2020秋季高中数学新教材解读
高中数学新课标人教A版必修第一二册教材解读〖第三章函数的概念与性质内容安排〗

内容安排作为中学阶段数学课程的一条主线,函数内容的安排体现了数学概念抽象的层次性,它是与学生的认知水平相适应的.第一层次,初中阶段安排了根据简单实例中的数量关系和变化规律,从变量之间依赖关系的角度归纳概括函数的概念(简称“变量说”以及三种表示法,要求能结合图象对简单实际问题中的函数关系进行分析,能确定简单实际问题中函数自变量的取值范围,并会求出函数值,能用适当的函数表示法刻画简单实际问题中变量之间的关系,并能结合对函数关系的分析,对变量的变化情况进行初步讨论.在此基础上,安排了一次函数、二次函数和反比例函数,通过这些函数,介绍研究一类函数的基本内容与方法,特别是通过二次函数,让学生学习定性刻画函数单调性的方法,以及函数的对称性、最大值、最小值等性质.本章以及后续的指数函数、对数函数和三角函数等基本初等函数,是在变量关系基础上的再抽象,是第二层次.本章是第二层次的起始阶段,具体安排是:首先,以初中已学函数知识为基础,在“预备知识”中梳理二次函数知识的基础上,通过四个具体实例的归纳、概括,抽象出函数的“集合一对应说”,并用抽象符号f()表示函数.在概念引入环节,实例的选用是关键也是难点,四个实例重点考虑了归纳共性、抽象“集合一对应说”的需要,并采用规范讲解、模仿性学习的方式,使学生学习用“集合一对应”的数学语言描述现实问题.因为学生在初中阶段已经接触了函数的三种表示,所以教科书直接给出函数的三种表示法,并通过典型例题训练学生选择适当的方法表示函数,通过例题引进分段函数.在数学概念的表示中,函数的表示是比较特别的,一是符号的抽象性,二是函数的几种表示方法对理解函数概念的促进作用(本质上都是对应关系),三是不同表示法的特点及相互之间的联系与转化.因此,教科书在这里特别注意安排用数学语言表达世界的训练.函数的性质,本章主要讲用代数运算和函数图象研究函数的单调性、奇偶性、最大(小)值等主要性质.这里既注意体现研究数学性质的一般思路,又注意函数性质的特殊性一变化中的规律性、不变性.在研究方法上,加强了通过代数运算和图象直观揭示函数性质的引导和明示.特别是在单调性的研究中,教科书构建了一个从具体到抽象、从特殊到一般的过程,引导学生归纳概括出精确刻画单调性的方法,从而为提升数学运算、直观想象等核心素养,提升学生的抽象思维水平奠定基础.把“幂函数”安排在这里,主要是借助对这一类函数的研究,使学生理解研究一类函数的内容、基本思路(定义、表示一图象与性质一应用)和方法,围绕函数概念这个核心,从相互联系的观点出发,利用函数与数、代数式、方程、不等式等之间的联系与类比,引导学生从不同角度理解函数概念.在幂函数概念的定义过程中,注意了在初中已学的正比例、反比例、二次函数等的基础上,通过实例,引导学生归纳共性,抽象概括出概念.本章的“函数的应用”,主要是利用函数概念及其蕴含的数学思想方法解决简单的实际问题,包括研究已知解析式或图象的函数性质,以及简单的建模问题.当然,在函数的表示、性质等内容中,也安排了利用函数概念解决已有的一次函数、二次函数、反比例函数的某些问题,这样可以使学生螺旋上升地认识已有函数,同时巩固函数概念.本章还安排了“文献阅读与数学写作”,通过对“函数概念的形成与发展”的研究,渗透数学文化,使学生了解函数概念在数学和人类文明进步中的地位和作用.基于以上分析,本章知识结构如下:在第四章和第五章安排指数函数、对数函数和三角函数,按照“实际背景一概念及其表示一图象与性质一应用”的主线,在一般函数概念的指导下展开研究,从而基本完成第二层次内容的学习.因为函数是贯穿高中数学课程的主线,所以本章内容在高中数学课程中具有奠基地位.同时,本章的学习对提升学生的数学抽象、直观想象、数学运算和数学建模等素养都有较大意义.为了进一步深化对函数的理解,提升用函数解决问题的能力,在选修系列安排数列、导数及其应用的学习.数列是一类特殊的函数(离散函数),而且具有非常广泛的实际应用,通过学习可以使学生完善函数的类型,更有效地用函数解决实际问题.导数定量地刻画了函数的局部变化状况,是研究函数性质的基本方法,通过学习可以使学生掌握研究函数性质的一般方法,更有力地用函数解决实际问题.这是数学思想的飞跃,是研究工具、研究方法的一大进步.与初中比较,高中强调函数是刻画客观世界中变量关系和变化规律的基本数学语言和工具,因此强调函数的背景、思想和应用,强调用集合语言、函数语言“表达世界”;强调与方程、不等式的联系,注重用函数观点理解和解决方程、不等式的有关问题;用导数为工具研究函数性质,使思想方法和研究手段都上升到一个全新高度.具体安排强调螺旋上升,先从一般性角度研究函数概念,使学生在宏观上了解函数的内容和方法,起到先行组织者的作用;然后通过基本初等函数的学习,以具体函数为载体,感受用函数建立数学模型的过程与方法,体会函数在数学和其他学科中的应用,学会用函数思想和方法解决问题.定义抽象、符号抽象、具体函数类型多且复杂(连续的、离散的)、相关知识的联系性增强、用更多的工具(代数运算、几何直观、导数)讨论函数性质等是高中阶段函数学习的特点.特别是,引入具有一般性的抽象函数符号f(),使学生能通过建立模型刻画现实问题的数量关系,并通过讨论函数的性质而认识、把握和解释它的运动变化规律,这是学习函数的重要意义所在.。
2020版高中数学新课标解读

2020版高中数学新课标解读在教育改革的浪潮中,2020版高中数学新课标的发布引起了广泛关注。
这一版本的课标不仅对数学学科的教学内容进行了调整,更对教学方式、评价标准等方面进行了全面的革新。
本文将对2020版高中数学新课标进行深入解读,以期为教育工作者和家长提供有益的参考。
一、背景与意义随着时代的发展,数学在日常生活和工作中的应用越来越广泛。
高中数学作为学生数学学习的重要阶段,对于培养学生的逻辑思维、分析问题和解决问题的能力具有至关重要的作用。
2020版高中数学新课标的发布,旨在适应新时代的需求,提高学生的数学素养,为学生的未来发展奠定坚实基础。
二、内容与特点1. 教学内容的调整与旧版课标相比,2020版高中数学新课标在教学内容上进行了大幅调整。
更加注重数学知识的实际应用,增加了数据分析、概率统计等方面的内容,同时对传统数学内容进行了优化整合。
这样的调整有利于培养学生的数学应用意识和实践能力。
2. 教学方式的变化新版课标强调学生的主体地位,提倡采用探究式、合作式等教学方式,激发学生的主动性和创造性。
同时,注重信息技术与数学教学的融合,利用现代教学手段提高教学效果。
3. 评价标准的完善在评价方面,新版课标强调过程性评价和结果性评价的有机结合,关注学生的个体差异和全面发展。
评价方式更加多样化,包括考试、作品评定、口头表达等,以全面反映学生的数学素养。
三、实施与建议1. 教师角色的转变面对新课标的要求,教师需要转变传统的教学观念,从知识的传授者转变为学生学习数学的引导者和合作者。
教师应不断提升自身的专业素养,以适应新课标的教学需求。
2. 课程资源的开发学校和教育部门应积极开发适应新版课标的课程资源,如教材、教具、网络资源等。
同时,鼓励教师根据实际情况,创造性地开发具有地方特色的课程资源。
3. 家校共育的加强家长是学生学习的重要支持者。
学校应加强与家长的沟通与合作,引导家长理解新课标的理念和要求,共同关注学生的数学学习进展,形成良好的家校共育氛围。
高中数学新课标人教A版必修第一二册教材解读〖加强信息技术与统计的融合〗

加强信息技术与统计的融合1.培养学生使用信息技术的意识和初步能力统计是通过数据分析解决问题的.在数据分析中经常会涉及数据的整理、可视化表示、计算等数据处理,尤其当样本量比较大时,工作量就会变得非常大.运用计算器、计算机等信息技术工具,不仅可以实现快速、准确地列表、画图、计算等数据处理,而且能使大量人工难以完成的数据处理变成可能.会使用信息技术处理数据是现代统计学习的重要组成部分.在高中统计的学习中,应该培养学生使用信息技术的意识和初步能力.为了给学生在统计学习中运用信息技术提供支持,在高中统计的起始章,教科书安排选学栏目“信息技术应用统计软件的应用”,集中介绍电子表格和R两款软件的基本统计功能,其中电子表格软件是使用比较普遍且具有一定统计功能的办公软件,而R软件则是统计专业人员中使用普遍且免费的专业统计软件.在后续统计的章节中,教科书结合有关内容,在适合使用的信息技术的地方,以边注的形式对给予提示.2.利用信息技术提高教学的效率和质量信息技术既是现代统计的组成部分,也是统计学习的有效辅助手段.通过合理使用信息技术,可以把学生从机械、烦琐的数据处理中解放出来,把更多精力集中于统计概念和方法的理解,从而提高教学的效率和质量.例如,绘制频率分布直方图涉及数据的分组、频率的计算、图形的绘制等大量工作,用统计软件可以快速绘制出不同组距和组数的直方图,节约重复计算、机械性操作的时间,把更多的精力花在直方图信息的提取上.又如,平均数、方差等特征数的计算,在学生已经知道如何计算的情况下,统计软件的使用就可以大大节约时间,进而把更多的精力花在理解特征数的统计含义上.3.通过随机模拟直观解释数据分析方法的合理性统计是研究数据收集和分析数据的科学,其研究重点是如何有效地收集和分析数据,所有数据分析方法都是为了达到这个目的.这里的“有效”既包括人力、物力、时间的节省,也包括估计精确度和可靠度的提高.在没有足够概率理论知识刻画估计的精确度和可靠度时,如何让学生了解样本和总体的关系,体会数据分析方法的科学性就成为统计内容呈现的重点.在中学统计中,信息技术一个很大的作用是可以实现随机模拟,它使大量重复试验成为可能.通过随机模拟,可以让学生体会样本数据的随机性和规律性,了解样本和总体之间的关系,这可以在很大程度上直观解释一些数据分析方法的合理性,弥补由于理论知识不足造成的理解困难.例如,在随机抽样的学习中,需要讨论样本量对于抽样估计效果的影响,以及评价简单随机抽样和分层随机抽样的估计效果,在理论上进行说明并不容易.因此,教科书通过随机模拟的方式,让学生直观观察的多次抽样的结果图1和图2,在此基础上归纳概括随机抽样方法的特点.。
高中数学新课标人教A版必修第一二册教材解读〖发展逻辑推理和数学抽象素养〗

发展逻辑推理和数学抽象素养1、重视几何语言的使用,循序渐进地安排推理论证,发展逻辑推理素养逻辑推理是指从一些事实和命题出发,依据规则推出其他命题的素养.逻辑推理主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;另一类是从一般到特殊的推理,推理形式主要有演绎.立体几何是发展学生逻辑推理素养的重要载体.在立体几何的学习中,通过对实物、模型、图片等的操作和感知,归纳、概括出空间几何体的结构特征;通过对图形的观察和实验,发现和提出描述直线、平面之间平行、垂直关系的命题,并逐步学会用准确的数学语言表达这些命题;直观解释命题的含义和证明思路,并能证明其中一些命题等,都蕴含了丰富的逻辑推理.数学证明的过程就是“用符号表示推理”的过程,因此正确掌握几何语言是进行几何证明的必备条件.一般来讲,几何语言包括图形语言、文字语言和符号语言.图形是从实物和模型抽象后的产物,也是形象、直观的语言;文字语言是对图形的描述、解释与讨论;符号语言则是对文字语言的简化.显然,首先建立的是图形语言,然后引入文字语言和符号语言,最后形成三种语言的综合运用,而三种语言的综合运用和转化也是学生进行逻辑推理的基础.在本章,为使学生更好地认识几何图形,为逻辑推理打下基础,需要重视几何语言的使用和训练,帮助学生有逻辑地思考和表达.一方面,要重视“实物模型—图形—文字—符号”这个抽象过程.无论是对空间几何体的认识、平面的三个基本事实的抽象,还是相关定义、判定和性质定理的得出,都要从实物原型开始,先让学生从实物原型中抽象出几何图形,再对其特征或关系进行文字表述,最后学会用符号语言表达.这一过程中,要重视图形语言的作用,对于图形的文字和符号描述,都是紧密联系图形,发挥图形直观的作用,在图形基础上发展其他数学语言.另一方面,也重视相反的“符号—文字—图形”的教学过程,让学生先理解符号或文字所表达的图形及关系,并把它们用图形直观表示出来,化“无形”为“有形”这样,使学生能较快掌握三种语言的运用和相互转化,从而更好地掌握所研究的几何图形,也为更好地进行逻辑推理打下基础.在本章,对于逻辑推理的安排要注意循序渐进,使学生逐步达到要求.首先,对于几何体,要严格描述它的结构特征,会涉及线线平行、线面垂直、面面平行等,对于这些概念,学生能依赖直观感知理解即可,不必做严格的定义和推理论证;在几何体的表面积和体积的学习中,也要注意循序渐进,开始只要求学生知道公式,了解它们之间的联系,“会算”即可,推迟对“会证”的要求.接下来,在利用平面的基本事实作判断包括基本事实的推论的推导,在以长方体为主要载体、通过对图形进行观察、操作、实验,发现直线、平面之间的位置关系时,要让学生逐步学会用表示集合关系的符号语言表示位置关系,加强三种数学语言的相互转化,为后续推理证明打下基础.进而,在发现直线、平面间平行、垂直的判定和性质,在利用相关结论证明直线、平面之间平行、垂直的性质时,学会有条理地思考并用数学符号语言有逻辑地表达,逐步掌握相应的证明方法.最后,在利用基本事实、定义、判定定理、性质定理进行综合应用、解决立体图形问题时,对逻辑推理的技能进一步训练.这样处理,使得对于逻辑推理的要求循序渐进、逐步达到,降低了学生证明立体几何问题的难点,更有利于学生逻辑推理的素养的培养.2、充分利用实物原型和基本图形,帮助学生理解基本立体图形位置关系,发展数学抽象素养现实世界中的各种物体都以其特有的形状、大小和位置存在于我们周围,立体几何就是研究现实物体的形状、大小和位置关系的学科.学习立体几何的知识能使人们更好的认识现实空间,并在实际工作和生活中运用有关知识解决问题.本章中的有关几何体的概念,就是采用分析具体实例的共同特点,再抽象其本质属性得到的.例如,对于棱柱的定义,教科书从生活中的纸箱和茶叶盒出发,引导学生观察其结构特征,观察组成它们的面的形状、面与面之间的关系,从而得到其“有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行”的共同本质属性,进而给出棱柱的概念.其他几何体也是类似.再如,对于直线和平面垂直的概念,教科书也是从生活中旗杆和地面、教室里相邻墙面的交线与地面的关系入手引出的.在教学中,应充分注意这些基本概念和基本位置关系与客观现实的联系,充分利用其所反映的实物原型,体现从具体到抽象的认知过程,引导学生初步用几何观点认识现实世界,发展数学抽象素养.在解决立体几何问题时,对于学生来说,总感到图形线条多,又处在不同平面内,难以发现要素之间的关系.实际上,空间图形有一些简单的“基本图形”,把这些基本图形的组成元素的位置关系搞清楚了,再解决其他问题时,就很容易排除干扰,提炼出本质特征来.在空间几何体中,长方体、正四面体、球是基本图形,它们类似于平面几何中的直角三角形、等腰三角形、圆.在各种多面体中,长方体是最基本的几何体.在研究基本图形位置关系时,无论对于空间点、直线、平面位置关系的整体认识,还是对于空间直线、平面的平行、垂直关系的定义、判定定理、性质定理等,都可以在长方体中找到对应的表示.长方体还可以和空间直角坐标系建立联系,因此它也是今后用向量法解决立体几何问题的基础.因此,在教学中,一定要充分重视长方体的作用.在生活中,长方体形状的物体也是随处可见的,其中与学生最接近的就是学生所在的教室,在教学中也要利用好,以便将基本图形的位置关系在生活中找到对应的实例,加强直观性,以更好地培养学生的直观想象素养.在解决各种立体几何问题时,空间直线、平面的平行、垂直关系是需要关注的核心问题,因此,直线、平面位置关系的定义、判定定理、性质定理等对应的图形也是需要关注的基本图形.除此之外,还有一些图形,其中包含了丰富的平行、垂直关系,也需要引起关注.例如,正三棱柱、四棱锥、长方体中切下一角,二面角的平面角与两个平面的垂线组成的图形等也都是反映空间图形位置关系的基本图形.再如,四个面都是直角三角形的三棱锥图1,《九章算术·商功》称其为“鳖儒”也是一个基本图形,其中具有非常丰富的线线、线面、面面垂直关系.如:1线线垂直:SA⊥AB,SA⊥BC,SA⊥AC,BC⊥AB,BC⊥SB;2线面垂直:SA⊥平面ABC,BC⊥平面SAB;3面面垂直:平面SAB⊥平面ABC,平面SAC⊥平面ABC,平面SAB⊥平面SBC.可以看到,上述基本图形都可以与长方体建立联系,它们或是长方体的一部分,或可以由它经过变形得到.因此,要特别关注长方体这一最基本的立体图形,充分发挥它在研究立体图形及其位置关系中的作用.。
2020-2021学年高中数学新教材人教B版必修第四册教师用书:10.1.1复数的概念含解析

第十章复数10.1复数及其几何意义10.1.1复数的概念[课程目标] 1.在问题情境中了解数系的扩充过程,体会实际需求与数学知识体系内部的矛盾(数的运算规则、求方程的根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;2.理解复数的基本概念以及复数相等的充要条件.知识点一复数的概念及分类[填一填](1)复数的概念①为了使得方程x2=-1有解,人们规定i的平方等于-1,即i2=-1,并称i为虚数单位.②当a与b都是实数时,称a+b i为复数,复数一般用小写字母z 表示,即z=a+b i(a,b∈R).其中a称为z的实部,b称为z的虚部,分别记作Re(z)=a,Im(z)=b.(2)复数的分类所有复数组成的集合称为复数集,复数集通常用大写字母C表示,因此C={z|z=a+b i,a,b∈R}.任意一个复数都由它的实部与虚部唯一确定,虚部为0的复数实际上是一个实数.特别地,称虚部不为0的复数为虚数,称实部为0的虚数为纯虚数.[答一答]1.复数集与实数集的关系是怎样的?与已学过的有关数集的关系是怎样的?提示:实数集R 是复数集C 的真子集,即RC .至此,我们学过的有关数集的关系如下:复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧ 实数(b =0),虚数(b ≠0)⎩⎨⎧ 纯虚数(a =0),非纯虚数(a ≠0).知识点二 复数相等 [填一填]两个复数z 1与z 2,如果实部与虚部都对应相等,我们就说这两个复数相等,记作z 1=z 2.如果a ,b ,c ,d 都是实数,那么a +b i =c +d i ⇔a =c 且b =d .特别地,当a ,b 都是实数时,a +b i =0的充要条件是a =0且b =0.[答一答]2.怎样理解两复数相等的概念?提示:(1)两个实数可以比较大小,但两个不全是实数的复数就不能比较大小,只能说相等或不相等.如2+i 和3-i,2和i 之间就无大小可言.(2)虚数不能比较大小,有大小关系的两个数一定是实数.两个不全为实数的复数不能比较大小.(1)根据复数a+b i与c+d i相等的定义可知,在a=c,b=d两式中,只要有一个不成立,那么就有a+b i≠c+d i.(2)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.(3)实数之间的“<”(小于)关系,具有以下性质:①若a<b,b<c,则a<c;②若a<b,则对任意实数c,满足a+c<b+c;③若a<b,c>0,则ac<bc.如果我们要在复数之间引入一个“小于”关系,自然也应要求具有上述性质,但是,在复数之间具有上述性质的关系却是不存在的.类型一复数的概念[例1]判断下列说法是否正确.(1)当z∈C时,z2≥0;(2)若a∈R,则(a+1)i是纯虚数;(3)若a>b,则a+i>b+i.[分析]本题考查复数的基本概念和基本性质.[解](1)错误.当且仅当z∈R时,z2≥0成立.若z=i,则z2=-1<0.(2)错误.当a=-1时,(a+1)i=(-1+1)i=0·i=0∈R.(3)错误.两个虚数不能比较大小.1.虚数单位i 具有i 2=-1的性质.2.只有在两个复数都是实数时,才可以比较它们的大小.3.复数z 的平方未必为非负数.[变式训练1] 下列命题正确的是(1).(1)复数-i +1的虚部为-1.(2)若z 1,z 2∈C 且z 1-z 2>0,则z 1>z 2.(3)任意两个复数都不能比较大小.解析:(1)复数-i +1=1-i ,虚部为-1.正确.(2)若z 1,z 2不全为实数,则z 1,z 2不能比较大小.错误.(3)若两个复数都是实数,可以比较大小,错误.类型二 复数的分类[例2] 已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R ),试求实数a 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数.[分析] 根据复数z 为实数、虚数及纯虚数的概念,利用它们的充要条件可分别求出相应的a 的值.[解] (1)当z 为实数时,⎩⎨⎧ a 2-1≠0,a 2-5a -6=0,∴⎩⎨⎧ a ≠±1,a =-1或a =6.∴当a =6时,z 为实数.(2)当z为虚数时,⎩⎨⎧a2-5a-6≠0,a2-1≠0,⎩⎪⎨⎪⎧a≠-1且a≠6,a≠±1.∴当a∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z为虚数.(3)当z为纯虚数时,⎩⎨⎧a2-7a+6a2-1=0,a2-5a-6≠0,∴⎩⎨⎧a=6,a≠-1且a≠6.∴不存在实数a,使得z为纯虚数.本题除要熟悉复数的实部、虚部的概念及复数为实数、虚数、纯虚数的充要条件外,还要注意“分式分母不为零”这个隐含条件.[变式训练2]实数m取什么值时,复数(m2-5m+6)+(m2-3m)i 是:(1)实数;(2)虚数;(3)纯虚数;(4)零.解:设z=(m2-5m+6)+(m2-3m)i.(1)要使z为实数,必须有m2-3m=0,得m=0或m=3,即m=0或m=3时,z为实数.(2)要使z为虚数,必须有m2-3m≠0,即m≠0且m≠3.故m≠0且m≠3时,z为虚数.(3)要使z为纯虚数,必须有⎩⎨⎧m2-3m≠0,m2-5m+6=0.∴⎩⎨⎧ m ≠3且m ≠0,m =3或m =2.∴m =2.∴m =2时,z 为纯虚数.(4)要使z =0时,依复数相等的充要条件有:⎩⎨⎧ m 2-5m +6=0,m 2-3m =0⇒⎩⎨⎧ m =2或m =3,m =0或m =3⇒m =3,∴当m =3时,复数z 为零.类型三 复数相等的应用[例3] (1)已知x 2-y 2+2xy i =2i ,求实数x 、y 的值.(2)关于x 的方程3x 2-a 2x -1=(10-x -2x 2)i 有实根,求实数a 的值.[分析] (1)复数a +b i =c +d i 的充要条件是什么?(⎩⎨⎧ a =c ,b =d )(2)利用复数相等解题的前提是什么?(a ,b ,c ,d ∈R )[解] (1)∵x 2-y 2+2xy i =2i ,∴⎩⎨⎧ x 2-y 2=0,2xy =2,解得⎩⎨⎧ x =1,y =1或⎩⎨⎧ x =-1,y =-1.(2)设方程的实数根为x =m ,则原方程可变为3m 2-a 2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧ 3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.1.利用两个复数相等进行解题的依据是实部与虚部分别相等.2.在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R .忽略条件后,不能成立.因此在解决复数相等问题时,一定要把复数的实部与虚部分离出来,再利用复数相等的充要条件化复数问题为实数问题来解决.[变式训练3] 已知关于x 的方程x 2-(2i -1)x +3m -i =0有实数根,求实数m 的值.解:设方程的实根为x 0,则x 20-(2i -1)x 0+3m -i =0,因为x 0、m ∈R ,所以方程变形为(x 20+x 0+3m )-(2x 0+1)i =0,由复数相等得⎩⎨⎧ x 20+x 0+3m =0,2x 0+1=0,解得⎩⎪⎨⎪⎧ x 0=-12m =112,故m =112.1.复数1-i 的虚部是( B )A .1B .-1C .iD .-i解析:分清复数的实部、虚部是解题的关键.2.若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x 的值为( A )A .1B .-1C .±1D .以上全不对解析:由题意得⎩⎨⎧ x 2-1=0,x 2+3x +2≠0,∴x =1. 3.复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足( D ) A .x =-12B .x =-2或x =-12C .x ≠-2D .x ≠1且x ≠-2解析:由题意得x 2+x -2≠0,解得x ≠1且x ≠-2.4.已知z 1=m 2-3m +m i ,z 2=4+(5m +4)i ,其中m 为实数,i 为虚数单位,若z 1=z 2,则m 的值为-1.解析:由题意得m 2-3m +m i =4+(5m +4)i ,从而⎩⎨⎧ m 2-3m =4,m =5m +4,解得m =-1.。
_新教材高中数学第六章统计2

简单随机抽样新课程标准解读核心素养通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种数学抽象简单随机抽样方法:抽签法和随机数法2020年11月第七次全国人口普查全面展开,人口普查的工作量是何等的巨大,那么一般的统计工作如何进行调查呢?仍然使用普查的方法吗?[问题] 有一种调查的方法比较科学,那就是抽样调查,那么如何进行抽样呢?知识点简单随机抽样1.随机抽样在抽样调查中,每个个体被抽到的可能性均相同的抽样方法.2.简单随机抽样一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法.3.抽签法(1)定义:先把总体中的N(N为正整数)个个体编号,并把编号依次分别写在形状、大小相同的签上(签可以是纸条、卡片或小球等),再将这些号签放在同一个不透明的箱子里搅拌均匀.每次随机地从中抽取一个,然后将箱中余下的号签搅拌均匀,再进行下一次抽取.如此下去,直至抽到预先设定的样本容量;(2)抽签法的具体步骤:①给总体中的每个个体编号;②抽签.4.随机数法(1)定义:先把总体中的N个个体依次编码为0,1,2,…,N-1,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,2,…,N-1中的随机数,产生的随机数是几,就选第几号个体,直至选到预先设定的样本容量;(2)利用随机数表进行抽样的具体步骤:①给总体中的每个个体编号;②在随机数表中随机抽取某行某列作为抽样的起点,并规定读取方法;③依次从随机数表中抽取样本号码,凡是抽到编号范围内的号码,就是样本的号码,并剔除相同的号码,直至抽满为止.抽签法与随机数表法的异同点抽签法随机数表法不同点①抽签法比随机数表法简单;②抽签法适用于总体中的个体数相对较少的情况①随机数表法要求编号的位数相同;②随机数表法适用于总体中的个体数相对较多的情况相同点①都是简单随机抽样,并且要求被抽取样本的总体的个数有限;②都是从总体中逐个不放回地抽取用随机数表进行简单随机抽样的规则是什么?提示:(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.1.对于简单随机抽样,每个个体被抽到的机会( )A.相等B.不相等C.不确定D.与抽取的次数有关解析:选A 由简单随机抽样的概念可知,每个个体被抽到的机会相等,与抽取的次数无关.2.某学校数学组要从11名数学老师中推选3名老师参加市里举办的教学能手比赛,制作了11个签,抽签中确保公平性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B 利用抽签法要做到搅拌均匀才具有公平性.3.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:下为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A.07 B.44C.15 D.51解析:选B 找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.简单随机抽样的概念辨析[例1] 下面的抽样方法是简单随机抽样吗?为什么?(1)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签;(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.[解] (1)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等机会的抽样.(2)不是简单随机抽样.因为它是有放回抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:[提醒] 教科书中简单随机抽样单指不放回简单随机抽样.[跟踪训练](多选)已知下列抽取样本的方式,其中,不是简单随机抽样的是( ) A.从无限多个个体中抽取100个个体作为样本B.盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里C.从20件玩具中一次性抽取3件进行质量检验D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛解析:选ABCD A中不是简单随机抽样,简单随机抽样中总体的个数是有限的,而题中是无限的;B中不是简单随机抽样,简单随机抽样是不放回地抽取,而题中是放回地抽取;C中不是简单随机抽样,简单随机抽样是逐个抽取,而题中是一次性抽取;D中不是简单随机抽样,原因是个子最高的5名同学是56名同学中特定的,不存在随机性,不是等可能抽样.故选A、B、C、D.抽签法的应用[例2] 某单位对口支援西部开发,现从报名的18名志愿者中选取6人组成志愿小组到西藏工作3年,请用抽签法设计抽样方案.[解] 方案如下:第一步,将18名志愿者编号,号码为:01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,所得号码对应的志愿者就是志愿小组的成员.抽签法的5个步骤[跟踪训练]甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样,请用抽签法设计抽样方案?解:第一步:将30个篮球,编号为01,02, (30)第二步,将以上30个编号分别写在外观、质地等无差别的小纸条上,揉成小球状,制成号签;第三步,把号签放入一个不透明的盒子中,充分搅拌;第四步,从盒子中不放回地逐个抽取3个号签,并记录上面的号码;第五步,找出与所得号码对应的篮球.随机数表法及应用[例3] (链接教科书第154页例1)现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检测,如何用随机数表法设计抽样方案?[解] 第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任取一数作为开始,任选一方向作为读数方向.第三步,从选中的数开始,按上步选取方向,每次读取三位,凡不在010~600中的跳过去不读,前面已经读过的数也跳过去不读,读满6个数为止.第四步,以上选出的号码对应的元件就是要抽取的对象.随机数表法抽样应抓住3个关键点(1)编号:这里的所谓编号,实际上是总体中的每个个体对应一个编号,且每个编号位数相同;(2)确定读数方向和规则:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向;(3)获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的舍去,依次下去,直至得到容量为n的样本.[跟踪训练]总体由编号为00,01,02,…,18,19的20个个体组成.利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为________. 78166572080263140702436997280198 32049234493582003623486969387481 解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字组成的两位数中,小于20的编号依次为08,02,14,07,02,01,04,…,其中第2个编号和第5个编号都是02,重复.可知对应的数值为08,02,14,07,01,04,…,则第6个个体的编号为04.答案:041.下列问题中,最适合用简单随机抽样的方法抽样的是( )A.某报告厅有32排座位,每排有40个座位,座位号是1至40.某次报告会坐满了观众,报告会结束以后为听取观众的意见,要留下32名观众进行座谈B.从10台冰箱中抽取3台进行质量检验C.某学校有教职工160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革的意见,要从中抽取20人D.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量解析:选B 对于A,总体容量较大,用简单随机抽样法比较麻烦;对于B,总体容量较少,用简单随机抽样法比较方便;对于C,由于教职工对这一问题的看法可能差异较大,不宜采用简单随机抽样法;对于D,总体容量较大,且各类农田的差别很大,不宜采用简单随机抽样法.故选B.2.下列抽样实验中,适合用抽签法的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B A、D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.3.某工厂的质检人员利用随机数表产生随机数的方法对生产的100件产品进行检验,对这100件产品采用下列编号方法:①01,02,…,100;②001,002,…,100;③00,01,…,99.其中正确的是( )A.①②B.①③C.②③D.③解析:选C 利用随机数表产生随机数的方法抽取样本,总体中各个个体的编号必须位数相同,这样便于读数,故②③正确.4.用随机数法从100名学生(其中男生25人)中抽取20人参加评教,某男生被抽到的机会是( )A.1100B.125C.15D.14解析:选C 用随机数法进行抽样,每个学生被抽到的机会都相等,均为20100=15.。
高中新课标解读数学教材

高中新课标解读数学教材高中新课标下的数学教材,旨在培养学生的数学核心素养,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等六个方面。
新课标强调数学知识的内在联系和实际应用,注重学生主动探究和实践能力的培养。
在内容设置上,高中数学教材分为必修和选修两部分。
必修部分是所有学生必须学习的,包括函数、几何、概率与统计、代数等基础内容,这些内容构成了高中数学的核心。
选修部分则提供了更多的灵活性,学生可以根据自己的兴趣和未来的学习方向选择相应的课程,如微积分、线性代数、数学建模等。
教材的编写注重以下几个方面:1. 情境创设:通过实际问题引入数学概念,让学生在解决问题的过程中学习数学知识。
2. 探究学习:鼓励学生通过小组讨论、实验操作等方式主动探究数学问题,培养解决问题的能力。
3. 信息技术应用:利用计算机软件和互联网资源辅助教学,提高教学效率,拓宽学生的知识视野。
4. 跨学科整合:将数学与其他学科如物理、化学、生物等结合起来,让学生理解数学在不同领域的应用。
5. 评价方式多元化:除了传统的笔试,还包括口试、实验报告、项目研究等多种评价方式,全面考察学生的学习情况。
在教学方法上,新课标倡导教师采用启发式、探究式、讨论式等教学方法,鼓励学生主动思考,而不是仅仅依赖于记忆和模仿。
同时,教师应关注学生的个体差异,因材施教,为不同水平的学生提供适宜的学习指导。
教材的编排也更加注重逻辑性和连贯性,每个知识点都通过例题、习题和探究活动来巩固和深化。
此外,教材还提供了丰富的拓展资源,如数学史、数学文化、数学竞赛等,以激发学生的学习兴趣和探究精神。
总之,高中新课标下的数学教材力求在传授知识的同时,培养学生的数学思维和创新能力,为学生的终身学习和未来职业发展打下坚实的基础。
高中数学新课标人教A版必修第一二册教材解读〖第十章概率 内容安排〗

内容安排此次修订高中必修概率课程,增加了样本点、有限样本空间、样本点和事件的关系等内容;同时删去了几何概型,将原来的选修内容“事件的相互独立”变为必修内容.通过本章的学习,加深对随机现象的认识和理解;理解研究随机现象规律性的一般方法,通过构建概率模型解决实际问题,提高用概率的方法解决问题的能力;也为后续学习条件概率、随机变量的分布、二项分布、正态分布等打好基础.本章第1节是“随机事件与概率”,分为4个小节.在“1011有限样本空间与随机事件”中,教科书结合典型的随机现象介绍随机试验的特点,归纳样本点、有限样本空间、随机事件的概念.通过分析随机试验的可能结果,用适当的字母、数字或数对表示结果,构建样本空间,这是将实际问题数学化的关键步骤,也是提升学生数学抽象素养的重要途径.其作用体现在:有利于较为深刻地理解随机事件的概念;通过与集合关系和运算的类比,可以更好地理解随机事件的关系和运算意义;可以用符号语言准确而简练地表示求解概率问题的过程;也有利于在选择性必修课程的概率内容中揭示随机变量的本质(样本空间到实数集的映射.“1012事件的关系和运算”的主要内容是事件的包含、互斥、互相对立,并事件、交事件的含义,在此基础上,用简单事件表示复杂事件.实际上,“事件的关系和运算”是由于概率的性质和运算的需要而研究的一个内容,因此在学习古典概型后再安排这个内容显得理由比较充分.然而,把随机事件作为一个独立的研究对象,在给出样本点、样本空间的概念,定义随机事件后,通过类比集合的关系和运算,引入“事件的关系和运算”也是合理的.而且从学生认知的角度看,对随机事件关系和运算的研究是加深理解随机事件的需要;从教材结构合理性角度看,没有这个内容,这一节会非常单薄.因此,教科书把“事件的关系和运算”安排在古典概型的前面.“1013古典概型”的主要内容是由实例归纳古典概型的特征、古典概率的定义、古典概型中简单随机事件概率的计算等.古典概型是最简单的概率模型,也是高中概率课程重点研究的概率模型.除了自身的应用外,由于古典概型比较简单,便于解释相关概念,有利于学生体会概率的意义,因此概率的基本性质、事件的独立性、条件概率都是通过古典概型的实例,采用由特殊到一般的方法来认识的.通过本小节的学习,重要的是了解建立概率模型的一般方法,提高数学抽象及数学建模的素养.“1014概率的基本性质”以古典概型为具体的实例支撑,由特殊到一般地研究概率的非负性、规范性、可加性、单调性、加法公式等性质,利用概率的运算法则求随机事件的概率.本章的第2节是“事件的相互独立性”,主要内容是事件独立性的直观认识、两个事件独立性的定义、利用独立性简化概率的计算.两个事件的独立性是事件之间的一种特殊的关系,直观意义是两个事件发生与否互相不受影响,本质上是两个事件积的概率等于这两个事件概率的积.由于还没有条件概率的概念,教科书从事件的关系和运算的角度研究概率的基本性质出发,结合问题“两个事件的积的概率与这两个事件的概率有什么关系”,通过具体例子引入事件的独立性的概念,这也是符合知识发展的逻辑性的.本章的第3节是“频率与概率”,本节主要内容是频率的稳定性、频率与概率的联系与区别、用频率估计概率、随机模拟等.本章的重点是由实际问题抽象随机事件的概念,理解事件的关系和运算,通过古典概型理解概率的意义、探究概率的性质,理解频率的稳定性,通过实际操作试验或计算机模拟试验用频率估计概率.本章有三个难点,一是抽象研究对象——随机事件,二是在求解古典概型问题时,对所有样本点等可能性的判断;三是对频率与概率的关系的理解.课时安排本章教学时间约需9课时,具体分配如下(仅供参考):101 随机事件与概率约4课时102 事件的相互独立性约1课时103 频率与概率约2课时小结约2课时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容变化
第一章:空间向量与立体几何(15课时) 空间直角坐标系以前是安排在必修2圆与方程里面,现将此内 容放到了空间向量与立体几何这一章内
选择性 必修
(第一册, 43课时)
第二章:直线和圆的方程(16课时) 第三章:圆锥曲线的方程(12课时)
去掉了直线与圆锥曲线的位置关系的表述 降低了对抛物线知识的考查难度
第七章:复数(8课时)
二
第八章:立体几何初步(19课时)
删去了三视图相关内容
册
(69课时)
第九章:统计(13课时)
1.新增了用样本估计“百分位数”相关内容;2.删去了系统 抽样和变量的相关性;3.将“变量的相关性”移到了选择性 必修中;
第十章:概率(9课时)
增加了随机事件的独立性
目录与内容变化
选择性必 修
在教材结构上,新教材将原先的“必修+选修”体系 变更为“必修+选择性必修+选修”体系
必 修(共2册)
必修课程包括五个主题供十章,分别是预备知识、函数、几何与代数、 概率与统计、数学建模活动与数学探究活动。数学文化融入课程内容。 是高中学业水平考试内容,较简单。但也是高考中的基础内容。 理论上高一两个学期结束可以进行数学学业水平考试, 实际上全省统一到高二第二个学期结束进行数学学业水平考试;
选择性 必修
(第二册, 30课时)
第四章:数列(14课时)
第五章:一元函数的导数及其应用(16课 时)
数学归纳法原来在推理与证明里,现在放在数列里,并且变 为选学内容,不作为考试要求
在一元函数导数及其应用里,删去了生活中的优化问题
目录与内容时)
内容变化
选 择 性 必 修(共3册) 选修
选择性必修课程共八章,包括四个主题,分别是函数、几何与代数、 概率与统计、数学建模活动与数学探究活动。数学文化融入课程内容。 内容较难,与必修课程共同组成高考范围。
为自主招生提供参考
目录与内容变化
必 修 第 一 册
(72课时)
必修 第一章:集合与常用逻辑用语(10课时)
数学探究(3课时)
杨辉三角的性质与应用
第七章:随机变量及其分布列(10课时)
选择性
必修
第三章:成对数据的统计分析(9课时)
(第三册,
1.概率中的超几何分布由原来的“理解”变为“了解”,降 低了要求;2.增加了全概率公式,提高了要求;3.统计中相 关系数提高了要求,增加了样本相关系数与标准化数据向量 夹角的关系内容;
The end
再见 !
4.数学应用与数学文化
落实对数学建模活动、探究活动的要求……
5.与信息技术的融合 6.小结
满足教育信息化需求…… 小结中的“本章知识结构”以框图形式表示本章知识要点……
教学解读与建议:第一章 集合与常用逻辑用语
1.本章内容安排
注重知识结构,习惯用数学符号
2.选取典型数学实例和命题,回顾旧知、学习新知
高一数学新教材特点与教学策略专题讲座
与新教材有关的几个名词解读:
1. 2006---2012---2020;人教A版 2.《普通高中数学课程标准(2017年版)》 3. 立德树人 核心素养 4. 高考复习顺序 5. 数学建模活动、数学探究活动、
文献阅读与数学写作 6. 深度学习与单元整体学习
结构变化
第四章:指数函数与对数函数(16课时)
数学建模(3课时)
第五章:三角函数(23课时)
在三角函数里删去了三角函数线(正弦线、余弦线、正切线)
必 修 第
目录与内容变化
必修
内容变化
第六章:平面向量及其应用(18课时)
将原来单独的一章内容“解三角形”融入进“平面向量”这 一章内
数学探究:用向量法研究三角形的性质(2 课时)
内容变化
1.删减了命题及其关系(原命题、逆命题、否命题、逆否命 题);2.删减了简单的逻辑词(或、且、非);3.增加了必 要条件与性质定理的关系,充分条件与判定定理的关系以及 冲要条件与定义的关系;
第二章:一元二次函数、方程和不等式(8 删去了简单的线性规划问题 课时)
第三章:函数的概念和性质(12课时) 在函数的概念的内容中删去了映射
搭建初高中过渡的桥梁
3.类比数的研究,学习集合,提升数学抽象素养
需要研究些什么?研究方法是什么?
让学生在使用语言的过程中突破学习 难点,并习惯于使用
4.联系典型数学命题,学习逻辑用语,提升逻辑推理素养
引领学生以良好的心理状态进入数学 学习,以有效的学习方法学习数学
5.基于知识学习,关注数学学习心理和方法的过渡
将必修中的变量的相关性移到此,但删去了统计案例
37课时)
数学建模(3课时)
建立统计模型进行预测
核心变化
常用逻辑用语、复数由原来的选修内容调整为现在的必修内容
必修和选修内容的调整
数列、变量的相关性、直线与方程、圆与方程由原来的必修内 容调整为现在的选择性必修内容
删减
删去了《必修3》中“算法初步”相关内容; 删去了《选修2-2》中“推理与证明”相关内容; 删去了“框图”相关内容; 删去了“简单的线性规划问题”、“三视图”相关内容;
合并 增加
“解三角形”由原来单独的一章内容合并到“平面向量”章节 里
必修和选修均增加了数学建模与数学探究活动
1.章引言 2.正文及栏目设置 3.练习与习题
教材各部分内容的说明
对每一章内容,我们注意从数学整体性处发……
正文讲述中,根据需要安排“观察”“思考”“探究”“归纳” 等……
将练习作为学生课内学生活动的一个组成部分……