统计数据的整理

合集下载

统计学第2章 统计数据的搜集、整理和显示

统计学第2章 统计数据的搜集、整理和显示

第二节 数据整理

三、统计指标

(二)统计指标的分类

1. 数量(总量)指标

作用:反映现象的总规模、总水平或工作总量 以绝对数表示(国内生产总值、人口总数、工资总额等) 分类 总体单位数、总体标志总量 时期指标、时点指标 实物指标、价值指标和劳动量指标
第二节 数据整理

三、统计指标

搜集数据的两条途径:统计调查 + 实验 统计调查 —— 调查数据;实验 —— 实验数据 1. 确定调查目的 2. 确定调查对象和调查单位 3. 确定调查项目 4. 调查表格和问卷设计(一览表、单一表,要求简明扼要) 5. 确定调查时间(调查时间、调查期限) 6. 确定调查的组织实施计划

(三)统计调查的方案设计

上限不在内
等距分组与异距分组

等距分组

各组的标志值变动都限于相同的范围 优点:便于计算、绘制统计图 适用场合


异距分组

第一,标志值分布很不均匀的场合 第二,标志值相等的量具有不同意义的场合 第三,标志值按一定比例发展变化的场合
品质分组 单项式分组 间断组距式分组 数量分组 组限 连续组距式分组 组距式分组 等距式分组
6组:530 530 530 540 620 620 620 620 720 720 7组:720 720 630 630 630 630 620 620 620 620
8组:650 650 650 650 650 650 650 650 650 650
提问:从上述资料中,同学们能否直接看出该车间总的生产完成
类型分组
“日产量”分组
500以下 500 500以上 合计

统计数据的采集整理与处理方法

统计数据的采集整理与处理方法

统计数据的采集整理与处理方法统计数据的采集、整理与处理方法在各个领域中扮演着重要的角色,它们为研究人员、决策者以及企业提供了有力的支持。

本文将介绍几种常见的统计数据的采集、整理与处理方法,并探讨它们的优缺点以及适用场景。

一、问卷调查法问卷调查是一种常见的统计数据采集方法,通过向被调查者提出特定问题,收集他们的意见和观点。

问卷调查既可以是纸质问卷,也可以是在线调查。

在实施问卷调查时,应注意设计合理的问题,并确保样本的代表性。

问卷调查的优点是能够快速收集大量的数据,但缺点是容易受到被调查者主观因素的影响,结果可能不够客观。

二、抽样调查法抽样调查法是一种通过对部分样本进行研究,推断总体特征的方法。

抽样调查需要根据目标总体的特点来选择合适的抽样方法,常见的抽样方法包括简单随机抽样、分层抽样和整群抽样等。

抽样调查的优点是能够通过有限的样本获得总体特征,并减少成本和时间,但也存在样本偏差的风险。

三、观察法观察法是通过观察和记录来收集统计数据的方法。

观察法分为实验观察和非实验观察两种形式。

实验观察是在控制条件下对被观察对象进行观察,非实验观察是在自然条件下进行观察。

观察法的优点是能够直接观察对象的行为和现象,但也受到观察者主观因素和环境变量的影响。

四、文献资料法文献资料法是通过收集、整理和分析已有的文献材料来获取统计数据的方法。

文献资料可以是书籍、论文、报告、统计年鉴等,通过对文献资料的综合分析和归纳总结,可以得出有关统计数据的结论。

文献资料法的优点是可以利用已有的资源进行分析,但也面临数据更新不及时和数据可信度的问题。

五、统计软件和工具随着计算机技术的发展,统计软件和工具成为统计数据采集、整理与处理的重要工具。

常见的统计软件包括SPSS、Excel、R等,它们提供了丰富的统计分析方法和数据处理函数,可以有效地处理大规模数据和进行复杂的统计计算。

使用统计软件和工具的优点是提高了工作效率和准确性,但也需要熟悉相应的软件操作和统计方法。

统计学 第3章 统计数据的整理

统计学 第3章 统计数据的整理

统计分组的标志
第三章 统计数据的整理
统计分组的标志:分组标志就是将总体分为各个性质不同的标准或根据。

据分组标志的特征不同,总体可按属性标志分组,也可按数量标志分组。
1.按属性标志分组
以属性标志作为分组标志,并在属性标志的变异范围内划分各组界限,将总体 分为若干组。属性标志划分,概念明确,容易确定分组组数,如性别。
2.按数量标志分组
以数量标志作为分组标志,并在数量标志的变异范围内划分各组界限,将总体 分为若干组。如工资。
第三章 统计数据的整理
(五)简单分组和复合分组
在统计分组时,根据统计研究目的不同,分组标志的选择可以是一个标志,也可以是 两个或两个以上的标志,这样就有简单分组和复合分组之分:
1.简单分组 对总体只按一个标志分组称为简单分组。
第三章 统计数据的整理
数量次数分布的编制方法
在组距次数分布中,各组组距相同的次数分布称为等距次数分 布(表3-8)。各组组距不同的次数分布称为异距次数分布。
等距次数分布一般在现象性质差异变动比较均衡的条件下使用。
优点:
• 易于掌握次数分布的特性。
• 各组次数可以直接比较。
组数= 全距/组距
组距=全距/组数
100.00
提问:这是单 项次数分布还 是组距次数分 布?
第三章 统计数据的整理
数量次数分布的编制方法
例:对某工厂某月50名工人装配零件(件)情况进行调查, 得到下列初级资料:
106 81 98 111 91 107 86 105 93 106 82 108 114 122 109 104 125 103 113 102 106 84 128 104 91 112 85 96 115 89 97 105 92 111 107 97 105 124 106 86 96 110 112 103 108 110 109 125 101 119

简述统计整理的方法

简述统计整理的方法

简述统计整理的方法
统计整理是指对数据集中的数据进行分组、统计、分析的过程。

以下是几种常见的统计整理方法:
1. 分组统计:将数据按照某些特征分组,比如按时间、地理位置、性别等,统计每组的频数、占比、平均值等。

2. 描述性统计:对每组数据进行简要描述,比如总和、平均、中
位数等,以帮助人们理解这组数据的特点和趋势。

3. 相关性分析:通过相关性分析,研究数据之间的相关性,比如
相关性系数、偏度系数等,以帮助人们更好地理解数据之间的关系。

4. 回归分析:将非线性关系转化为线性关系,通过建立回归模型
来预测数据的未来值,比如线性回归、逻辑回归等。

5. 聚类分析:将数据中的重复值最小化,将数据分成多个相似类别,比如k均值聚类、层次聚类等。

6. 可视化分析:通过绘制直方图、散点图、箱线图等图表,帮助
人们更好地理解数据分布和趋势,比如t检验、方差分析、回归分析等。

这些方法可以单独或组合使用,以获得对数据的全面理解和分析。

统计数据的收集和整理

统计数据的收集和整理

统计数据的收集和整理统计数据的收集和整理是在各个领域中十分重要的工作。

通过收集和整理统计数据,我们可以了解各种现象、趋势和规律,为决策提供依据。

本文将探讨统计数据的收集和整理的重要性以及常用的方法和技巧。

一、统计数据的收集统计数据的收集是指通过对相关信息的搜集和归纳,获取有关个体、群体或事件的数据。

以下是常见的统计数据收集的方法:1. 问卷调查:问卷调查是最常见也是最直接的数据收集方法之一。

通过设计合理的问卷,我们可以收集到被调查者的意见、看法和行为数据。

在进行问卷调查时,我们需要确定目标群体,编制问题,并注意保证样本的代表性。

2. 访谈调研:访谈调研是通过与被调查者进行交流,深入了解其观点、经验和行为。

访谈调研通常应该具有一定的针对性和深度,以确保获得准确和详细的数据。

3. 参与观察:参与观察是直接观察和记录个体或群体的行为和活动。

通过在实地进行观察,我们可以获取到一些实时和客观的数据,进一步了解现象的特征和规律。

4. 文献研究:文献研究是通过阅读已有的书籍、论文、报告等来收集数据。

这种方法适用于已有大量相关资料的研究领域,可以迅速获取到丰富的数据。

二、统计数据的整理统计数据的整理是指对收集到的数据进行分类、归纳和分析,以便更好地理解数据的含义和趋势。

以下是常用的统计数据整理的方法和技巧:1. 数据分类:根据收集到的数据的特点和目的,进行分类整理。

可以根据时间、地区、性别、年龄等因素对数据进行分类,以便更好地进行数据分析和比较。

2. 数据归纳:将大量的数据进行归纳整理,可以用表格、图表、统计指标等形式进行展示。

通过对数据的归纳,可以更加直观地看出数据的分布和变化趋势,发现其中的规律和相关性。

3. 数据分析:对整理好的数据进行进一步的分析,可以应用统计学和数据分析方法,挖掘数据中的深层次信息。

通过数据分析,可以得出结论、提出问题,并为进一步研究和决策提供依据。

4. 数据可视化:使用图表、地图、折线图等工具将数据以可视化的方式呈现出来,可以帮助更好地理解数据。

统计师工作中的数据收集和整理方法

统计师工作中的数据收集和整理方法

统计师工作中的数据收集和整理方法在统计师工作中,数据收集和整理是非常重要的环节。

准确和全面地收集和整理数据对于完成统计报告、分析数据趋势和做出决策都具有重要意义。

那么,在统计师工作中,我们应该如何进行数据收集和整理呢?本文将探讨几种常见的方法。

一、问卷调查法问卷调查是一种常见的数据收集方法。

统计师可以设计和发放问卷,通过收集受访者的回答来获取数据。

在设计问卷时,需要合理安排问题的顺序和类型,确保问题清晰明了,并且考虑到可能出现的答案。

此外,还需要制定有效的答题规则和选择题的选项,并设置必填项或选答数量的限制。

二、观察法观察法是指统计师通过直接观察来收集数据。

这种方法适用于需要观察某些现象、过程或行为的情况。

通过观察,统计师可以获取真实、客观的数据,尤其是在实地调研或对于实验数据的收集。

在进行观察时,需要记录下所观察到的内容和数据,并尽量避免主观偏见的产生。

三、抽样调查法抽样调查是一种将总体数据中的一部分作为样本进行调查的方法。

通过抽样,我们可以更高效、更经济地收集数据。

在进行抽样调查时,需要根据研究目的和总体特点选择合适的抽样方法,比如简单随机抽样、分层抽样等。

同时,还需要控制好样本数量和样本质量,确保代表性和可靠性。

四、文献资料法文献资料法是指通过查阅和分析相关的文献资料来收集数据。

这种方法适用于需要获取历史数据、背景资料或者特定领域知识的情况。

在进行文献资料调研时,需要选择权威、可靠的来源,并进行全面而系统地搜集、整理和分析数据。

同时,还需要注意文献资料的时效性和适用性,避免使用过时或不相关的资料。

五、网络调查法随着互联网的发展,网络调查成为一种便捷、快速的数据收集方法。

统计师可以通过设计在线调查表格或者利用社交媒体平台等渠道来进行网络调查。

在进行网络调查时,需要确保问卷的可用性、信息保密性和回答者的真实性。

同时,还需要针对网络调查的特点,注意样本的代表性和数据的真实性。

六、数据整理方法在数据收集完成后,统计师还需要进行数据整理工作。

统计学统计数据的整理和显示

统计学统计数据的整理和显示

组数
组中值:各组中点位置所对应的变量值。其计算公式为:
01
或= (适用上开口组)
03
组中值= (适用所有闭口组)
02
或= (适用下开口组)
表3—2 三次产业增加值结构变化 资料来源:《中国统计年鉴》《2003年中国发展报告》,国家统计局2003年版,中国统计出版社。
从表中可以看出,我国1998—2002年,GDP年均增长7.7%,其中第一产业增加之年均增加2.9%,第二产业、第三产业增加值分别增长8.9%和8.0%。反映在结构中,第一产业比重下降,二、三产业比重上升。其中第一产业比重从1997年的19.1%下降到2002年的14.5%,下降了4.6个百分点;第二产业从50%提高到51.8%,上升了1.8个百分点;第三产业从30.9%提高到33.7%,上升了2.8个百分点。它反映着我国产业结构的变化发展过程。
举例说明:
1
某工厂生产车间30人工人日产量原始数据如下:
第三章 统计数据的整理和显示
本章主要内容




统计整理及其类型 统计整理:就是对搜集得到的初始数据进行审核、分组、汇总,使之条理化、系统化,变成能反映总体特征的综合数据的工作过程。包括(1)对统计调查所搜集到的各种数据进行分类和汇总;(2)对现成的综合统计资料的整理。本章指的是第一种整理。
第一节 统计数据整理概述
3.历史资料的审核:在利用历史资料(或其他间接资料)时,应审核资料的可靠程度、指标含义、所属时间与空间范围、计算方法和分组条件与规定的要求是否一致。一般可以从调查资料的历史背景、调查者搜集资料的目的以及资料来源等,来判断资料的可靠程度,也可以从指标间的相互关系以及指标的变动趋势来检查它的正确性。

项目统计数据的整理和显示

项目统计数据的整理和显示

项目统计数据的整理和显示在项目管理中,通过统计和分析数据来评估项目的进展和成功程度非常重要。

本文将介绍如何整理和显示项目统计数据,以帮助项目管理人员更好地了解项目进展,并采取正确的决策。

收集数据第一步是收集项目数据,这些数据包括各种项目指标,例如进度、成本、质量和风险等。

可以通过各种工具来收集这些数据,包括口头报告、文件和软件工具等。

数据的收集需要遵循标准流程,以确保数据的准确性和完整性。

整理数据在收集数据后,需要对数据进行整理,以便更好地分析和使用。

以下是一些整理数据的方法:1. 数据分类在整理数据之前,需要确定数据的类别。

数据分类可以基于各种指标,例如时间、地区、部门和项目阶段等。

将数据分类可以使得数据更有意义,可以快速地了解项目的发展趋势。

2. 数据清洗当数据被收集时,通常存在不准确或不完整的数据。

在对数据进行分析前,需要先对这些数据进行清洗。

数据清洗可以通过删除不必要的数据,或通过手动矫正错误的数据进行实现。

3. 数据分割根据项目的需求,可以把数据分解成更小的部分。

分割数据可以帮助人们更好地理解数据,并找到更好的解决方案。

例如,可以将一整天的数据分割成小时或半小时。

4. 数据转换在整理数据过程中,还需要进行数据格式转换。

例如,可以将每个数据所代表的意义转换为更加直观的图表和报告,以便更快速地理解。

显示数据当数据被整理好后,需要以易于理解的方式展示数据。

以下是一些用于显示数据的常用方法:1. 图表图表是数据显示的一种常规方式,用于可视化数据。

可以使用多种图表(例如柱状图、饼状图和折线图)的形式来显示数据。

图表可以用于分析数据趋势和关系,以及发现不同数据之间的联系。

2. 报告报告是另一种用于显示数据的方式。

报告可以包括文字、图表和表格等元素,以便项目管理人员更好地了解数据。

报告可以根据项目的需要概括数据,并展示有关项目的情况。

3. 数据库数据库是另一个能够处理数据的工具。

数据库可以存储大量数据,并提供用户交互式查询的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档