塑性成形新技术概况

合集下载

金属塑性成形

金属塑性成形

02
金属塑性成形的原理
金属塑性变形的物理基础
01
金属塑性变形的基本概念
金属塑性成形是通过外力作用使金属材料发生塑性变形,从而获得所需
形状和性能的过程。
02
金属的晶体结构与塑性变形
金属的晶体结构是影响其塑性变形行为的重要因素。金属的晶体结构决
定了其塑性变形的机制和特点。
03
温度对金属塑性变形的影响
塑性成形过程中的缺陷与控制
在塑性成形过程中,由于各种因素的影响,可能会出现裂纹、折叠、夹杂等缺陷。为了获得高质量的产 品,需要了解这些缺陷的形成原因,并采取相应的措施进行控制和预防。
03
金属塑性成形的方法
自由锻成形
总结词
自由锻成形是一种金属塑性加工方法,通过锤击或压力机等 工具对金属坯料施加外力,使其发生塑性变形,从而获得所 需形状和尺寸的金属制品。
随着科技的发展,精密金属塑性成形技术逐渐兴起,如精密锻造、精密轧制、精密冲压等 ,这些技术能够制造出更高精度、更复杂形状的金属零件。
数值模拟与智能化技术
近年来,数值模拟与智能化技术在金属塑性成形领域得到了广泛应用,通过计算机模拟技 术可以对金属塑性成形过程进行模拟分析,优化工艺参数,提高产品质量和生产效率。同 时,智能化技术的应用使得金属塑性成形过程更加自动化和智能化。
详细描述
挤压成形适用于生产各种复杂形状的管材、棒材和异型材等。由于其能够实现连续生产,因此具有较 高的生产效率。但挤压成形对设备和操作技术要求较高,且对原材料的表面质量、尺寸精度和化学成 分等要求严格。
拉拔成形
总结词
拉拔成形是一种金属塑性加工方法,通 过拉拔机对金属坯料施加拉力,使其发 生塑性变形,从而获得所需形状和尺寸 的金属制品。

装备制造业之塑性成形技术

装备制造业之塑性成形技术

装备制造业之塑性成形技术装备制造业是国民经济中的重要支柱产业之一,其发展与创新对于国家经济以及军事安全具有重要的战略意义。

而塑性成形技术是装备制造行业中的一项重要成果,在提高装备品质、降低生产成本以及提升市场竞争力等方面发挥着至关重要的作用。

塑性成形技术是指将金属等材料通过加热并施加一定的压力使其发生塑性变形,从而获得所需要的产品形状的一种制造技术。

塑性成形技术包括很多种形式,比如挤压、拉伸、冲压、滚压、压铸等,不同的成形方式可以适用于不同材料的制造,同时也会对产品的性能产生不同的影响。

塑性成形技术的应用范围非常广泛,可以在航空、汽车、机械、能源、建筑等多个领域中得到应用。

比如在航空航天领域中,许多零部件使用的铝合金、钛合金等材料就是通过塑性成形技术加工而成。

在汽车制造中,钣金冲压技术、汽车车轮轧辊技术等都是塑性成形技术的应用,让汽车生产更快、更便宜、更环保。

在机械制造领域中,CNC数控机床等设备也是利用塑性成形技术来制造的。

塑性成形技术的好处是显而易见的。

首先,采用塑性成形技术可以大幅度降低材料的浪费,保证物料的利用率。

其次,成形的过程中可以大大提高材料的强度、硬度和韧性等性能,使其具有更优异的物理性能。

最后,采用塑性成形技术可以大幅度节省制造成本,提高制造效率,节约人力资源。

然而,塑性成形技术也有其自身的难点和挑战。

首先,在材料的选择、加工方法的确定、生产设备的运行等方面都需要高度的技巧和经验。

其次,在实际应用中还需要充分考虑诸如材料的质量稳定性、生产成本等问题。

因此,塑性成形技术的应用需要专业技术人员在其运用前对其加工原理、机械构造和效果等进行充分的研究和了解。

总之,塑性成形技术在装备制造行业中占据着重要的位置。

它不仅可以使装备产品的品质得到大幅提升,而且还能够提高生产效率、降低生产成本、实现资源的实际应用。

在这个全球化的时代,如何不断创新、精益求精,才能在激烈的国际市场中占据一席之地。

塑性成形技术不仅是一种装备制造技术,更是一种精神和实践。

塑性成形技术的研究现状和发展趋势

塑性成形技术的研究现状和发展趋势

塑性成形技术的研究现状与发展趋势摘要:本文叙述了塑性成形技术的研究现状,介绍了现代塑性成形技术的发展趋势,提出了当代塑性成形技术的研究方向。

关键词:塑性成形模具技术研究现状发展趋势1引言塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。

据国际生产技术协会预测,21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。

工业部门的广泛需求为塑性成形新工艺新设备的发展提供了强大的原动力和空前的机遇。

金属及非金属材料的塑性成形过程都是在模具型腔中来完成的。

因此,模具工业已成为国民经济的重要基础工业。

新世纪,科学技术面临着巨大的变革。

通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术发展速度之快,学科领域交叉之广泛是过去任何时代无法比拟的,塑性成形新工艺和新设备不断地涌现,掌握塑性成形技术的现状和发展趋势,有助于及时研究、推广和应用高新技术,推动塑性成形技术的持续发展。

实施塑性成形技术的最终形式就是模具产品,而模具工业发展的关键是模具技术进步,模具技术又涉及到多学科的交叉。

模具作为一种高附加值产品和技术密集型产品,其技术水平的高低已成为衡量一个国家制造业水平的重要标志之一。

2塑性成形的现状精密成形技术对于提高产品精度、缩短产品交货期、减少切削加工和降低生产成本均有着重要意义。

近10年来,精密成形技术都取得了突飞猛进的发展。

精冲技术、冷挤压技术、无飞边热模锻技术、温锻技术、超塑性成形技术、成形轧制、液态模锻、多向模锻技术发展很快。

例如电机定转子双回转叠片硬质合金级进模的步距精度可达2μm,寿命达到1亿次以上。

集成电路引线框架的20~30工位的级进模,工位数最多已达160个。

自动冲切、叠压、铆合、计数、分组、转子铁芯扭斜和安全保护等功能的铁芯精密自动叠片多功能模具。

新型轿车的大尺寸覆盖件成形、大功率汽车的六拐曲轴成形。

(完整word版)塑性成形方法

(完整word版)塑性成形方法

第五节其它塑性成形方法随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件.其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。

一、挤压挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法.挤压法的特点:(1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。

在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。

对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。

(2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。

(3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3。

2~0。

4μ m,从而(4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能.(5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化.挤压方法的分类:1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:(1)正挤压金属流动方向与凸模运动方向相同,如图2—69所示。

(2)反挤压金属流动方向与凸模运动方向相反,如图2—70所示.(3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2—71所示。

(4)径向挤压金属流动方向与凸模运动方向成90°角,如图2—72所示。

图2-69 正挤压图2—70 反挤压图2—71 复合挤压图2-72 径向挤压2.按照挤压时金属坯料所处的温度不同,可分为热挤压、温挤压和冷挤压三种方式:(1)热挤压变形温度高于金属材料的再结晶温度。

装备制造业之塑性成形技术

装备制造业之塑性成形技术

装备制造业之塑性成形技术随着现代工业的不断发展,各类装备制造业在实现高效生产和优质产品方面面临着日益严峻的挑战。

然而,塑性成形技术作为一种重要的制造工艺,正逐渐成为解决这些问题的关键。

本文将介绍塑性成形技术在装备制造业中的应用及其优势,并分析其未来发展趋势。

一、塑性成形技术在装备制造业中的应用1. 金属板材的压力成形金属板材压力成形技术是制造高强度、高精度零部件的重要手段。

通过将金属板材置于模具中,并施加压力,使金属板材发生弯曲、拉伸或冲裁等变形过程,从而得到所需形状的零部件。

该技术广泛应用于航空航天、汽车、电子等领域,并且可以生产出具有优良机械性能和表面质量的产品。

2. 金属管材的拉伸和冲压成形金属管材的拉伸和冲压成形技术主要用于制造管道、管接头和其他金属管材零部件。

通过控制拉伸和冲压力度,使金属管材在变形过程中逐渐改变截面形状,从而得到满足需求的产品。

该技术在石油化工设备、船舶制造等行业中得到广泛应用。

3. 塑性挤压技术塑性挤压技术是将金属坯料通过模具挤压成型,用于制造复杂截面的金属材料。

该技术具有高效率、节能和资源利用率高的特点,并且可以生产出优质的零部件。

在航空航天、铁路交通等领域,塑性挤压技术已成为制造高性能轻质构件的重要工艺。

二、塑性成形技术的优势1. 精度高塑性成形技术可以通过精确的模具设计和控制,实现对材料的精细加工,从而获得高度精密的零部件。

与传统加工工艺相比,塑性成形技术具有更低的工艺损失和变形量,可以提供更高的制造精度和表面质量。

2. 材料利用率高塑性成形技术将材料的变形过程与材料的剪切、挤压和拉伸等工艺相结合,可大幅提高材料的利用率。

与传统切削加工相比,塑性成形技术减少了材料废料的产生,并可在一次成形中得到复杂形状的零部件。

3. 生产效率高塑性成形技术具有高效率、批量生产的优势。

通过合理的设备配置和工艺优化,可以实现自动化、连续化生产,从而大幅提高生产效率。

此外,塑性成形技术还可以快速响应市场需求,缩短产品的开发周期。

塑性成形工艺技术

塑性成形工艺技术

塑性成形工艺技术塑性成形工艺技术是一种利用热塑性材料在加热软化状态下,通过模具施加一定的力量,在特定的温度和压力条件下,使材料变形成为所需形状的一种工艺技术。

塑性成形工艺技术广泛应用于制造业领域中,如汽车制造、电器制造、日用品制造等。

塑性成形工艺技术的主要流程包括原料选择、加热、成形和冷却等几个步骤。

首先,需要选择适合的热塑性材料作为原料,这些材料具有良好的可塑性和可加工性。

接下来,通过加热使得材料软化,并将其放置在模具中。

在施加一定的压力下,材料逐渐变形成为所需的形状。

最后,冷却过程会使得材料固化并保持所需形状。

塑性成形工艺技术的主要优点是可以制造出复杂的形状和细节,且成本较低。

相对于其他成形工艺,塑性成形工艺技术不需要使用复杂的模具,并且可以一次性制造出整个产品,节省了制造和加工的时间和成本。

此外,塑性成形工艺技术还可以在材料中添加颜色、纹路等特殊效果,使得产品更加美观。

塑性成形工艺技术的应用非常广泛。

在汽车制造中,塑性成形工艺技术可以用于制造车身覆盖件、内饰件等。

在电器制造中,可以用于制造外壳、面板等部件。

在日用品制造中,常常使用塑性成形工艺技术制造塑料杯、碗、筷子等。

当然,塑性成形工艺技术也存在一些限制。

首先,只能使用热塑性材料进行成形,热固性材料无法应用该工艺。

其次,对于一些较大尺寸的产品,可能需要较大的设备和工艺,并且成形过程可能需要较长的时间。

此外,塑性成形工艺技术中还可能出现一些质量问题,如表面缺陷、壁厚不均等。

总结来说,塑性成形工艺技术是一种应用广泛、效率高且成本低的制造工艺。

它不仅可以制造出复杂的形状和细节,还可以满足产品的外观要求。

随着技术的不断进步,塑性成形工艺技术将会在制造业中发挥越来越重要的作用。

精确高效塑性成形工艺技术

精确高效塑性成形工艺技术

精确高效塑性成形工艺技术精确高效塑性成形工艺技术塑性成形是一种常见的金属加工工艺,它通过施加外力使金属材料发生塑性变形,从而得到所需的形状和尺寸。

精确高效的塑性成形工艺技术对于提高产品质量和生产效率至关重要。

在本文中,将介绍一种精确高效的塑性成形工艺技术。

首先,为了实现精确的成形,我们需要准确地控制金属的塑性变形过程。

因此,精确度高的机械设备和控制系统是必不可少的。

现代塑性成形机床通常配备了精确的数控系统,可以通过编程实现高精度的成形过程。

此外,精确的模具设计和制造也是实现塑性成形精度的重要因素。

采用先进的CAD/CAM技术可以实现模具的精确设计和加工,从而确保成形过程的精确度。

其次,为了提高塑性成形的效率,我们需要考虑材料的流动性和塑性变形的能力。

在材料设计方面,我们可以选择具有良好流动性和塑性变形能力的材料,如Al、Cu等。

此外,采用热成形可以增加材料的塑性变形能力,并有助于减少成形过程中的残余应力。

在成形过程中,合理的成形速度和温度控制也是确保成形效率的重要因素。

通过优化成形工艺参数,可以在保证产品质量的前提下提高生产效率。

最后,为了提高工艺的可靠性和稳定性,我们需要对塑性成形过程进行全面的监控和控制。

现代塑性成形机床通常配备了各种传感器和监测系统,可以实时监测成形过程的各种参数,如温度、压力、位移等。

通过采集和分析这些数据,可以及时发现和解决成形过程中的问题,并调整相关的工艺参数,提高工艺的可靠性和稳定性。

综上所述,精确高效的塑性成形工艺技术对于提高产品质量和生产效率至关重要。

通过采用精确的机械设备和控制系统、优化材料设计和成形工艺参数、以及全面监控和控制成形过程,可以实现精确高效的塑性成形,从而满足不同行业对于高精度、高效率的需求。

先进材料超塑成形技术

先进材料超塑成形技术

先进材料超塑成形技术先进材料超塑成形技术是一种利用特殊的工艺方法和控制技术,将金属材料在高温和高应变率条件下通过塑性变形成型的一种先进制造技术。

超塑成形技术能够制备出复杂几何形状的零件,并且具有优异的力学性能和表面质量。

本文将对超塑成形技术的原理、应用、发展现状和未来发展进行探讨。

超塑成形技术的原理主要是利用材料在高温和高应变率条件下的特殊塑性行为。

在高温下,材料的塑性变形能力会显著增强,可以实现超塑性变形。

高应变率条件下,由于材料的快速变形速率,可以避免材料的回弹和微观缺陷的形成,从而得到理想的成形零件。

超塑成形技术通常需要在高温下进行,因此需要使用专门设计的设备和控制系统来保持合适的温度和应变率。

超塑成形技术在航空航天、汽车制造、医疗器械等领域具有广泛的应用前景。

在航空航天领域,超塑成形技术可以制造出轻量化的结构件,提高整体效能并减少燃料消耗。

在汽车制造领域,超塑成形技术可以制造出复杂形状和轻质的车身零件,提高车辆的安全性能和燃油经济性。

在医疗器械领域,超塑成形技术可以制造出精密的植入器械和医疗设备,提高治疗效果和患者的生活质量。

目前,超塑成形技术已经得到了广泛的研究和应用。

一些国家和地区已经建立了专门的研究中心和实验室,对超塑成形技术进行深入研究,并推动其产业化发展。

在实践中,超塑成形技术已经成功应用于一些特定领域的生产工艺中,取得了较好的成果。

然而,超塑成形技术还存在一些挑战和限制。

首先,高温和高应变率条件下材料容易发生晶粒长大和孔洞形成等缺陷,导致材料的力学性能下降。

其次,超塑成形技术的设备和工艺复杂,生产周期长,需要大量的热能和人工操作。

此外,超塑成形技术还需要对材料的力学性能和塑性变形行为进行深入研究,以满足不同应用领域对材料的要求。

未来,超塑成形技术的发展方向主要包括材料的改进、工艺的优化和设备的突破。

首先,需要开发出具有优异力学性能和高温稳定性的超塑性材料。

其次,需要改进超塑成形工艺,提高生产效率和产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料成形设备小论文塑性成形新技术概况系名专学号学生姓名指导教师2016年 4 月12 日摘要:文章介绍了当前塑性成形加工中的微成形、超塑成型、柔性加工、半固态加工等各种新技术,并分别阐述了各新技术的相关概念、特点、发展趋势等。

这些相关介绍及发展概况对理解塑性成形技术及推广和运用高新技术,推动塑性成形的进一步发展具有一定参考意义。

关键词:塑性成形;新技术;发展概况1 引言塑性成形就是利用材料的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。

塑性成形技术可分为板材成形和体积成形两大类。

板材成形是使用成型设备通过模具对金属板料在室温下加压以获得所需形状和尺寸零件的成形方法,习惯上也称为冲压或冷冲压。

板料成形可分为分离工序和成形工序。

分离工序俗称冲裁,包括落料、冲孔、修边等。

成形工序包括弯曲、拉伸、胀形、翻边等。

体积成形是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要包括锻造、轧制、挤压或拉拔等。

塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。

据国际生产技术协会预测,到21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。

工业部门的广泛需求为塑性成形新技术的发展提供了原动力和空前的机遇。

[1]2 塑性成形新技术随着科学技术的迅速发展,通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术发展速度之快,学科领域交叉之广泛是过去任何时代无法比拟的,塑性成形新工艺和新设备不断地涌现,出现了高速高能成形、少无切削、超塑成型、柔性加工、半固态加工等多种塑性加工新技术。

掌握塑性成形技术的现状和发展趋势,有助于及时研究、推广和应用高新技术,推动塑性成形技术的持续发展。

3.1 高速高能成形高速高能成形是一种在极短时间内释放高能量而使金属变形的成形方法。

高速高能成形的历史可追溯到一百多年前。

但由于成本太高及当时工业发展的局限,该工艺并未得到应用。

随着航空及导弹技术的发展,高速高能成形方法才进入到实际应用。

与常规成形方法相比,高速高能成形具有以下特点:1)模具简单:仅需要凹模即可成形。

可节省模具材料,缩短模具制造周期,降低模具成本。

2)零件精度高:成形时,零件以很高的速度贴模,在零件与模具之间发生很大的冲击力,这不但有利于提高零件的贴模性。

而且可以有效地减少零件弹复现象。

3)表面质量好:毛坯变形是在液体、气体等传力介质作用下实现(电磁成形则无需传力介质)。

因此,毛坯表面不受损伤,而且可提高变形的均匀性。

4)可提高材料的塑性变形能力:与常规成形方法相比,高速高能成形可提高材料的塑性变形能力。

因此,对于塑性差的难成形材料,高速高能成形是一种较理想的工艺方法。

5)利于采用复合工艺:用常规成形方法需多道工序才能成形的零件,采用高速高能成形方法可在一道工序中完成。

因此,可以有效地缩短生产周期,降低成本。

3.2少无切削成形机械制造中用精确成形方法制造零件的工艺,也称少无切屑加工。

少无切削加工工艺包括精密锻造、冲压、精密铸造、粉末冶金、工程塑料的压塑和注塑等。

传统的生产工艺最终多应用切削加工方法来制造有精确的尺寸和形状要求的零件,生产过程中坯料质量的30%以上变成切屑。

这不仅浪费大量的材料和能源,而且占用大量的机床和人力。

采用精确成形工艺,工件不需要或只需要少量切削加工即可成为机械零件,可大大节约材料、设备和人力。

锻压少无切削的发展,使锻压加工突破了毛坯生产的范畴,能生产某些成品零件。

锻压少无切削件除具有一般锻件的特点外,还具有材料消耗低,加工工序简化,节约加工工时,成本低等优点。

近几年来出现的各种新型、专用的少无切削锻压设备,如多工位冷挤压机、嫩锻机、精冲压力机、特种轧机、精密锻轴机等,都具有生产率高、机械化自功化程度高等特点。

[2]与传统工艺相比,少无切削加工具有显著的技术经济效益,能实现多种冷、热工艺综合交叉、多种材料复合选用,把材料与工艺有机地结合起来,是机械制造技术的一项突破。

3.3 超塑性成形超塑性成形指金属或合金在特定条件下,即低的变形速(=10-2~10-4s-1)一定的变形温度(约为熔点的一半)和均匀的细晶粒度(平均直径为0.2~5μm),其相对伸长率δ超过100%以上的特性。

例如钢可超过500%、纯钛超过300%、锌铝合金超过1000%。

超塑性状态下的金属在拉伸变形过程中不产生缩颈现象,也不会断裂,金属的变形应力可比常态下降低几倍至几十倍。

因此,超塑性金属极易成形,可采用多种工艺方法制出复杂零件。

目前超塑成形技术最广泛的应用是与扩散连接技术组合而成的超塑成形/扩散连接组合工艺技术,利用金属材料在一个温度区间内兼具超塑性与扩散连接性的特点,一次成形出带有空间夹层结构的整体构件。

按照成形构件初始毛坯数量不同可以分为单层、两层、三层及四层结构形式。

采用超塑成形/扩散连接工艺成形的空心夹层结构零件具有成形性好、设计自由度大、成形精度高、没有回弹、无残应力、刚性大、周期短、减少零件数量等优点。

[3]3.4 微成形微成形指以塑性加工的方式生产至少在二维方向上尺寸处于亚毫米量级的零件或结构的工艺技术。

随着科技的提高,微型机电系统有了飞速的发展,而微成形技术是微型机电系统的灵魂,世界上各工业先进国家对微机械的研究重点都放在了微成形技术的研发上。

到目前为止,涌现出了多种成熟的微成形技术,以德国为代表LIGA技术和以日本为代表的超精密机械家加工技术,此外还有高能束加工技术、微注塑成形技术、微粉末注射成形技术及微铸造技术等一些方兴未艾的微成形技术。

[4]微成形技术主要源于电子工业的兴起,随着大规模集成电路制造技术和以计算机为代表的微电子工艺的发展,而且还来自技术的需要,例如医疗器械、传感器及电子器械的发展。

越来越多的电子元件、电器组件及计算机配件等相关零件开始采用这一工艺方法进行生产。

随着制造领域中微型化趋势的不断发展,微型零件的需求量越来越大,特别是在微型机械和微型机电系统中。

微成形具有极高的生产效率、最小或零材料损失、最终产品优秀的力学性能和紧公差等特点,所以适合于近净成形或净成形产品的大批量生产。

3.5 内高压成形内高压成形是近10 多年来迅速发展起来的一种成形方法,它是结构轻量化的一种成形方法。

是以管材为毛坯在内压和轴向补料联合作用下将管材成形为所需形状的先进制造技术。

内高压成形件实现以空心替代实心、以变截面取代等截面、以封闭截面取代焊接截面,比冲焊件的质量减少 15%~30%,且可大幅提高零件的刚度和疲劳强度。

20 世纪 80 年代初,德国和美国的研究机构系统地开展了内高压成形基础理论、工艺及应用研究,并从 20 世纪 90 年代中期开始在汽车工业领域大批量应用。

[5]与传统的冲压焊接工艺相比,内高压成形具有以下优点:(1) 减轻质量,节约材料对于空心轴类零件可以减轻40%~50% ,有些件可达75%。

(2) 减少零件和模具数量,降低模具费用内高压件通常仅需要一套模具,而冲压件多需要多套模具(3) 可减少后续机械加工和组装焊接量以散热器支架为例,散热面积增加43%,焊点由174个减少到20个,工序由13道减少到6道,生产率提高66%。

(4) 提高强度与刚度,尤其疲劳强度仍以散热器支架为例,垂直方向提高39% ,水平方向提高50%。

(5) 降低生产成本根据统计,内高压件比冲压件平均降低成本15%~20%,模具费用降低20%~30%。

3.6 可变轮廓模具成形(柔性加工)柔性制造技术也称柔性集成制造技术,是现代先进制造技术的统称。

柔性制造技术集自动化技术、信息技术和制造加工技术于一体,把以往工厂企业中相互孤立的工程设计、制造、经营管理等过程,在计算机及其软件和数据库的支持下,构成一个覆盖整个企业的有机系统。

采用柔性制造技术的企业,平时能满足品种多变而批量很小的生产需求,战时能迅速扩大生产能力,而且产品质优价廉。

柔性制造设备可在无需大量追加投资的条件下提供连续采用新技术、新工艺的能力,也不需要专门的设施,就可生产出特殊的军用产品。

[6]对于小批量多品种板料件成形,例如舰艇侧面的弧形板、航空风洞收缩体板、飞机的蒙皮都是三维曲面,但批量很小甚至是单件生产,由于工件尺寸大,这样模具成本很高,何况即使模具加工完成,也有一个需要修模与调节的过程,因此用可变轮廓模具成形一直是塑性加工界及模具界的研究方向之一。

3.7 半固态成形半固态成形是20世纪70年代发展起来的金属成形新技术,指对经过特殊处理的固体坯料加热,或在液态金属凝固过程中加以搅拌等处理而得到的具有非枝晶结构的固相、液相组织共存的半固态坯料进行成形加工,得到所需形状和性能的制品的加工方法。

它主要包括半固态锻造、半固态挤压、半固态轧制、半固态压铸等工艺类型,在汽车、通讯、航空、航天、国防等领域得到了越来越广泛的应用,被称为21世纪新兴的金属制造关键技术之一。

从半固态自身发展看,研究不同制浆方法下的形核和长大机理、制浆过程的精确控制以及发展适合半固态成形的新型合金是该技术的主要发展方向;从拓展半固态研究领域看,在近液相附近实现成分场和温度场的精确控制,将推动该项技术向高合金化金属的近终成形以及纯金属的晶粒细化的研究与应用方向发展。

[7]4 结束语随着现代先进制造技术的发展,塑性成形将逐渐发展为高性能材料新材料与复杂结构特殊性的有机结合。

21世纪最缺什么?——技术创新。

由于新技术的应用和引导,塑性成形技术在国民经济中的作用愈来愈大,在一定程度上决定了我国机械制造业在21世纪的市场竞争能力,为此我们要有足够的认识并采取得力的措施。

抓住机遇和挑战,推进新新技术的发展。

参考文献:[1]李德群.塑性加工技术发展状况及趋势[J].航空制造技术,2000.[2] 锻压少无切屑工艺发展概况[J].华中工学院锻压教研室,1978.[3]邵杰.超塑成形/扩散连接:一种先进钣金轻量化制造技术[J].中国航空报,2013.[4]潘豪.微成形技术的研究概述[J].苏州高等职业技术学校,2013.[5]刘刚.内高压成形理论与技术的新进展[J].中国有色金属学报,2011.[6]曹著明.浅谈柔性加工技术综合实训课程的开发[J].北京电子科技职业学院,2011.[7]徐骏.半固态加工技术的最新进展[J].哈尔滨理工大学学报,2013.。

相关文档
最新文档