绿色化学
绿色化学——精选推荐

绿⾊化学绿⾊化学的定义及其特点绿⾊化学⼜称环境⽆害化学、环境友好化学、洁净化学。
利⽤现代科学技术的原理和⽅法,从根源上根除污染;研究环境友好的新原料、新反应、新过程、新产品,实现环境化⼯与⽣态协调发展;减少甚⾄消灭对⼈类健康、社区安全、⽣态环境的有害原料、催化剂、溶剂、助剂、产物、副产物的使⽤和⽣产。
特点:绿⾊化学是从源头上消除污染,促进⾃然⽣态系统的良性循环;绿⾊化学是要求合理利⽤资源和能源、降低⽣产成本、实现资源使⽤的“减量化、在再使⽤、再循环”,是发展循环经济的关键途径。
绿⾊化学的基本特点是:在获取新物质的转化过程中,充分利⽤每个原⼦,实现零排放。
1、绿⾊化学反应的主要任务寻找⽆害化学合成;尽量减少化学合成中得有毒原料和有毒产物;设计安全化学品;使化学品在被期望功能得以实现的同时,将其毒性降到最低;使⽤安全溶剂和助剂,尽可能不使⽤助剂采⽤⽆毒⽆害的溶剂代替挥发性有毒有机物作溶剂反应原⼦转化率⾼2、举例说明绿⾊化学的主要研究领域。
设计安全有效的⽬标分⼦:构效关系。
设计安全有效化学品主要包括如下两个⽅⾯的内容:①新的安全有效化学品的设计;②对已有的有效但不安全的分⼦进⾏重新设计。
寻找安全有效的反应原料,如:(1)⽤⼆氧化碳代替有毒有害的光⽓⽣产聚氨酯:RNH2 + CO2-> RNHCOOR1(2)亚氨基⼆⼄酸⼆钠的⽣产采⽤新⼯艺消除有毒氢氰酸的使⽤:HOCH2CH2NHCH2CH2OH + 2NaOH (铜催剂)=NaOOCH2CH2NHCH2CH2OONa + 4H2寻找安全有效的合成路线:要符合原⼦经济性原理。
要考虑到产品的性能优良,价格低廉,⼜要使产⽣的废物和副产物少,对环境⽆害,可利⽤计算机来进⾏辅助设计。
寻找新的转化⽅法:①催化等离⼦体⽅法;②电化学⽅法;③光化学及其他辐射⽅法;寻找安全有效的反应条件:(1)寻找安全有效地催化剂①活性组分的负载化②⽤固体酸代替液体酸;(2)寻找安全有效的反应介质①采⽤超临界流体作为反应介质②⽔作溶剂的两相催化法。
绿色化学要求

绿色化学是一门关注环境保护、资源节约和人类健康安全的化学分支。
其核心理念是从源头上消除或减少污染,实现环境、经济和社会的可持续发展。
绿色化学的要求主要包括以下几点:
1. 防止废物:在化学合成过程中,设计方法以避免废物的产生,从而减少废物的处理。
2. 设计更安全的化合物和产物:尽量使用低毒或无毒的化合物,降低化学反应对人类和环境的影响。
3. 降低化学合成方法的危险性:采用更安全、低毒的合成方法,减少对人类和环境的毒性。
4. 使用可再生的原料:尽量使用可再生、可循环利用的原料,减少对非可再生资源的依赖。
5. 使用催化剂而非当量试剂:采用催化反应,使废物的产生降到最低。
催化剂可以多次使用,减少试剂的用量。
6. 避免化合物的衍生物:避免使用保护基或其他暂时的修饰,减少废物产生。
7. 使原子经济最大化:在化学反应中,尽量提高原子利用率,减少废物的产生。
8. 使用更安全的溶剂和反应条件:避免使用有毒、有害的溶剂,选择无害的物质。
尽量在常温、常压下进行反应。
9. 提高能源效率:在生产过程中,采用节能措施,提高能源利用率。
10. 设计可降解的产品:产品在使用后,应可降解,避免在环境中积累。
11. 全程分析并防止污染:在生产过程中进行全程监控,减少或消除副产物,实现清洁生产。
12. 绿色包装和储存:采用环保的包装材料,减少包装废弃物的产生;合理储存化学品,防止泄漏和污染。
绿色化学

提高反应原子经济性的途径:
1,使用无毒,无害的新原料 2,使用无毒无害溶剂或不使用溶剂 3,使用高效,高选择性催化剂 4,使用新型合成手段 5,使用高效合成方法
绿色原料
OH
OCH 3
(传统)
+ (CH 3 ) 2 SO4 →
+ CH 3 SO4 H
(改进)用碳酸二甲脂
OH
+ CH 3O-C-OCH 3 →
绿色化学的12 绿色化学的12条原则 12条原则
防止环境污染 提高原子经济性 尽量减少化学合成中的有毒原料和有毒产 物 设计安全的化学品 使用安全的溶剂和助剂 提高能源经济性 原料的再利用 减少官能团的引入 新型催化剂的开发 产物的易降解性 以降低环境污染为宗旨的现场实际分析 防止生产事故的安全生产工艺. 防止生产事故的安全生产工艺.
定义:采用最少的资源和能源消耗,并产生最小的 定义:采用最少的资源和能源消耗, 排放的工艺过程. 排放的工艺过程. 无毒无害原料 可再生资源 原子经济反应 高选择性反应 环境友 好产品
无毒无害 催化剂
无毒无害 溶剂
绿色化学的概念
绿色化学即用化学的技术和方法去减少或消灭那些对 人类健康,社区安全,生态环境有害的原料,催化剂, 人类健康,社区安全,生态环境有害的原料,催化剂, 溶剂和试剂,产物,副产物等的使用和产生.绿色化 溶剂和试剂,产物,副产物等的使用和产生. 学的理想在于不再使用有毒,有害的物质, 学的理想在于不再使用有毒,有害的物质,不再产生 废物,不再处理废物. 废物,不再处理废物.它是一门从源头上阻止污染的 化学. 化学.
绿色化学(Green Chemistry)定义 绿色化学(Green Chemistry)定义
——又称环境友好化学( ——又称环境友好化学(Environmentally Friendly 又称环境友好化学 Chemistry),清洁化学( Chemistry),清洁化学(Clean Chemistry). Chemistry). ),清洁化学
绿色化学 (Green Chemistry)

《寂静的春天》这本书第一次对人类长期流行于全世界 的口号——“向大自然宣战”、“征服大自然”的绝对正 确性提出了质疑。她指出,化学杀虫剂的生产和应用, 会殃及很多有益生物,连人类自己也不能幸免。 尽管当时的工业界特别是化学工业界对她发起了猛烈 的抨击,而当时的美国政府也没有及时给予卡逊应有的 支持,使卡逊在《寂静的春天》出版两年后,因癌症和 遭受空前的诋毁、攻击而与世长辞,然而卡逊惊世骇俗 的预言,像是黑暗寂静中的一声呐喊,终于唤醒了人类 。科学家和生态学家得出结论,使用滴滴涕弊多利少。 1971年,美国环保署成立,1972年正式立法宣布禁止 使用DDT 。 Rachel Carson 被誉为人类环保事业的“普罗米修斯 ”。
世界八大公害事件
事件 污染 物 发生时 间、地点 致害原因 中毒症状 公害 成因
米糠油 多氯 事件 联苯
食用含多氯联 生产中 1968年日本 苯的米糠油、 多氯联 九州艾知县 全身起红疙瘩、 苯进入 等23个府县 呕吐、恶心、 米糠油 肌肉通
1972年3月 日本富山 关节、神经、 炼锌厂 全身骨痛、骨 含镉废 骼萎缩、食含 水 镉的米、水
氨氮 重金属
有机物 油 类 氰化物
电镀厂、冶炼厂等
农药厂、染料厂、食品加工厂 石油炼制厂、石化厂 煤气厂、有机合成厂、石化厂、
酚、醛、 煤气厂、石化厂、炼油厂、农药厂、氯碱厂 有机氯等 硫化物 石化厂、氯碱厂、染料厂、煤气厂、染料厂
化学工业的主要污染物──废渣
污染物 硫铁矿渣 主 要 来 源 硫酸厂 化工厂、氯碱厂
富山 骨痛面着火
发生时间、地点
~1970年 美国俄亥俄州 Cuyahoga河 1984年印度 Bhopal化工厂
致害原因及严重后果
严重化学污染引起河面 着火 甲基异氰酸大量泄漏致 死约4000人,伤者无数。
《绿色化学的应用》课件

有机肥料
利用有机废弃物和生物发酵技术生 产有机肥料,改善土壤质量。
生物防治
利用天敌和生物农药防治农业害虫 ,减少化学农药的使用。
05
结论
绿色化学的意义与价值
环境保护
绿色化学通过减少或消除对人类健康和环境有害 的物质,为环境保护做出了重要贡献。
经济可持续发展
绿色化学的应用有助于降低生产成本,提高资源 利用效率,促进经济可持续发展。
《绿色化学的应用》ppt课件
目录
• 绿色化学简介 • 绿色化学在工业生产中的应用 • 绿色化学在生活中的应用 • 绿色化学的未来展望 • 结论
01
绿色化学简介
绿色化学的定义
03
绿色化学的定义
绿色化学的目标
绿色化学的原则
绿色化学是一门致力于减少或消除在生产 、储存和使用化学品过程中对人类健康和 环境有害影响的科学。
实例
在化工、制药、涂装等行业广泛应用工业废气的绿色处理技术,实现废 气的净化、减排和资源化利用。
03
绿色化学在生活中的应用
绿色食品
绿色食品
是指遵循可持续发展原则,按照特定 生产方式生产,并经专门机构认定, 许可使用绿色食品标志的无污染的安 全、优质、营养类食品。
绿色食品的特点
绿色食品的益处
提供安全优质的食品,保障人体健康 ;保护生态环境,促进农业可持续发 展;促进农业结构调整,增加农民收 入。
社会进步
绿色化学的发展有助于提高公众对环境保护的认 识,推动社会文明进步。
我们如何参与绿色化学
1 2
学习和传播绿色化学知识
了解绿色化学的基本原理和应用,向身边的人传 播绿色化学理念,提高大众环保意识。
倡导绿色生活方式
《浅谈绿色化学》课件

促进可持续发展
绿色化学符合可持续发展 的理念,有助于经济、社 会和环境的协调发展。
如何推广和应用绿色化学
加强科研投入
01
政府和企业应加大对绿色化学研究的投入,推动技术创新和成
果转化。
制定标准和法规
02
制定严格的绿色化学标准和法规,鼓励和规范绿色化学产品的
03
循环利用
通过循环利用和再生,可以减少对原材料的需求,从而降低环境负担。
设计安全化学品
无毒无害
绿色化学强调设计无毒或低毒性 的化学品,以降低对人类健康和
生态环境的危害。
低环境影响
在化学品的设计阶段,应考虑其生 命周期内的环境影响,包括生产、 使用、废弃处理等环节,力求降低 对环境的负面影响。
生物可降解性
实例
采用水相有机合成、固相合成等绿色合成方法,减少有机溶剂的使用和废水的产生。
绿色催化剂
总结词
使用高效、环保的催化剂,降低反应条件和能源消耗。
详细描述
绿色催化剂是指那些在催化反应过程中具有高活性、高选择性、低 毒性、可回收利用的催化剂,旨在减少对人类健康和环境的影响。
实例
采用生物催化剂、金属催化剂等绿色催化剂,替代传统的有毒有害催 化剂,降低对环境的污染。
生产和应用。
倡导绿色消费
03
提高公众对绿色化学的认识,倡导绿色消费观念,推动市场需
求向绿色化方向转变。
我们每个人可以做些什么
提高环保意识
了解绿色化学知识,提高环保意识,关注身边的化学品安全问题 。
选择绿色产品
在日常生活中选择使用符合绿色标准的产品,支持绿色产业的发 展。
绿色化学的定义及其核心内容_概述及解释说明
绿色化学的定义及其核心内容概述及解释说明1. 引言:1.1 概述绿色化学作为一种新兴的科学理念和方法,旨在通过最小化或消除对环境的危害,实现高效、可持续的化学反应和过程。
它注重资源的有效利用和废物的减少,以及对人类健康和生态系统安全的保护。
绿色化学关注的不仅是产品开发过程中各个环节的绿色改进,更重要的是将这种理念贯穿于整个化学产业链中。
1.2 文章结构本文主要分为五个部分进行论述,首先介绍了引言部分,接着阐述了绿色化学的定义及其背景起源。
接下来将详细讨论绿色化学的核心内容,包括原料选择与设计、反应条件优化与改进以及废物处理与资源回收利用等方面。
然后会探讨绿色化学在不同领域中的应用情况,包括化工行业、能源领域以及材料科学与工程领域。
最后,在结论部分总结了绿色化学的重要性和影响力,并对未来发展方向和挑战进行了展望。
1.3 目的本文旨在介绍和解释绿色化学的定义及其核心内容,并探讨其在不同领域中的应用情况。
通过对绿色化学的深入了解,可以更好地认识到它对环境保护和可持续发展的重要性,以及在实践中所面临的挑战。
同时,本文也希望能够为各个领域从事研究和应用的人员提供一定的参考和借鉴,促进绿色化学理念在工业界的广泛推广与应用。
2. 绿色化学的定义2.1 定义解释绿色化学是一种以最大限度减少环境污染、降低对可持续资源的需求、提高产品能源效率和安全性为目标的新型化学范式。
它旨在通过设计和开发环境友好型化学反应、原料和产品,推动可持续发展和生态平衡。
绿色化学强调的是整个生命周期的可持续性,包括原材料选择、合成过程优化、废物处理与资源回收利用。
2.2 背景和起源绿色化学的概念最早于1990年由美国化学家Paul T. Anastas和John C. Warner提出,并于2001年正式被美国化学会(ACS)采纳并广泛传播。
绿色化学的起源是为了回应传统化工行业带来的巨大环境压力及其对人类健康和生态系统造成的威胁。
这一新颖理念促使科学家们重新思考传统有机合成方法,优先考虑可再生资源利用、无毒无害物质使用以及工艺条件优化。
绿色化学的定义及特点
绿色化学的定义及特点
绿色化学是一种以最小化或消除对环境和人类健康的危害为目
标的化学方法和原则。
它强调通过减少或消除有毒、有害的化学物质的使用,改进化学过程,以及促进资源的可持续利用来降低对环境的负面影响。
绿色化学的特点包括以下几个方面:
1. 原料的选择:绿色化学更倾向于使用可再生原料,如植物提取物和可持续资源。
与传统的化学方法相比,绿色化学更加注重原料的可再生性和资源的可持续性,以减少资源的消耗和环境的破坏。
2. 反应条件的优化:绿色化学强调在反应过程中减少能量和溶剂的使用。
通过合理设计反应条件,如降低温度和压力,可以降低对能源的需求并减少废弃物的生成。
3. 废物的减少:绿色化学追求最小化或消除废物的生成。
通过合理设计反应过程,可以减少副产物的生成,并优化催化剂的选择和再生,以最大程度地减少废物的排放。
4. 可再生能源的利用:绿色化学鼓励使用可再生能源,如太阳能和风能,以替代传统化学工艺中常用的化石燃料。
这有助于减少温室气
体的排放和对有限资源的依赖。
5. 产品的设计:绿色化学考虑产品的整个生命周期,从设计、制造、使用到废弃,以最大程度地降低对环境的影响。
它鼓励开发可再生、可降解和可回收利用的产品,以减少对环境的负面影响。
通过采用绿色化学原则,我们可以实现创新的化学过程和产品,减少环境和人类健康的风险,实现可持续发展。
绿色化学在各个领域都有应用,包括制药、农业、能源和材料等,它是实现可持续发展的关键之一。
简述绿色化学的12条原理
简述绿色化学的12条原理
绿色化学是一种环境友好型化学,旨在减少和消除化学物质对环境和人类健康的负面影响。
绿色化学的12条原则如下:
1. 预防:预防污染比治理污染更重要。
2. 原子经济:最大限度地利用原材料和最小化废物。
3. 合成设计:尽可能设计出环境友好型的合成路线。
4. 无毒性:化学物质应该设计为无毒性或低毒性。
5. 低能耗:化学反应应该尽可能地使用低能耗的方法。
6. 可再生材料:使用可再生的原材料和资源。
7. 可降解:化学物质应该可降解为无害的物质。
8. 催化剂:使用催化剂可以减少化学反应的能量消耗。
9. 简化操作:尽可能简化化学反应和操作流程。
10. 安全性:化学反应和产品应该设计为最小化对人类健康和环境的危害。
11. 分析方法:开发环境友好型的分析方法。
12. 实时分析:在化学反应中应用实时分析技术可以提高反应的效率和减少废物产生。
绿色化学的理念
绿色化学的理念一、绿色化学的概念绿色化学又称环境无害化学、环境友好化学、清洁化学。
它是利用化学原理从源头上减少和消除工业生产对环境的污染,反应物的原子全部转化为期望的最终产物。
二、绿色化学的主要理念1. 预防污染- 传统化学注重在污染产生后进行治理,而绿色化学强调在化学反应和化学工艺过程中就预防污染的产生。
例如,在化工生产中,选择合适的反应原料、反应条件和反应路线,避免或减少副产物和废弃物的生成。
例如,在合成某种有机化合物时,如果有多种合成路线可供选择,应优先选择那些原子利用率高、产生废弃物少的路线。
2. 原子经济性- 原子经济性概念是绿色化学的核心内容之一。
原子经济性是指反应物中的原子有多少进入了产物中。
理想的原子经济性反应是原料分子中的原子百分之百地转变成产物,不产生副产物或废弃物。
例如,加成反应一般具有较高的原子经济性,如乙烯与溴的加成反应CH_2 = CH_2+Br_2→CH_2BrCH_2Br,反应物的原子全部转化为产物。
而传统的以苯为原料生产苯胺的反应,经过多步反应,原子利用率低,产生大量废弃物。
3. 使用安全的反应物和反应条件- 在绿色化学中,尽量选择无毒或低毒的反应物。
例如,在涂料生产中,传统的有机溶剂型涂料含有大量挥发性有机化合物(VOCs),对环境和人体健康有害。
现在越来越多地采用水性涂料,其以水为溶剂,大大减少了对环境的污染和对人体健康的危害。
- 反应条件也应尽可能温和。
高温、高压、强酸碱等苛刻的反应条件不仅对设备要求高,而且容易产生安全隐患并造成环境污染。
例如,一些酶催化反应在常温常压下就能进行,且具有很高的选择性,是绿色化学中理想的反应类型。
4. 设计安全化学品- 设计出对人类健康和环境危害小的化学品。
例如,在农药研发方面,传统的有机氯农药如DDT,虽然在防治害虫方面有一定效果,但由于其化学性质稳定,在环境中难以降解,会通过食物链富集,对生态环境和人类健康造成严重危害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绿色化学第一章A、绿色化学的定义、目标及特点绿色化学的定义绿色化学又称为环境无害化学、环境友好化学、清洁化学。
它是涉及有机合成、催化、生物化学、分析化学等学科的一门综合性学科。
它运用现代科学技术的原理、技术和方法来减少或消除化学品的设计、生产和应用中对人类健康、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等化学品的使用和产生。
也就是降低或消除在化学品设计、制造与应用中的有害物质。
使所设计的化学产品或过程更加环境友好。
绿色化学的理想在于不再使用有毒、有害的物质;不再产生废物;不再处理废物。
绿色化学的目标:利用可持续发展的方法来降低维持人类生活水平及科技进步所需化学产品与过程所使用与产生的有害物质。
绿色化学的特点:理想的绿色化学技术应该是:采用具有一定转化率的高选择性化学反应来生产目的产品,不生成或很少生成副产物或废物,实现或接近废物的“零排放”;工艺过程使用无害的原料、溶剂和催化剂;生产环境友好的产品。
B、原子经济性与产品收率原子经济性与产品收率是两个不同的概念。
前者是从传统宏观量上来看化学反应,后者则从原子水平上来看化学反应。
若一个化学反应,反应的产率或收率很高,但反应分子中的原子很少进入最终产品中,即反应的原子经济性很差,则意味着该反应会排出大量的废弃物。
因此,仅仅用反应的产率或收率来衡量一个反应是否理想显然是不充分的。
要消除废弃物的排放,只有通过实现原料分子中的原子百分之百地转变成产物,才能达到不产生副产物或废物,实现废物“零排放”的要求。
所以,应使用产率和原子经济性两个概念作为评估一个化学工艺过程的标准。
C、评价化学工程的方法绿色化学应该最大限度地利用资源最大限度地使用或产生无毒或毒性小的物质最大限度使用可更新原料或可再生的原料产品尽量保持其功效,将毒性降至最小能量使用最小并考虑对经济及环境的影响1.4 绿色化学的基本原理1.污染防止优于污染形成后处理。
2.设计合成方法时应最大限度地使所使用的所有原料都转化到最终产品中。
3.设计合成方法时应最大限度地使用或产生无毒或毒性小的物质。
4.设计化学产品时应尽量保持其功效而降低其毒性。
5.尽量不用辅助剂,需要使用时应采用无毒物质。
6.能量使用应最小,并考虑其对环境和经济的影响,合成方法应在常温、常压下操作。
7.最大限度地使用可更新原料。
8.尽量避免不必要的衍生步骤。
9.催化剂优于化学计量试剂。
10.化学品应设计成使用后容易降解的无害物质。
11.真正实现在线分析监测,在有害物质形成前加以控制。
12.化工过程物质的选择与使用应使化学事故的隐患最小。
在化学品及化学过程的设计中应充分考虑由毒性、易燃性、易爆性带来的危害。
绿色化学的目标是消除或减少所有的危害,而不仅仅是污染与毒性。
一个过程必须有效地处理好污染防止同事故防止之间的平衡。
要尽可能地选择事故隐患最小的物质进行化学过程加工处理。
D、绿色化学过程原则1.首先要对化学品制造加工采用的原料进行评估2. 从设计化学品开始就应考虑设计更安全化学品的方法3. 尽量不用辅助剂,需要使用时应采用无毒物质4. 尽量避免不必要的衍生步骤5. 催化试剂优于化学计量试剂6. 化学品设计成使用后容易降解为无害物质7. 制备化学品时,形成有害物质前加以控制;选择使用化学事故隐患最小的物质。
第二章、A、生物质、超临界流体的性质与定义生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。
特点:可再生性。
低污染性。
广泛分布性。
生物质包括植物、动物和微生物。
广义概念:生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。
有代表性的生物质如农作物、农作物废弃物、木材、木材废弃物和动物粪便。
狭义概念:生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素(简称木质素)、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。
在临界点以上无论温度和压力如何变化都不凝缩的流体,称这种状态的物质为超临界流体。
超临界流体性质介于气液之间,并易随压力进行调节,有近似于气体的流体行为,粘度小,传质系数大,其相对密度大,溶解度也比气相大得多,同时表现出一定的液体行为。
B、生物模拟多功能试剂人类在认识自然、改造自然中学到了许多有益知识,这不仅体现在人类生活的各个方面,在化学上也是如此。
假如科学家能阐明生物体产生某种作用的机理,则可以模仿该方法而用于未来试剂的设计。
这种利用生物模拟设计催化剂和试剂的方法,将使所设计的化学品拥有生物体系的一些令人称绝的特性,如酶的特性。
目前,合成用催化剂和试剂一般只用来完成一个转化(还原、氧化、甲基化),而生物体系往往可用一种试剂完成几种转化。
这些转化可包括活化、结构调整及一个或多个实际的转化或衍生。
第三章A、从天然产物加工提取物质的方法及其原理天然产物加工提取分离方法1. 溶剂法溶剂对需要溶出的溶质的溶解度要高,对其他(杂质)物质的溶解度要低;溶剂不能与溶质发生化学反应;溶剂来源广泛,价格便宜,无毒;沸点适当,利于反复回收,重复使用,同时节约能源。
渗漉法是往药材粗粉中不断添加浸取溶剂使其渗过药粉,从下端出口流出浸取液的一种浸取方法。
渗漉时,溶剂渗入药材的细胞中溶解大量的可溶性物质之后,浓度增加,密度增大而向下移动,上层的浸取溶剂或稀浸液置换位置,造成良好的浓度差,使扩散较好地自然进行,故浸取效果优于浸渍法,提取也较完全,同时省去了分离浸取液的操作。
2.水蒸气蒸馏法该方法适用于能随水蒸气一起蒸馏出来,而不会改变分子结构的植物成分的提取;这些化合物与水不相混溶或微溶,在水的沸点(100℃)时有一定的蒸气压,当水沸腾时,能将该物质一起随水蒸气带出。
冷却后,经过分离器分离,除去水分得到需要的植物成分。
3.分馏法利用液体组分沸点的不同进行分馏,然后精制、纯化。
4.吸附法在精制过程中,利用吸附除去杂质(如色素等)或利用吸附剂吸附有效成分。
常见的吸附剂有氧化铝、活性炭、多孔树脂、分子筛等。
5.沉淀法沉淀法是利用植物成分与一些试剂反应生成沉淀的特性得到目标组分或除去杂质的方法,但是这个沉淀反应必须是可逆的;否则,只能用于除杂质。
最常见的是用铅盐在水或稀乙醇溶液中与其他物质形成沉淀,脱铅的方法是向含有难溶铅盐的溶液中通入硫化氢气体,使“铅盐”转化为不溶的硫化铅沉淀除去,得到目标物质。
根据待分离物质的不同,沉淀剂也可以用氢氧化钡、磷钨酸、硅钨酸等发生沉淀,对于多糖、蛋白质等也可以用乙醇、丙醇来沉淀纯化。
6.盐析法向提取液中加入易溶无机盐至一定浓度或达到饱和,使提取液中的某些组分在水中的溶解度下降,从而沉淀析出。
7.透析法利用半渗透膜可以截留不同分子量物质的特性,达到分离的目的,常用于分离天然高分子化合物,如蛋白质、多糖和多肽等。
大分子留在膜的一边,小分子如盐、单糖等则通过膜被分离除去;或大分子被分离除去,小分子被精制。
8.升华法有些化合物在加热时可以从固态直接变成气态,该过程称为升华。
但凡具有升华性的物质均可采用此法分离精制。
B、天然产物精制纯化方法经过提取分离和初步纯化后得到粗品,进一步的精制和纯化方法主要有结晶法和层析法。
结晶法包括结晶和重结晶,结晶的目的是为了进一步纯化目标物,以便鉴定其分子结构。
一次结晶往往很难拿到纯净的晶体,需要反复结晶几次才能获得纯净的晶体,这个步骤就称为重结晶。
层析法包括多种方法,而且随着技术的进步和发展,不断有新的层析方法涌现,从分离介质的形状上分有柱层析、薄层层析、纸层析等;分离原理上分有吸附层析、分配层析、排阻层析和离子交换层析等;从层析的流动相和固定相的状态分类有液相层析和气相层析。
常见的填料有硅胶、氧化铝、活性炭、大孔树脂和葡萄糖凝胶等。
分析仪器中也有气相色谱和高效液相色谱可以供微量分离选择。
第四章、催化剂、固体超强酸及优点,试举例催化剂:在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒)1、催化剂最早是从利用硫酸、磷酸、三氯化铝等一些无机酸类为催化剂开始的。
酸催化剂是烃类裂解、重整、异构等石油炼制以及烯烃水合、芳烃烷基化、醚化及酯化等石油化工在内的一系列重要工业基础。
这些酸催化反应都是在均相条件下进行的,和多相反应相比,在生产中存在工艺上连续化生产困难,催化剂与产物分离较麻烦,对设备有腐蚀,废酸液须进行回收利用,排放会污染环境等。
而利用固体酸代替液体酸的环境友好催化剂反应工艺具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂分离及对设备的腐蚀等问题。
还可以扩大酸催化剂的应用领域。
易与其他单元过程耦合形成集成过程,改变工艺,节约能源和资源,是研究开发的方向。
2、固体超强酸:固体表面酸强度大于100%硫酸的固体酸。
许多重要的工业催化反应都属于酸催化反应,而固体酸和液体酸相比,具有活性和选择性高、无腐蚀性、无污染以及与产物易分离等特点,广泛用于石油炼制和有机合成工业。
常用的固体酸催化剂有分子筛、离子交换树脂、层柱粘土等,它们的酸强度一般低于Ho=-12.0,对需要强酸的反应存在一定的局限性。
超强酸是比100%H2SO4还强的酸。
20世纪60年代初,Olah等发现HSO3F-HF、HF-SbF5等液体魔酸,酸强度非常高,Ho高达-20以上,甚至甲烷在这种液体超强酸中都能质子化,但具有强腐蚀性和毒性,以及催化剂处理过程中会产生“三废”等问题。
20世纪70年代初有人将液体超强酸如SbF5、HSO3F-SbF5等负载到石墨、Al2O3和树脂等载体上,仍不能解决催化剂分散、毒性和“三废”等问题。
C、生物质的定义、生物质能的特点。
生物质的基本概念一切有生命的可以生长的有机物质统称为生物质。
包括植物、动物及动物排泄物、微生物、垃圾及有机废水等。
生物质对人类的重要性:a、用作食物;b、用作工业原料;c、用作能源;d、改善环境、调节气候、保持生态平衡。
生物质能是指蕴藏在生物质中的能量,它包括这几方面:a、木材及森林工业废弃物;b、农业废弃物;c、水生植物;d、油料植物;e、城市生活垃圾及工业废弃物;f、排泄物。
广而言之,生物质是植物通过光合作用生成的有机物,绿色植物的光合作用是地球上最重要、规模最大的太阳能利用和转换过程,通过光合作用,太阳能转化为储存在有机物质中的化学能。
这些转化储存的化学能是人类和一切生物所必须的能量。
这部分能量是太阳能的多种自然转换形式中唯一可被储存起来的。
22612622O 6O H 6O H C O H 12CO 6++−−→−+太阳能 生物质燃料的特点各种生物质原料的化学成分变化不大,但是它们的物理特性有较大的差别。