的石墨烯粉体是研磨和分散技术的关键。
在石墨烯浆料处理分散性的问题,通过导入石墨烯分散剂,添加到浆料中,将粉体改性,表面形成一层有机包膜,包覆在粉体表面,而且石墨烯分散剂具有特殊的双亲基团,一端与粉体发生化学反应产品缔合,另一端朝外与树脂相互融合,达到分散、解聚还原到原生粒径,从而让石墨烯分散均匀分散到浆料中,而且包覆层是中性的,不受PH值的影响,而避免导致再次团聚。
为了让石墨烯粉体在浆料中充分分散,同时保证悬浮的稳定性,选用具有双亲基团的粉体分散剂作为石墨
烯粉体分散的助剂,双亲基团的原理一个基团被设计来接到纳米粉体表面,对粉体进行包覆,使纳米粉体表面
产生一个稳定相,以避免粉体之再凝聚产生;另一个基团的设计,是纳米级的石墨烯粉体与树脂相互融合,以
避免不兼容之现象发生。
经过实践证明,纳米微粒的分散性问题要从纳米粒子的生产环节去解决,在纳米石墨烯粒子表面进行改性,赋予粒子亲水或亲油╱疏水或疏油性质,以保障在水性或油性介质中具有某种程度的可溶性;另外,选择适当的纳米粒子表面改性剂以确保纳米粒子不能形成硬团聚,而只能以软团聚的形式存在,这样生产出来的石墨烯粉
体质量更高,能广泛应用于锂电池、油墨、还有涂料领域中。
石墨烯分散方法

石墨烯分散方法石墨烯具有优良的性能,科研工作者考虑将其作为增强体加入到基体材料中以提高基体材料的性能。
但是,由于其较大的比表面积,再加上片层与片层之间容易产生相互作用,极易出现团聚现象,而且团聚体难以再分开,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进。
为了得到性能优异的石墨烯增强复合材料,科研工作者在克服石墨烯团聚、使其分散方面做了诸多研究。
分散方法简介如下:1、机械分散发利用剪切或撞击等方式改善石墨烯的分散效果。
吴乐华等以纯净石墨粉为原料,无水乙醇为溶剂,采用湿法球磨配合超声、离心等方式得到石墨烯分散液,通过扫描电镜、透射电镜和拉曼光谱分析均证明石墨烯为几个片层分散。
2、超声分散发利用超声的空化作用,以高能高振荡降低石墨烯的表面能,从而达到改善分散效果的目的。
Umar等将石墨在N-甲基吡咯烷酮(NMP)中采用低功率超声处理,随着超声时间的延长,石墨烯分散液的浓度随之升高,当超声时间超过462h后,石墨烯分散液浓度能够达到1.2mg/mL,这是由于超声所产生的溶剂与石墨烯之间的能量大于剥离石墨烯片层所需要的能量,进而实现了石墨烯的分散。
3、微波辐射发采用微波加热的方式产生高能高热用以克服石墨烯片层间的范德华力。
Janowska等采用氨水作为溶剂,利用微波辐射处理在氨水中的膨胀石墨以制备石墨烯分散液,透射电镜观测结果表明制得的石墨烯主要为单、双和少层(少于十层)石墨烯,并且能够在氨水中稳定分散,研究证实微波辐射产生的高温能够使氨水部分气化,产生的气压对克服石墨烯片层间的范德华力具有显著的作用。
4、表面改性通过离子液体对膨胀石墨进行表面改性来提高石墨烯的分散性。
这种改性属于物理方法,它能降低改性过程对石墨烯结构和官能团的影响。
经过改性的石墨烯片层粒径小,呈现出褶皱的状态;通过离子液体改性后的石墨烯可以长时间在丙酮溶液中保持均匀的分散状态,并且能够均匀分布在硅橡胶基体中,离子液体链长增加使得样品更加均匀地分散。
氧化石墨烯分散剂对其分散状态的影响

氧化石墨烯分散剂对其分散状态的影响氧化石墨烯是一种热稳定性好、热导率高、机械强度大、表面活性强的新型纳米材料。
由于其独特的物理和化学特性,氧化石墨烯在能源、环保、生物医药等领域具有广泛的应用前景。
然而,氧化石墨烯的分散度是影响其应用性能的重要因素之一。
氧化石墨烯的结构和表面活性使其很难分散在溶液中,容易产生团聚现象,影响其应用性能。
因此,寻找合适的分散剂,改善氧化石墨烯的分散状态是非常必要的。
氧化石墨烯的分散剂主要包括有机分散剂和无机分散剂两种类型。
有机分散剂是以碳基为主要骨架的化合物,其可以通过与氧化石墨烯表面发生相互作用来改善氧化石墨烯的分散状态。
而无机分散剂包括阳离子表面活性剂、阴离子表面活性剂以及高分子分散剂等,主要是通过静电吸引力和范德华力来实现氧化石墨烯的分散。
那么氧化石墨烯分散剂对其分散状态的影响具体表现在哪些方面呢?一、分散效果分散剂可以有效地改善氧化石墨烯的分散状态,避免其产生聚集,从而保证其应用性能。
实验研究表明,采用适当的分散剂可以将氧化石墨烯分散到单层,甚至更薄的情况下,大大提高其表面积和活性,为后续的应用开辟了更广阔的空间。
二、纳米复合材料的性能氧化石墨烯的分散状态直接影响其在纳米复合材料中的应用性能。
采用适当的分散剂可以有效地改善氧化石墨烯在复合材料中的分散状态,提高其与基质之间的相容性,从而改善了复合材料的力学性能、导电性能和热导率等特性。
三、吸附性能氧化石墨烯的表面活性决定了其吸附性能。
分散剂的选择对氧化石墨烯的表面化学性质和吸附性能有着直接的影响。
对于一些应用于催化、吸附等领域的氧化石墨烯材料,分散剂的选择非常重要,必须要考虑到吸附、结构等多个方面的因素。
总之,氧化石墨烯是一种非常有前途的纳米材料,其分散剂的选择对其应用性能起着至关重要的作用。
适当的分散剂可以改善氧化石墨烯的分散状态,提高其应用性能。
但是,在实际应用中,分散剂的选择需要考虑到许多因素,例如氧化石墨烯的应用环境、应用领域以及材料性质等,才能真正实现氧化石墨烯的应用潜力。
高分子分散剂在石墨烯中的应用

高分子分散剂在石墨烯中的应用
高分子分散剂在石墨烯中的应用主要包括以下几个方面:
1. 稳定性提升:石墨烯具有极高的比表面积和化学活性,容易在溶液或复合材料中发生聚集和堆积,从而降低其性能。
高分子分散剂可以在石墨烯表面形成吸附层,有效防止石墨烯的聚集和沉淀,提高其分散稳定性。
2. 界面改性:高分子分散剂可以通过与石墨烯表面的相互作用,改变其表面性质,使其更易于与其他材料界面相容。
这可以提高石墨烯与基体材料的结合强度和界面接触面积,增强其在复合材料中的增强效果。
3. 功能化修饰:高分子分散剂可以通过在其分子链上引入不同的官能团,实现对石墨烯表面的功能化修饰,赋予其特定的性能。
例如,可以引入亲水性基团,使石墨烯在水中更易分散;可以引入功能性基团,如共轭聚合物、电解质等,在石墨烯中实现电子、离子传导性能。
4. 石墨烯纳米复合材料制备:高分子分散剂可以作为石墨烯复合材料的添加剂,与石墨烯形成均匀分散的体系。
通过高分子分散剂的作用,石墨烯可以与基体材料更好地混合,从而制备出性能更优异的石墨烯复合材料,如高强度、高导电性、高热稳定性等。
总的来说,高分子分散剂在石墨烯中的应用可以改善其分散性
和稳定性,实现界面优化和功能修饰,为石墨烯的应用提供更多可能性。
石墨烯表面活性剂

序号分散剂/活性剂的名称简介结构1N-甲基-吡咯化合物(烷酮)2十二烷基苯磺酸钠(SDBS)分子式:C18H29NaO3S;分子量:348.48;固体,白色或淡黄色粉末,易溶于水,易吸潮结块;无毒3聚乙烯吡咯烷酮(PVP)分子式:(C6H9NO)n;白色或乳白色粉末或颗粒;4阴离子型表面活性剂:木质素磺酸钠(SLS)多聚物;分子量不定;化学结构尚未确定5胆酸钠(SC)分子式:C24H39Nao5;分子量:430.55;白色结晶或无色粉末6高浓度的胆酸钠7十六烷基三甲基溴化铵(CTAB)分子式: C16H33(CH3)3NBr;分子量:364.446;白色微晶性粉末,吸湿性,在酸性溶液中稳定,易溶于乙醇8聚氧乙烯月桂醚(Brij 35)棕色粘稠液,易溶于水,具有乳化、润湿、分散能力标准情况下熔点约为27℃沸点约100℃密度接近于水约为1.00g/mL,闪点大于110℃折射率 1.462可以用作乳化润湿剂,在橡胶工业中用作分散剂,石油工业和环境保护行业中用作溢油分散剂的组分之一。
也可用作醚酯类非离子型表面活性剂9吐温80分子式:C64H124O26 ;分子量:1309.5 ;浅黄色粘稠液体10曲拉通X100聚乙二醇对异辛基苯基醚;分子式:C34H62O11;分子量:646.86;对人体有害。
11氧化二丁基锡分子式:C8H18OSn ,分子量:248.95 ,白色到微黄色粉末。
熔点 >300℃,水溶性 4.0 mg/L(20℃)。
溶于盐酸,不溶于水及有机溶剂。
遇火自燃;剧毒12Disperbyk-163分散剂 Disperbyk-163 是一种相对分子质量为 17000,的嵌段共聚物,包括亲颜料端的胺基和亲溶剂端的酯基和羧基。
13赖氨酸14聚间亚苯亚乙烯衍生物(PmPV)15DsPE16聚乙烯醇(PVA) 17聚丙烯酰胺购买/自行合成出现的文章结构/机理优缺点These solvents areexpensive and requirespecial care whenhandling可购买liquid phase production ofgraphene by exfoliation ofgraphite insurfactent/water solutions合成工艺成熟、成本价低,可以得到高品质的石墨烯,具有较广阔的应用前景,但是此方法制备的石墨烯浓度较低。
石墨烯增强陶瓷基复合材料的制备与性能研究

石墨烯增强陶瓷基复合材料的制备与性能研究石墨烯作为一种二维晶体材料,具有优异的力学性能、导电性能和热传导性能,在复合材料领域中具有广泛的应用前景。
石墨烯增强陶瓷基复合材料由于其独特的性能组合,被广泛研究和应用于高性能材料制备。
一、石墨烯的制备方法石墨烯的制备方法多种多样,例如机械剥离、化学气相沉积、化学剥离等。
在石墨烯增强陶瓷基复合材料的制备中,一般采用机械剥离的方法来获得高质量的石墨烯。
机械剥离通过在石墨表面施加剪切力,将石墨逐渐剥离成单层的石墨烯。
然后,通过化学处理和物理分离的方法获得纯净的石墨烯材料。
这种制备方法简单、成本低,并且可以大规模生产石墨烯。
二、石墨烯增强陶瓷基复合材料的制备石墨烯增强陶瓷基复合材料的制备主要包括石墨烯的分散和烧结过程。
首先,将得到的石墨烯进行分散处理,以获得均匀分散的石墨烯分散液。
常用的分散剂有聚乙烯吡咯烷酮、聚乙烯醇等。
然后,将陶瓷基体与石墨烯分散液混合均匀,形成石墨烯/陶瓷基复合材料的预制坯体。
最后,通过热压烧结或热等静压等方法对预制坯体进行高温处理,使其烧结成致密的石墨烯增强陶瓷基复合材料。
三、石墨烯增强陶瓷基复合材料的性能研究石墨烯的加入可以显著提升陶瓷基复合材料的力学性能和热传导性能。
石墨烯具有超高的强度和刚度,可以有效增强陶瓷基体的强度和硬度。
同时,石墨烯的高导热性能可以提高陶瓷基复合材料的导热性能,使其能够更好地在高温环境下工作。
此外,石墨烯的高导电性能也使得复合材料具有优异的导电性能,可以应用于电子器件等领域。
四、石墨烯增强陶瓷基复合材料的应用前景石墨烯增强陶瓷基复合材料在航空航天、汽车制造、电子设备等领域有广阔的应用前景。
例如,在航空航天领域,石墨烯增强陶瓷基复合材料可以用于制造航空发动机叶轮和航天器的结构件,以提高其耐高温、高压和高速工作的能力。
在汽车制造领域,石墨烯增强陶瓷基复合材料可以用于制造汽车零部件,提高汽车的耐磨性和耐用性。
在电子设备领域,石墨烯增强陶瓷基复合材料可以用于制造高性能的电子封装材料,提高电子器件的工作效率和可靠性。
石墨烯分散液

石墨烯分散液石墨烯是一种二维蜂窝状碳质新材料,由于其独特的结构石墨烯具有很多优异的性能。
石墨烯的电子迁移率(2×105cm2·v-1·s-1),比硅半导体高100 倍。
石墨烯的力学性能也十分优异,研究者们通过原子力显微镜的针尖测量得到石墨烯的杨氏模量为 1 TPa。
石墨烯还具有独特的光学性能,单层的石墨烯仅仅吸收2.3 %的白光,对于5 层以内的石墨烯,吸光会随着层数而线性递增。
石墨烯具有如此多优异性能,可以作为光电性能优良的电子器件,被广泛研究应用于太阳能电池,传感器,显示器的部件。
高浓度稳定分散的石墨烯分散液有着巨大的应用前景,可以应用于石墨烯复合材料的制备,透明导电薄膜的工业化生产等。
但石墨烯片不亲水也不亲油,并且由于范德华力还容易发生团聚,难以长时间稳定分散在溶液中。
对于如何改善石墨烯的分散性问题,有大量的科研人员在这方面作了一系列研究,其方法主要集中在对石墨炼的表面改性、引入外来分子如负载纳米粒子、加入表面活性剂分子、引入高分子以及掺杂芳香族大分子等,也有利用还原的氧化石墨炼面内或边缘含氧官能团的静电排斥作用以减弱片层间的范德华力来达到稳定分散的目的。
最近也有报道在不加任何表面活性剂或稳定剂的情况下,通过调节分散介质的pH值达到稳定分散石墨烯的效果。
目前,用于分散石墨烯的体系主要有三种:(1)表面活性剂水溶液; (2)有机溶剂; (3)超酸。
然而,在水溶液中使用表面活性剂所得到的石墨烯的分散液浓度偏低,目前文献报道的最高值仅有0.3mg/mL;有机溶剂可得到较高浓度的石墨烯分散液,最高可达1.2mg/mL,但有机溶剂成本髙,沸点高,且不易除去,影响石墨烯的后续应用;在超酸体系中能得到目前最高浓度的石墨烯分散液(2mg/mL),但该体系具有强酸性,对设备要求高且操作过程不易控制,很难拓展到其它应用中。
若能在水溶液体系中得到高浓度石墨烯的分散液,无疑能促进石墨烯在多领域中的广泛应用,这正是石墨烯研究领域中的一个重要课题。
石墨烯的分散和缺陷

石墨烯的分散和缺陷
石墨烯的分散和缺陷是石墨烯制备和应用中需要关注的重要问题。
石墨烯的分散性主要指的是石墨烯在溶液中的分散稳定性。
由于石墨烯具有较高的比表面积和表面能,容易发生团聚和沉淀,因此需要采取措施提高其在溶液中的分散稳定性。
一种常用的方法是加入表面活性剂或分散剂,如十二烷基硫酸钠、聚乙烯吡咯烷酮等,这些物质可以吸附在石墨烯表面,增加其亲水性或降低表面能,从而提高其在溶液中的分散稳定性。
石墨烯的缺陷主要指的是其晶体结构中的缺陷,包括空位、取代基、位错等。
这些缺陷会影响石墨烯的电学、化学和机械性能,进而影响其应用效果。
为了减少石墨烯的缺陷,需要采用高纯度的原料和先进的制备工艺,如化学气相沉积、外延生长等。
同时,也可以通过后处理技术,如退火、化学修饰等来修复或改善石墨烯的晶体结构。
总之,石墨烯的分散和缺陷是制备高质量石墨烯的关键问题,需要采取有效的措施来提高其分散稳定性和减少缺陷,以满足不同应用的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.壳聚糖-石墨烯
将CS溶于1.0 mol/L的盐酸溶液,制备5 g/L的CS溶液,用氢氧化钠调节pH值至5.0左右.称取1 mg的石墨烯于10 mL上述CS 溶液中,超声分散30 min,可得分散良好的GN-CS悬浊液,静止2h后消退大型石墨粒子,获得浮在表面的上层清液。
(参考石墨烯_壳聚糖修饰玻碳电极测定水样中痕量铜离子方艳红、连慧婷、陈国华)
2.NMP
将0.25g石墨粉末加入到50.0mlNMP溶液中超声48h(老师,文献上要48个小时,然后我就不知道。
应该不会要这么久吧)。
在2h 后自然消退后降下大型石墨颗粒,将上清夜转移到电极改性玻璃瓶中。
3.环糊精
(1)、复合氨基-β-环糊精-石墨烯的制备:10mgGO在20.0mL去离子水中超声剥离,得到0.5mg/mL氧化石墨烯分散液,加入80mg20mLβ-CD-NH2、300μ
L氨水和20μL水合肼,混合搅拌后,60℃水浴3.5h,得到黑色分散液,过滤,干燥即得产物。
用无水乙醇、去离子水超声清洗各
(2)电极的制备:将浓度为1.0mg/mL的β-CD-NH2/GNs水溶液超声分散均匀,然后加入过量的Fc,超声20min,静置后,取上层黑色浑浊液,即得到β-CD-NH2/GNs/Fc(氨基-β-环糊精-石墨烯-二茂铁)混合溶液。
取10μL该溶液滴涂于处理后的ITO电极表面,烘干备用。
(参考氨基_环糊精_石墨烯_二茂铁修饰电极对多巴胺的电化学行为研究)。