隧道毕业设计 摘要(中英文)、文献综述、参考文献及致谢
隧道工程-摘要-Abstract-参考文献-致谢

摘要经济的发展,科技的进步,生活水平的提高,人们对交通的要求也随之提高,隧道作为提高交通质量的关键因素也被广泛重视。
现代隧道在结构计算和施工方法上较以前都有了较大的飞跃。
本设计为公路隧道,重点研究结构计算和设计新奥法施工方案.隧道结构在工程特性、设计原则和方法方面与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。
目前,隧道结构设计主要有两种计算模型:一种是以支护结构作为承载主体,围岩作为荷载,同时考虑其对支护结构的变形约束的模型,即结构力学模型;一种是视围岩为承载主体,支护结构为约束围岩变形的模型,即岩体力学模型。
本设计采用前者。
新奥法施工是应用岩体力学理论,以维护和利用围岩的自承能力为基点,采用锚杆和喷射混凝土为主要支护手段,及时的进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分,并通过对围岩和支护的量测、监控来指导隧道设计和施工的方法和原则。
其核心目的是为了“保护围岩,调动和发挥围岩的自承能力”。
关键词:隧道;衬砌;结构计算;新奥法AbstractAs economic development,technological advances, improvements in living standards, people will also increase their requirements of traffic,the tunnel as a key factor in improving the quality of traffic gets a lot of attention。
Modern tunnels in the structure calculation and construction methods have a greater leap than before. The design is about highway tunnel, attention is paid to structural calculation and the construction of New Austrian Tunneling Method。
地铁隧道毕业设计外文翻译

外 文 翻 译
年 级: 2005 级 学 号:20057375 姓 名: 黄 磊 专 业:铁道工程 指导老师: 钟新樵
2009 年 6 月
西南交通大学本科毕业设计(论文)外文翻译
第1页
【原文】
A study on underground tunnel ventilation for piston effects influenced by draught relief shaft in subway system
西南交通大学本科毕业设计(论文)外文翻译
第3页
Cm
For air inflow,
AvVv Qb AV Qc
(1)
Cm K i
For air outflow,
ቤተ መጻሕፍቲ ባይዱAv A
Cp Cps
(2)
Cm K o where A Av Cm tunnel area (m2) relief shaft area (m2)
CΔHi Ki, Ko Qb, Qc
entrance loss at the bottom of relief shaft empirical constants for inflow and outflow air flow volume rate through relief shaft and upstream(or downstream) (m3/s)
Chi-Ji Lin, Yew Khoy Chuah, Chia-Wei Liu
Abstract
This is a study on underground tunnel ventilation for piston effects influenced by draught relief shaft. Field measurements of transient air movement in the draught relief shaft for a typical Taipei underground subway station were taken under winter and summer conditions. It has been found that the air in the draught relief shaft has a maximum of 2 m/s, and on average lies between 0.7 and 1.1 m/s. This study defines an index ηPE, for evaluating the efficiency of tunnel ventilation by piston effects. This index can be used to analyze the piston effects due to different shaft length and sectional area. The measurement results show that the train piston effects are effective only for certain shaft length and operating conditions. This study also used the authoritative SES computer program to simulate the piston effects. The simulation results for inflow and outflow velocity profile are almost consistent with the measurement. The shaft sectional area was also investigated and has been found that a larger sectional area resulted in larger volume flow rate, but the percentage increase is less than the percentage increase in the sectional area. This will result in smaller air velocity in shaft and less effective air exchange between the tunnel and the outside ambient. It also has been found that length of the draught relief shaft is more so an important design parameter for efficient air exchange by piston effects for underground subway systems. It is suggested here that the design of the draught relief shaft has to consider requirements including ηPE, pressure loss and noise.
隧道工程毕业设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊静宁隧道综合设计专业:姓名:指导老师:摘要:随着科技的不断进步,现代隧道无论是从结构计算,还是从施工方法都较以前有了较大的飞跃,本设计课题为公路隧道,注重的是结构计算,重点研究新奥法施工。
本设计按照“新奥法”施工的要求,根据设计任务书的要求和参考公路隧道设计规范及其他各规范,对某山岭高速公路上的静宁隧道进行了综合设计。
主要内容包括:工程地质的概况理解,并根据地质条件、水文条件等多方面的因素进行洞门设计、隧道横纵断面设计、隧道衬砌结构设计、路基路面防排水及管线沟槽设计以及施工组织设计,并进行了初期支护结构计算与隧道二次衬砌的结构计算,同时还完成了隧道通风、照明的计算及设计。
最终达到内实外美、合理节约的原则完成本次静宁隧道的设计任务。
关键词:公路隧道, 新奥法, 防排水, 初期支护,衬砌结构, 通风照明, 监控量测, 结构计算ABSTRACTAs science and technology progresses,the modern tunnel either from the structure calculation ,or from the construction methods have a greater than before,the design for tunnel project, focusing on the structure calculation , focus on New Austrian Tunneling Method.According to the construction requirements of NATM ,according to the design requirement of the mission statement,Reference highway code for design of road tunnel and other desig n and construction specifications,the comprehensive design is made for JingNing Tunnel which is included in a highway of the mountainous area .This design paper includes the following several aspects : an overview of engineer geology to undeersrtand,according to geological conditions、according to geological conditions, hydrological conditions,and many other factors、portal design、tunnel cross-longthudinal┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊design、structural design of tunnel lining、PavementDrainage and pipeline design and construction design and construction deshign groove and initial support for the tunnel structure calculation with the calculation of the secondary structure of the lining, the paper and also completed the calculation and design of ventilation and lighting system.Ultimately the reality outside the united states、a reasonable principle of saving to complete the JingNing tunnel design of this task .Key Words:Highway Tunnel , NATM , Water proof and drainage system , Lining structure , Ventilation and lighting ,Monitoring survey , Structural calculation;┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录绪论 (1)第一章设计背景资料 (2)1.1采用的技术标准及设计标准规范 (2)1.1.1 主要技术标准 (2)1.1.2 主要设计标准规范 (2)1.2工程概况 (2)1.3工程地质概况 (2)第二章总体设计 (4)2.1选址考虑 (4)2.2洞口选址及线型考虑 (4)2.3纵断面设计 (5)2.4横断面设计 (5)2.4.1 建筑限界 (5)2.4.2 紧急停车带及横向通道 (5)2.4.3 内轮廓设计 (6)第三章洞口设计 (7)3.1洞口段地质评价 (7)3.2洞口设计 (7)3.2.1 洞门类型选择 (7)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊3.2.2 洞口设计 (7)第四章支护及衬砌设计计算 .................................... 错误!未定义书签。
隧道工程本科毕业设计论文

毕业设计(论文)任务书课题名称青花坪公路隧道综合设计学院(部)专业公路隧道与岩土工程长安大学毕业设计(论文)开题报告表注:1、课题来源分为:国家重点、省部级重点、学校科研、校外协作、实验室建设和自选项目;课题类型分为:工程设计、专题研究、文献综述、综合实验。
2、此表由学生填写,交指导教师签署意见后方可开题。
摘要我国经济的高速发展,使得人们对交通设施建设的标准也越来越来高,在道路的修建中也越来越来重视行车的舒适性和环保,同时也要求提高其抵抗灾害的能力。
因此,为了顺应地形减少对环境的破坏满足线形要求,保证行车的安全经济,本设计根据陕西省蓝田县灞源乡地区的地质地貌情况,选定隧道方案。
隧道全长1800.00m。
在设计中,主要进行了隧道的结构、通风、照明、防排水及施工组织设计。
首先,选定隧道路线,确定洞口位置,然后进行合理的隧道几何设计和结构设计计算,并且通过计算分析说明其支护结构的合理性;通风照明方面,是在满足交通量和运营状况的条件下,通过计算结合施工的便利与否加以调整设计;施工组织设计中主要安排了监控量测、施工进度安排防排水等,并介绍了具体施工方法及其详细的施作过程。
关键词:隧道工程,设计,结构,通风,照明,防排水,施工组织ABSTRACTThe rapid development of China's economy, makes transport facilities construction standards and more to high, built of the road is more and more to pay attention to in the comfort and environmental protection, but also requires improving its ability to resist disasters. Therefore, in order to follow the terrain to reduce environmental damage meet alignment requirements, ensuring safe economic, this design according to the Shang Luo County in Shaanxi Province village area of geological and geomorphological conditions, selected the bored tunnel approach. 1800.00m tunnel length.In the design of the tunnel structure, ventilation, lighting, drainage and construction organization design. First of all, the selected routes, determine the entrance location, and then make reasonable tunnel geometry design and structure design, analysis and its support structure of rationality; ventilation and lighting, is to meet traffic and operation conditions, by calculating the combined construction of convenience or not adapted design; coordinate major arranged supervision, construction schedule and drainage, and so on, and describes specific construction methods and detailed procedures for the application.KEY WORDS: Tunnel engineering, design, structure, ventilation, lighting, drainage, construction organization目录第一章设计总说明 (9)1.1设计原则概述 (9)1.3隧道建设地区工程地质条件 (10)1.3.1区域地形、地貌 (10)1.3.2水文与气象 (10)1.3.3地质条件 (11)1.4横断面设计 (12)1.4.1建筑限界 (12)1.4.2隧道内轮廓 (12)1.5隧道衬砌结构 (13)1.5.1围岩划分 (13)1.7通风设计 (14)1.8照明设计 (15)1.9洞门设计 (15)1.9.1洞口位置选择 (15)1.9.2洞门选择 (15)1.10施工方案 (16)1.10.1 施工方案设计 (16)1.10.2施工中存在问题及解决方案 (17)1.10.3弃渣方案 (17)1.10.4施工中注意事项 (17)1.11环境保护 (18)第二章路线方案比选 (19)第三章二次衬砌内力计算 (20)3.1基本资料 (20)3.2荷载确定 (20)3.3衬砌几何要素 (21)3.3.1衬砌几何尺寸 (21)3.3.2半拱轴线长度S及分段轴长△S (21)3.3.3各分块接缝(截面)中心几何要素 (22)3.4计算位移 (23)3.4.1单位位移 (23)3.4.2载位移—主动荷载在基本结构中引起的位移 (24)3.4.3载位移 (28)3.4.4墙底位移 (30)3.5解力法方程 (31)3.6计算主动荷载和被动荷载分别产生的衬砌内力 (31)3.8计算衬砌总内力 (33)3.9衬砌截面强度验算 (34)3.10内力图 (35)第四章通风计算 (36)4.1隧道需风量计算 (36)4.1.1CO排放量 (36)4.1.2稀释CO的需风量 (38)4.1.3烟雾排放量 (38)4.1.4稀释烟雾的需风量 (40)4.1.5稀释空气内异味的需风量 (40)4.1.6考虑火灾时排烟的需风量 (40)4.1.7结论 (40)4.2单向交通隧道射流风机纵向通风计算 (41)4.2.1计算条件 (41)4.2.2内所需升压力 (42)第五章照明计算 (45)5.1基本资料(近期) (45)5.2基本参数(近期) (45)5.3灯具布置(近期) (46)5.4基本资料(远期) (47)5.5基本参数(远期) (47)5.6灯具布置(远期) (49)5.7结论 (50)5.8调光 (50)第六章施工组织设计 (51)6.1概述 (51)6.1.1工程内容 (51)6.1.2施工安排 (51)6.1.3施工顺序 (52)6.2施工方法及工艺 (52)6.2.1工程特点及主要技术措施 (52)6.2.2进洞施工方法 (53)6.2.3明洞施工 (53)6.2.4主要工序的施工 (56)6.2.5施工通风 (62)6.2.6施工用风、水、电 (63)第七章总结 (64)第一章设计总说明1.1设计原则概述拟建的高速公路位于陕西省蓝田县灞源乡,是连接将军岔和老庄沟的重要交通道路,该公路能有效解决当地交通问题,加强地区间交流,降低运输成本,节省运输时间,促进经济发展。
隧道设计文献综述

隧道设计文献综述全文共四篇示例,供读者参考第一篇示例:隧道设计是现代交通基础设施建设中的重要组成部分,隧道在城市地下交通、矿山开采、水利工程等领域起着至关重要的作用。
随着科技和工程技术的不断发展,隧道设计也在不断创新和完善。
本文将从隧道设计的历史演变、设计原则、设计方法以及隧道设计中遇到的一些关键问题等方面进行综述,旨在了解隧道设计的发展现状和未来趋势。
一、隧道设计的历史演变隧道设计可以追溯到古代,早在古埃及、古代罗马时期就有人类开始进行隧道工程建设。
随着人类社会的发展,隧道设计也逐渐成为一门独立的工程学科。
19世纪工业革命的兴起,交通运输的发展对隧道设计提出了更高的要求,标志性的代表作品有英国的伦敦水下隧道和法国的蒙马特隧道等。
20世纪以来,隧道设计进入了快速发展阶段,隧道设计的规模、技术、材料等方面取得了重大突破,例如瑞士的戈特哈德基地隧道、美国的八里铺隧道等。
随着城市发展和人类对交通安全、环保等方面要求的提高,隧道设计将面临更多挑战和机遇。
二、隧道设计的原则隧道设计的原则包括结构安全、施工可行、使用寿命长、运营经济等方面。
在隧道设计过程中,必须充分考虑到地质条件、地表建筑、地下水位等因素,确保隧道工程的稳定性和安全性。
隧道设计还应考虑到隧道的通行能力、施工难度、维修保养等因素,确保隧道工程的高效运营和经济性。
隧道设计必须严格按照相关国家标准和规范进行,确保隧道工程的质量和安全。
隧道设计的方法主要包括地质勘察、设计计算、结构分析、材料选择等方面。
在地质勘察阶段,需要充分了解隧道所在地的地质构造、地质条件、地下水位等情况,为后续的设计工作提供准确的数据支持。
在设计计算阶段,需要考虑隧道的结构形式、荷载特点、抗震设防等因素,利用现代工程软件进行模拟计算,确保隧道结构的安全性和稳定性。
在材料选择方面,需要根据隧道的使用环境和要求选择适合的材料,确保隧道工程的耐久性和质量。
四、隧道设计中的关键问题隧道设计中存在一些关键问题,如地质灾害防治、火灾安全、抗震设计等。
隧道专业毕业设计文献综述

隧道病害防治综述摘要:在我国铁路隧道修建已有近100年的历史,许多隧道都已经进入高维修管理阶段,隧道的病害防治已越来越成为人们重视的问题,随着生产力的发展,越来越多的新技术被运用在隧道病害防治上。
关键词:隧道,隧道病害防治,新技术,衬砌1 、前言近年来随着我国公路建设的快速发展,由8.5万公里构成的“7918”高速公路网即将形成,有关部门正在规划和完善国家高速公路网络,以满足人们出行和经济发展的需求。
由于高速公路线形的技术指标高,当其进入山区或重丘区时,就不可避免地需要采用隧道来穿越山岭。
隧道是铁路、道路、水渠、各种管道等遇到岩、土、水体障碍时开凿的穿过山体或水底的内部通道,是“生命线”工程。
据来自于各方面的统计资料表明,到2005年年底,我国大陆即已建成铁路隧道7500座,总延长4300公里,将在“十一五”(2006~2010年)发展期间为我国的经济建设与发展起到积极的推动作用。
但是,我国地域自然条件差异较大,隧道穿越的山体工程地质条件、气候条件、水文地质和设计、施工、运营的条件复杂多变,早期修建的隧道经常各方面的病害,形成重大的安全隐患。
文献《黄土岭隧道病害成因分析及处治设计》(作者:金文良,公路隧道,2011)]1[指出二十一世纪“我国将从土建大国变成修缮大国”,在我国铁路隧道修建已有近100年的历史,许多隧道都已经进入高维修管理阶段,维修管理费用将大幅度增长。
本文以铁路隧道、公路隧道和地铁隧道为对象,对隧道中主要出现水害、冻害、衬砌裂损和腐蚀四种病害的防治进行综述。
2 、主题2.1 隧道的水害及其防治2.1.1隧道水害的类型及其成因1、类型(1)按部位和流量:拱部有渗水、滴水、漏水成线和成股射流四种,边墙有渗水、淌水两种,少数隧道有隧道涌水病害。
它受漏水、涌水规模以及隧道结构、牵引类型、地质条件等的影响。
(2)按水源补给情况,又分为地下水补给和地表水补给两种。
文献《隧道漏水与水害整治》(作者:开永旺,哈尔滨铁道科技,2002)]2[认为根据漏水处水量和水压的大小,隧道漏水的状况大致可为如下几种:①渗润:衬砌表面呈湿润状态,并象冒汗一样出现水珠。
毕设中英文摘要--铁炉子二级公路山岭隧道毕业设计

随着社会的发展,公路隧道在高等级公路中得到广泛应用。
由于它在山岭地区有克服地形或高程障碍,改善线形,提高车速,缩短里程,节约燃料,节省时间,减少对植被的破坏,保护生态环境等优点。
本设计课题为铁炉子二级公路山岭隧道结构设计,注重的是结构计算,重点研究新奥法施工。
在设计中,首先依据隧道设计规范、结合围岩类型和周围环境对隧道进行选址,并且选择合理的洞门形式及其验算洞门的稳定性。
其次根据洞身所处围岩级别和埋深的不同进行了隧道的围岩压力计算和结构静力计算,根据使用工程类比法来选择支护参数,并且依据围岩压力来进行衬砌配筋计算及其支护参数安全稳定性验算。
然后是根据工程需要选择合理的施工监测方案,通过多种量测手段,对开挖后隧道围岩进行动态监测,并以此知道隧道支护结构的设计与施工。
最后,还根据隧道工程特点、施工技术装备和施工力量等技术与经济因素,在确保安全、经济的前提下,编制隧道施工组织设计。
在设计中,还加入了许多的比选,或者备选方案,在对各项方案的选择时,结合长径隧道的实际特点选定最适合的一种作为最终方案。
这样,对加深隧道结构的认识,施工工艺方法的了解和对检测项目实施完整性准确性的把握都很有好处。
关键词:隧道设计;新奥法;围岩压力;衬砌支护;施工组织With the development of society, highway tunnels are widely used in the high-grade highways. They can overcome obstacles to the terrain or elevation, to improve alignment and enhance the speed and shorten the mileage, save fuel, save time, reduce the destruction of vegetation has the advantages of protecting the environment.The design issue for Secondary roads of the Tie Lu Zi, the structure-oriented computing, focuses on the construction of the new Austrian law. In the design, the first tunnel in accordance with design specifications, combined with rock type and the surrounding environment of the tunnel entrance to the site, and choose a reasonable form of the portal and check the stability of Portal. Second, under the rock where holes are different levels and depth of the tunnel to the rock pressure calculation and calculation of static structure, in accordance with the use of analogy works to select the initial parameters and the second pit lining support parameters, and based on Wai rock reinforcement lining pressure to support the calculation and checking security and stability of parameters. Is based on the project and then need to select a reasonable construction of the monitoring program, through a variety of means of measurement, the tunnel after excavation for dynamic monitoring, and to know that the tunnel support structure design and construction. Finally, also in accordance with the characteristics of tunnel engineering, construction technology and equipment and construction forces and economic factors such as technology, in ensuring the security, economic, under the premise of the preparation of the tunnel construction organization design.In the design, but also adding a lot more than elections or options in the choice of the program, the combined length of the actual characteristics of the tunnel to choose the most suitable one as the final stage. Such as the choice of excavation methods, the law in the whole cross-section, step method, the law division of the excavation were compared, and finally integration of the various ways the characteristics of excavation and grade Ⅴ the inherent characteristics of surrounding areas, selected Division CRD law excavation method. In this way, to deepen understanding of the tunnel structure, construction techniques and methods to understand the integrity of testing the accuracy of the implementation of the project are very good grasp.Key words: Long-track tunnel ;Tunnel design ;Rock pressureLining ;Construction organizations。
(完整版)有关隧道方面外文文献与翻译

A convection-conduction model for analysis of the freeze-thawconditions in the surrounding rock wall of atunnel in permafrost regionsHE Chunxiong(何春雄),(State Key Laboratory of Frozen Soil Engineering, Lanzhou Institute of Glaciology andGeocryology,Chinese Academy of Sciences, Lanzhou 730000, China; Department of Applied Mathematics,South China University of Technology, Guangzhou 510640, China)WU Ziwang(吴紫汪)and ZHU Linnan(朱林楠)(State key Laboratory of Frozen Soil Engineering, Lanzhou Institute of Glaciology andGeocryologyChinese Academy of Sciences, Lanzhou 730000, China)Received February 8, 1999AbstractBased on the analyses of fundamental meteorological and hydrogeological conditions at the site of a tunnel in the cold regions, a combined convection-conduction model for air flow in the tunnel and temperature field in the surrounding has been constructed. Using the model, the air temperature distribution in the Xiluoqi No. 2 Tunnel has been simulated numerically. The simulated results are in agreement with the data observed. Then, based on the in situ conditions of sir temperature, atmospheric pressure, wind force, hydrogeology and engineering geology, the air-temperature relationship between the temperature on the surface of the tunnel wall and the air temperature at the entry and exit of the tunnel has been obtained, and the freeze-thaw conditions at the Dabanshan Tunnel which is now under construction is predicted.Keywords: tunnel in cold regions, convective heat exchange and conduction, freeze-thaw.A number of highway and railway tunnels have been constructed in the permafrost regions and their neighboring areas in China. Since the hydrological and thermalconditions changed after a tunnel was excavated,the surrounding wall rock materials often froze, the frost heaving caused damage to the liner layers and seeping water froze into ice diamonds,which seriously interfered with the communication and transportation. Similar problems of the freezing damage in the tunnels also appeared in other countries like Russia, Norway and Japan .Hence it is urgent to predict the freeze-thaw conditions in the surrounding rock materials and provide a basis for the design,construction and maintenance of new tunnels in cold regions.Many tunnels,constructed in cold regions or their neighbouring area,s pass through the part beneath the permafrost base .After a tunnel is excavat,edthe original thermodynamical conditions in the surroundings are and thaw destroyed and replaced mainly by the air connections without the heat radiation, the conditions determined principally by the temperature and velocity of air flow in the tunnel ,the coefficients of convective heat transfer on the tunnel wall,and the geothermal heat. In order to analyze and predict the freeze and thaw conditions of the surrounding wall rock of a tunnel,presuming the axial variations of air flow temperature and the coefficients of convective heat transfer, Lunardini discussed the freeze and thaw conditions by the approximate formulae obtained by Sham-sundar in study of freezing outside a circular tube with axial variations of coolant temperature .We simulated the temperature conditions on the surface of a tunnel wall varying similarly to the periodic changes of the outside air temperature .In fact,the temperatures of the air and the surrounding wall rock material affect each other so we cannot find the temperature variations of the air flow in advance; furthermore,it is difficult to quantify the coefficient of convective heat exchange at the surface of the tunnel wall .Therefore it is not practicable to define the temperature on the surface of the tunnel wall according to the outside air temperature .In this paper, we combine the air flow convective heat ex-change and heat conduction in the surrounding rock material into one mode,l and simulate the freeze-thaw conditions of the surrounding rock material based on the in situ conditions of air temperature,atmospheric pressure,wind force at the entry and exit of the tunnel,and the conditions of hydrogeology and engineering geology. MathematicalmodelIn order to construct an appropriate model, we need the in situ fundamental conditions as a ba-sis .Here we use the conditions at the scene of the Dabanshan Tunnel. The Dabanshan Tunnel is lo-toted on the highway from Xining to Zhangye, south of the Datong River, at an elevation of 3754.78-3 801.23 m, with a length of 1 530 m and an alignment from southwest to northeast. The tunnel runs from the southwest to the northeast.Since the mon thly-average air temperature is ben eath O'}C for eight mon ths at the tunnel site each year and the construction would last for several years,the surrounding rock materials would become cooler during the construction .We conclude that, after excavation, the pattern of air flow would depend mainly on the dominant wind speed at the entry and exit,and the effects of the temperature difference between the inside and outside of the tunnel would be very small .Since the dominant wind direction is northeast at the tunnel site in winter, the air flow in the tunnel would go from the exit to the entry. Even though the dominant wind trend is southeastly in summer, considering the pressure difference, the temperature difference and the topography of the entry and exi,tthe air flow in the tunnel would also be from the exit toentry .Additionally,since the wind speed at the tunnel site is low,we could consider that the air flow would be principally laminar.Based on the reasons mentione,dwe simplify the tunnel to a round tube,and consider that theair flow and temperature are symmetrical about the axis of the tunnel,Ignoring the influence of the air temperature on the speed of air flow, we obtain the following equation:ra (/ v a v 亠X + 7 ★亦…at/ TI ^ u -z — + (/ — +d t % where t, x, r are the time, axial and radial coord in ates; U, V are axial and radial wind speeds; T is temperature; p is the effective pressure(that,isair pressure divided by air den sity); v is the kin ematic viscosity of air; a is the thermal con ductivity of air; L is the len gth of the tunn el; R is the equivale nt radius of the tunnel secti on; D is the len gth of time after the tunnel con structi on ;S f (t), S u (t) are frozen and thawed parts in the surrounding rock materials respectively; f , u and C f ,C u are thermal conductivities and volumetric thermalcapacities in frozen and thawed parts respectively; X= (x , r) , (t) is phase change front; Lh is heat late nt of freez ing water; and To is critical freez ing temperature of rock ( here we assume To= -0.1C).2 used for sol ving the modelEquation( 1)shows flow. We first solve those concerning temperatureat that thetemperature of the surrounding rock does not affect the speed of air equationsconcerning the speed of air flow, and then solve those equations every time elapse. 2. 1 Procedure used for sol ving the continu ity and mome ntum equati onsSince the first three equati ons in(1) are not in depe ndent we derive the sec ondequati on by xand the third equation by r. After preliminary calculation we obtain the followingelliptic equation concerning the effective pressure p:「艺p ,丄空仃肚、J 裂 工 r 3r\ dr) ~ t 卄升 1 0 < x < A 3U av\ 2V Z nJ" Q ・ (2)» 0 < r < R .0 < x < L, O < r < fi j <? V rr 3V 丽4 □齐 <7*3? tl/亦("狂丿 + 7 a?J-产' 0 < t < 77, 0 < x < fj’Oc r < /? j 3 / R T\ 1 3 f ^r\ a?=芥2右八7芥(s 苏n 0 < t < D , 0 < jr < £ T O < 尸吃 K* -iff 入己art d s at 亠张[仏c= r u ( (ar r 3 TA-九昇)1 小弓訂⑺丹,0 < f < Z> f ( i r > € S f { t ):0 < l <. ( x ( r ) 6 S u (< ); f * « r o t 0 t Di = “屠 O W Y 6+) I乔*左石r(R-)»Then we solve equatio ns in(1) using the follow ing procedures:(i ) Assume the values for U0 V0;(ii ) substituting U0 , V0 into eq. (2), and solving (2), we obtain p0;(iii) solving the first and second equations of(1), we obtain U0, V1;(iv) solving the first and third equations of(1), we obtain U2, V2;(v) calculating the momentum-average of U1, v1 and U2, v2, we obtain the new U0, V0;the n return to (ii);(vi) iterating as above until the disparity of those solutions in two consecutive iterations is sufficiently small or is satisfied, we then take those values of p0 U0 andV0 as the in itial values for the n ext elapse and solve those equati ons concerning the temperature..2 .2 En tire method used for sol ving the en ergy equati onsAs mentioned previously, the temperature field of the surrounding rock and the air flow affect each other. Thus the surface of the tunnel wall is both the boun dary of the temperature field in the surrounding rock and the boundary of the temperature field in air flow .Therefore , it is difficult to separately identify the temperature on the tunnel wall surface , and we cannot independently solve those equations concerning the temperature of air flow and those equations concerning the temperature of the surrounding rock .In order to cope with this problem, we simultaneously solve the two groups of equati ons based on the fact that at the tunnel wall surface both temperatures are equal .We should bear in mind the phase cha nge while sol ving those equati ons concerning the temperature of the surro unding rock a nd the convection while solvi ng those equations concerning the temperature of the air flow, and we only need to smooth those relative parameters at the tunnel wall surface .The solvi ng methods forthe equati ons with the phase cha nge are the same as in refere nee [3].2.3 Determ in ati on of thermal parameters and in itial and boun dary con diti ons2.3.1 Determination of the thermal parameters. Using p= 1013.25-0.1088 H , wecalculateP air pressure p at elevati on H and calculate the air den sity using formula , where T is the yearly-average absolute air temperature and G is the humidity constant of air. Letting C P be the thermal capacity with fixed pressure, the thermal con ductivity , and the dyn amic viscosity of air flow, we calculate the thermal con ductivity and of the surro unding rock are determ ined from the tunnel site.2 .3.2 Determ in ati on of the in itial and boun dary con diti ons .Choose the observed mon thly average wind speed at the entry and exit as boun dary con diti ons of wind speed and choose the relative effective pressure p=0 at the exit ( that,isthe entry of 2 [5]the dominant wind trend) and p (1 kL/ d) v /2 on the section of entry ( thatis , the exit of the dominant wind trend ), where k is the coefficie nt of resista neealong the tunnel wall, d = 2R , and v is the axial average speed. We approximate T varying by the sine law accord ing to the data observed at the sce ne and provide a suitable boundary value based on the position of the permafrost base and thegeothermal gradie nt of the thaw rock materials ben eath the permafrost base.3 A simulated exampleUsing the model and the solving method mentioned above , we simulate thevarying law of the air temperature in the tunnel along with the temperature at the entry and exit of the Xiluoqi No.2 Tunnel .We observe that the simulated results are close to the data observed[6].The Xiluoqi No .2 Tunnel is located on the Nongling railway in northeastern Chinaand passes through the part ben eath the permafrost base .It has a len gth of 1kinematic viscosity using the formulas aC p and —.The thermal parameters160 m running from the northwest to the southeast, with the entry of the tunnel in the no rthwest, and the elevati on is about 700 m. The dominant wind direct ion in the tunnel is from no rthwest to southeast, with a maximum mon thly-average speed of 3 m/s and a minimum monthly-average speed of 1 .7 m/s . Based on the data observed we approximate the varying sine law of air temperature at the entry and exit with yearly averages of -5°C, -64C and amplitudes of 189C and 176C respectively. The equivalent diameter is 5 .8m, and the resista nt coefficie nt along the tunnel wall is 0.025.Sineethe effect of the thermal parameter of the surrounding rock on the air flow is much smaller than that of wind speed , pressure and temperature at the entry and exit, werefer to the data observed in the Dabanshan Tunnel for the thermal parameters.Figure 1 shows the simulated yearly-average air temperature in side and at theentry and exit of the tunnel compared with the data observed .We observe that the differenee is less than 0 .2、C from the entry to exit.4 Predict ion of the freeze-thaw con diti ons for the Daba nsha n Tunnel4 .1 Thermal parameter and in itial and boun dary con diti onsUsing the elevation of 3 800 m and the yearly-average air temperature of -3 C , we ues: 2, dbaervccl rdijea»Disuse from theemr>/m1;阿严1 龄n o( simulAted and drived air 左血呼存afurr in Xihioqa g 2 Tunnel in 1979, I、SicmilMed vibFigure 2 shows a comparis on of the simulated and observed mon thly-averageair temperature in-side (dista nee greater tha n 100 m from the en try and exit) thetunn el. We observe that the principal law is almost the same, and the main reason forthe differe nee is the errors that came from approximat ing the vary ing si ne law at the entry and exit; especially , the maximum monthly-average air temperature of 1979was not for July but for August.Tic 凹聽阿弊口of sitnuhied and abserv回«ir lera-peraruir inaide the Xihi呦No, 2 Twind in 1979 1 * Simi- hlrdvdu£A; 2, uLMrved vadiii^.calculate the air density p=0 .774 kg/m 3.Sinee steam exists In the air, we choose the thermal capacity with a fixed pressure of air C p 1.8744kJ/(kg.°C), heat conductivity 2.0 10 2W/(m.0C) and6 and the dynamic viscosity 9.218 10 kg /(m.s). After calculation we obtain the5 2 thermal diffusivity a= 1 .3788 10 m / s and the kinematic viscosity ,1.19 10 5m 2 /s .Con sideri ng that the sect ion of automobiles is much smaller tha n that of thetunnel and the auto-mobiles pass through the tunnel at a low speed , we ignore the piston effects, coming from the movement of automobiles, in the diffusion of the air.We con sider the rock as a whole comp onent and choose the dry volumetric cavity d 2400kg / m ‘content of water and unfrozen water W=3% and W=1%, and the thermalcon ductivity u 1.9W/m.°c , f 2.0W /m.o c ,heat capacityAccording to the data observed at the tunnel site the maximum monthly-average wind speed is about 3 .5 m/s , and the minimum monthly-average wind speed is about 2 .5 m/s .We approximate the wind speed at the entry and exit as一 2v(t) [0.028 (t 7) 2.5](m/s), where t is in mon th. The in itial wind speed in the tunnel is set to ber 2 U (0,x,r) U a (1 (R )2),V(0,x,r) 0.The initial and boundary values of temperature T are set to beT(x = .1 ■+ 耐血(洁和-y) T ,T(O t x,/t a ) = - Jt 0) x O.OJ-C , f - r ) x O. D3・ t. /i r F W K wwhere f(x) is the distanee from the vault to the permafrost bas , and R0=25 m is the radius of do-main of solution T. We assume that the geothermal gradient is 3%, the yearly-average air temperature outside tunnel the is A=-3 0C , and the amplitude is B=12 0C .C V 0.8kJ /kg.o c and C f(0.8 4.128w u )1 W (0.8 4.128w u ) 1 WAs for the boundary of R=Ro,we first solve the equations considering R=Ro as the first type of boundary; that is we assume that T=f(x) 3%0C on R=Ro. We find that, after one year, the heat flow trend will have changed in the range of radius between 5 and 25m in the surrounding rock.. Considering that the rock will be cooler hereafter and it will be affected yet by geothermal heat, we appoximately assume that the boundary R=Ro is the second type of boundary; that is,we assume that the gradient value,obtained from the calculation up to the end of the first year after excavation under the first type of boundary value, is the gradient on R=Ro of T.Considering the surrounding rock to be cooler during the period of constructio,n we calculate from January and iterate some elapses of time under the same boundary. Then we let the boundary values vary and solve the equations step by step(it can be proved that the solution will not depend on the choice of initial values after many time elapses ).4 .2 Calculated resultsFigures 3 and 4 show the variations of the monthly-average temperatures on the surface of the tunnel wall along with the variations at the entry and exit .Figs .5 and 6 show the year when permafrost begins to form and the maximum thawed depth after permafrost formed in different surrounding sections.4 .3 Prelimi nary con clusi onBased on the in itial-bo un dary con diti ons and thermal parameters men tioned above, we obtai n the followi ng prelimi nary con clusi ons:1) The yearly-average temperature on the surface wall of the tunnel isapproximately equal to the air temperature at the entry and exit. It is warmer duri ng the cold seas on and cooler duri ng the warm seas on in the internal part (more tha n 100 m from the entry and exit) of the tunnel than at the entry and exit . Fig .1 shows that the internal mon thly-average temperature on the surface of the tunnel wall is1.2°C higher in January, February and December, 1C higher in March and October, and1 .6C lower in June and August, and 2qC lower in July than the air temperature at the entry and exit. In other mon ths the infernal temperature on the surface of the tunnel wall approximately equals the air temperature at the entry and exit.2) Since it is affected by the geothermal heat in the internal surrounding section,>oz □『enf X 2x < 3S £上 £«『M 除 Mirf^ce 垃 tiiiubel *rtk th 盘亚ut 込 ihc h^ntl . 1, JnFig, 6. Tk ; KJiimiflE thwed depih H!!e (T pennatrafit frrfuwd in y*snjDrs^ncr fnwr irwiy m Hf V TT IP 胴列h/iHT 替 砖卩皿巾冲 ftp ihf Bijrhfi* rtf iMwidt^hTumi . J .山甲 Jtli f = l 52h "\l2. 【尸匚gtjnt-nj*11X- £ gy 2即 ncu产«药-工一匚t ^fwrwr df tkr fmnh 】厂肌'**i 芦 P EI 严Mfewr [he- jeu wrieo pemafrffil bepu tc farm LFI i±d-□hsun 氐 fromcniry/n“ H m昭巧 Q j O m V".总町 L h ■ — Z 0 5 G 小二 研 SNuance Mim em^ m nti (JiMancc A 100 a fram cfUi} 血 eiLl) tcviperatmc on rfcr<ufiic<*i 2 . uwHr ur lemperifuft. 5 4 3 2 I o LJ/qlsp ■■u.%l£ily uduylil -餌也IT*especially in the central part, the internal amplitude of the yearly-average temperature on the surface of the tunnel wall decreases and is 1 .(6 lower than that at the entry and exit.3 ) Under the conditions that the surrounding rock is compact , without a great amount of under-ground water, and using a thermal insulating layer(as designed PU with depth of 0.05 m and heat conductivity =0.0216 W/m°C, FBT with depth of0.085 m and heat conductivity =0.0517W/m C), in the third year after tunnel construction, the surrounding rock will begin to form permafrost in the range of 200 m from the entry and exit .In the first and the second year after construction, the surrounding rock will begin to form permafrost in the range of 40 and 100m from the entry and exit respectively .In the central part, more than 200m from the entry and exit, permafrost will begin to form in the eighth year. Near the center of the tunnel, permafrost will appear in the 14-15th years. During the first and second years after permafrost formed, the maximum of annual thawed depth is large (especially in the central part of the surrounding rock section) and thereafter it decreasesevery year. The maximum of annual thawed depth will be stable until the 19-20th years and will remain in s range of 2-3 m.4) If permafrost forms entirely in the surrounding rock, the permafrost will providea water-isolating layer and be favourable for communication andtransportation .However, in the process of construction, we found a lot of underground water in some sections of the surrounding rock .It will permanently exist in those sections, seeping out water and resulting in freezing damage to the liner layer. Further work will be reported elsewhere.严寒地区隧道围岩冻融状况分析的导热与对流换热模型何春雄吴紫汪朱林楠(中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室)(华南理工大学应用数学系)摘要通过对严寒地区隧道现场基本气象条件的分析,建立了隧道内空气与围岩对流换热及固体导热的综合模型;用此模型对大兴安岭西罗奇 2 号隧道的洞内气温分布进行了模拟计算,结果与实测值基本一致;分析预报了正在开凿的祁连山区大坂山隧道开通运营后洞内温度及围岩冻结、融化状况.关键词严寒地区隧道导热与对流换热冻结与融化在我国多年冻土分布及邻近地区,修筑了公路和铁路隧道几十座.由于隧道开通后洞内水热条件的变化;,普遍引起洞内围岩冻结,造成对衬砌层的冻胀破坏以及洞内渗水冻结成冰凌等,严重影响了正常交通.类似隧道冻害问题同样出现在其他国家(苏联、挪威、日本等)的寒冷地区.如何预测分析隧道开挖后围岩的冻结状况,为严寒地区隧道建设的设计、施工及维护提供依据,这是一个亟待解决的重要课题.在多年冻土及其临近地区修筑的隧道,多数除进出口部分外从多年冻土下限以下岩层穿过.隧道贯通后,围岩内原有的稳定热力学条件遭到破坏,代之以阻断热辐射、开放通风对流为特征的新的热力系统.隧道开通运营后,围岩的冻融特性将主要由流经洞内的气流的温度、速度、气—固交界面的换热以及地热梯度所确定.为分析预测隧道开通后围岩的冻融特性,Lu-nardini借用Shamsundar研究圆形制冷管周围土体冻融特性时所得的近似公式,讨论过围岩的冻融特性.我们也曾就壁面温度随气温周期性变化的情况,分析计算了隧道围岩的温度场[3].但实际情况下,围岩与气体的温度场相互作用,隧道内气体温度的变化规律无法预先知道,加之洞壁表面的换热系数在技术上很难测定,从而由气温的变化确定壁面温度的变化难以实现.本文通过气一固祸合的办法,把气体、固体的换热和导热作为整体来处理,从洞口气温、风速和空气湿度、压力及围岩的水热物理参数等基本数据出发,计算出围岩的温度场.1数学模型为确定合适的数学模型,须以现场的基本情况为依据•这里我们以青海祁连山区大坂山公路隧道的基本情况为背景来加以说明.大坂山隧道位于西宁一张业公路大河以南,海拔3754.78~3801.23 m全长1530 m,隧道近西南一东北走向.由于大坂山地区隧道施工现场平均气温为负温的时间每年约长8个月,加之施工时间持续数年,围岩在施土过程中己经预冷,所以隧道开通运营后,洞内气体流动的形态主要由进出口的主导风速所确定,而受洞内围岩地温与洞外气温的温度压差的影响较小;冬季祁连山区盛行西北风,气流将从隧道出曰流向进口端,夏季虽然祁连山区盛行东偏南风,但考虑到洞口两端气压差、温度压差以及进出口地形等因素,洞内气流仍将由出口北端流向进口端•另外,由于现场年平均风速不大,可以认为洞内气体将以层流为主基于以上基本情况,我们将隧道简化成圆筒,并认为气流、温度等关十隧道中心线轴对称,忽略气体温度的变化对其流速的影响,可有如下的方程其中t为时间,x为轴向坐标,r为径向坐标;U, V分别为轴向和径向速度,T 为温度,P为有效压力(即空气压力与空气密度之比少,V为空气运动粘性系数,a为空气的导温系数,L为隧道长度,R为隧道的当量半径,D为时间长度S f(t),(1)S u(t)分别为围岩的冻、融区域• f, u分别为冻、融状态下的热传导系数,C f,C u分别为冻、融状态下的体积热容量,X=(x,r) , (t)为冻、融相变界面,To为岩石冻结临界温度(这里具体计算时取To=-0.10°C), L h为水的相变潜热2求解过程由方程(1)知,围岩的温度的高低不影响气体的流动速度,所以我们可先解出速度,再解温度•2.1连续性方程和动量方程的求解由于方程((1)的前3个方程不是相互独立的,通过将动量方程分别对x和r求导,经整理化简,我们得到关于压力P的如下椭圆型方程:3U BV 3(J dV\ 2严升dr dxi r20<i<Z f>0<r<J R.于是,对方程(1)中的连续性方程和动量方程的求解,我们按如下步骤进行⑴设定速度U0,V0;(2) 将U 0,V0代入方程并求解,得P0(3) 联立方程(1)的第一个和第二个方程,解得一组解U1,V1;(4) 联立方程((1)的第一个和第三个方程,解得一组解U2,V2;(5) 对((3) ,(4)得到的速度进行动量平均,得新的U 0,V0返回⑵;(6)按上述方法进行迭代,直到前后两次的速度值之差足够小•以P0,U0,V0作为本时段的解,下一时段求解时以此作为迭代初值•2. 2能量方程的整体解法如前所述,围岩与空气的温度场相互作用,壁面既是气体温度场的边界,又是固体温度场的边界,壁面的温度值难以确定,我们无法分别独立地求解隧道内的气体温度场和围岩温度场•为克服这一困难,我们利用在洞壁表面上,固体温度等于气体温度这一事实,把隧道内气体的温度和围岩内固体的温度放在一起求解,这样壁面温度将作为末知量被解出来•只是需要注意两点:解流体温度场时不考虑相变和解固体温度时没有对流项;在洞壁表面上方程系数的光滑化•另外,带相变的温度场的算法与文献[3]相同.2. 3热参数及初边值的确定热参数的确定方法:用p=1013.25-0.1088H计算出海拔高度为H的隧道现场的大气P压强,再由P计算出现场空气密度,其中T为现场大气的年平均绝对温GT度,G为空气的气体常数•记定压比热为C p,导热系数为,空气的动力粘性系数为•按a 和一计算空气的导温系数和运动粘性系数.围岩的热物理C p参数则由现场采样测定.初边值的确定方法:洞曰风速取为现场观测的各月平均风速.取卞导风进曰的相对有效气压为0,主导风出口的气压则取为p (1 kL/d) V2/2[5],这里k为隧道内的沿程阻力系数,L为隧道长度,d为隧道端面的当量直径,为进口端面轴向平均速度.进出口气温年变化规律由现场观测资料,用正弦曲线拟合,围岩内计算区域的边界按现场多年冻土下限和地热梯度确定出适当的温度值或温度梯度.3计算实例按以上所述的模型及计算方法,我们对大兴安岭西罗奇2号隧道内气温随洞曰外气温变化的规律进行了模拟计算验证,所得结果与实测值⑹相比较,基本规律一致.西罗奇2号隧道是位十东北嫩林线的一座非多年冻土单线铁路隧道,全长1160 m,隧道近西北一东南向,高洞口位于西北向,冬季隧道主导风向为西北风.洞口海拔高度约为700 m ,月平均最高风速约为3m/s,最低风速约为1.7m/s.根据现场观测资料,我们将进出口气温拟合为年平均分别为-50C和-6.40C,年变化振幅分别为18.90C和17.60C的正弦曲线.隧道的当量直径为5.8 m,沿程阻力系数取为0.025.由于围岩的热物理参数对计 算洞内气温的影响远比洞口的风速、压力及气温的影响小得多,我们这里参考使用了大坂山隧道的 资料.图1给出了洞口及洞内年平均气温的计算值与观测值比较的情况,从进口到 出口,两值之差都小于0.20C .图2给出了洞内(距进出口 100m 以上)月平均气温的计算值与观测值比较的 情况,可以看出温度变化的基本规律完全一致, 造成两值之差的主要原因是洞口 气温年变化规律之正弦曲线的拟合误差,特别是 1979年隧道现场月平均最高气 温不是在7月份,而是在8月份.4对大坂山隧道洞内壁温及围岩冻结状况的分析预测4. 1热参数及初边值按大坂山隧道的高度值 3 800 m 和年平均气温-30C ,我们算得空气密度0.774kg/m 3 ;由于大气中含有水汽,我们将空气的定压比热取为[7]C p 1.8744kJ/m s 导热系数 2.0 102W/m °C ,空气的动力粘性系数取为9.218 10 6 kg/m s ,经计算,得出空气的导温系数a 1.3788 10 5m 2 /s 和运 动粘性系数1.19 10 5m 2/s .考虑到车体迎风面与隧道端面相比较小、车辆在隧道内行驶速度较慢等因素,我们这里忽略了车辆运行时所形成的活塞效应对气体扩散性能的影响. 岩体的导热系数皆按完好致密岩石的情况处理,取岩石的干容重3d 2400kg/m 时,含水量和末冻水含量分别为W=3%和 W=1 %,s-- cs 釜09 Irum mt? entry/mFig. I. Cpnpajriion of s^nwlated «nd cbwrwd air ten-p*r- 也uiz in Xilwoqi Nu ・ 2 Tumcl in l 切0+ I . Einmhkad val- UPi 2T cjbMrral values .Fig. 2 B The 普咖抨占阿■ of tiitiLkled And rdbtprved «r twr- perifurr inAide llw Xiluoqi No. 2 Tunnd in 11974 1. Simb-laJfed Talu«{ 2, oEwmxd raJufa . Y-5fT MglloJ 签EMJfl nu盘Su1.9W/m.o c , f2.CW/m.o c 岩石的比热取为 C V 0.8kJ/kg.°C ,「 (0.8 4.128W u ) d , C u d . 1 W另外,据有关资料,大坂山地区月平均最大风速约为3.5 m/s ,月平均最小 大风速约为2.5m/s 我们将洞口风速拟合为V(t) [0.028 (t 7)22.5](m/s),这 里t 为月份.洞内风速初值为:U(0,x,r) U a (1(―)2), V (0, x, r) 0.这里取 RU a 3.0m/s .而将温度的初边值取为r( E r > = 丁(—旷)三 A + 甘至"-号)弋・/XO” 工* ff Q > m (Z<^) 一 «o> x 0-03%: ” r x y 一 尸〉>:o .0-3» 尺 c 尸 w 尺叮 lx - H, 旷w这里记f (x)为多年冻土下限到隧道拱顶的距离,Ro = 25m 为求解区域的半径.地 热梯度取为3%,洞外天然年平均气温 A=-3 0C ,年气温变化振幅B=120C .对于边界R = Ro ,我们先按第一类边值(到多年冻土下限的距离乘以3 %)计 算,发现一年后,在半径为 5m 到25m 范围内围岩的热流方向己经发生转向.考 虑到此后围岩会继续冷却,但在边界 R=R 0上又受地热梯度的作用,我们近似地 将边界R= Ro 作为第二类边界处理,即把由定边值计算一年后R=R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX隧道施工组织设计摘要施工组织设计的编制始终按照技术可靠、措施得力、确保安全的原则,确定施工方案,把安全措施落实到位,确保万无一失的前提下组织施工。
本文综合分析施工进度的多方面控制因素,充分协调组织好本标段工程施工力量配置,客观地预计各工序作业时间,采用成熟、先进的控制及优化方法,明确满足要求的施工进度计划及保证计划的人员、设备、物资的配置。
根据招标文件对本隧道的工期要求,编制科学合理、周密的施工方案,采用信息化技术,合理安排工程进度,搞好工序衔接,实施进度监控,确保实现工期目标,满足业主要求。
关键词:客运专线、XX隧道、施工、组织XX Tunnel construction organization and designsummaryThe construction organization design of compiling always according to the technical measures strength; ensure reliable, safe principle, determine the construction plan and safety measures implementation, to ensure continued operation under the premise of organization construction.This article comprehensively analyzed the construction progress of various control factors, fully coordinated organization good this section of engineering construction power allocation, objectively expected various processes homework time, adopting mature, advanced control and optimization method, clear meet the requirements of the construction schedule and ensure planning personnel, equipment, material configuration. According to this tunnel project bidding documents demands, formulate scientific and reasonable, careful construction plan, the information technology, reasonable arrangement project schedule, improving process cohesion, implementing progress monitoring, ensure realization period goal, satisfy customers requirements.Keywords: special passenger line, in tunnel, construction, shipment.welcome organization施工组织设计文献综述施工组织设计产生于计划经济年代,是施工企业对施工项目进行技术管理的重要文件。
如今,建筑市场依照国际惯例。
工程施工的发包和承包实行工程招投标制和合同管理制。
工程的管理实行业主责任制、项目经理责任制和工程建设监理制等。
新制度的施行。
使项目管理的模式也相应发生了根本性的变化。
因此,施工组织设计的创新是施工企业必须面对和重视的问题。
1 、施工组织设计地位和作用的变化施工组织设计是投标书的重要组成部分。
是为取得工程承包而编制的,它的主要作用已不只是用于指导工程施工,还有以下两个方面的作用:一是论证作用。
在技术上、组织上和管理手段上论证投标书中投标报价、施工工期和施工质量三大目标的合理性和可行性:二是承诺和要约作用。
对招标文件提出的要求(要约)做出明确、具体的承诺,对工程承包中需要业主提供的条件提出要求(要约)。
施工组织设计在投标阶段即已形成(即投标施工组织设计)。
但合同签定后。
承包商还需根据合同文件的要求和具体的施工条件。
对其进行修改、充实、完善,形成实施性的施工组织设计。
无论是FIDIC合同文件。
还是我国的《建设工程施工合同》示范文本。
均将投标书列为工程承包合同的组成部分,而施工组织设计的修改、充实、完善,是经监理工程师(业主代表)审核同意。
并经双方反复协商、达成一致后确定的,整个过程具备合同订立的要约与承诺的特征。
因此。
施工组织设计是工程承包合同的组成部分。
施工组织设计主要用于指导施工。
但由于具有承包合同的地位。
其作用不限于施工。
其具体表现在以下三个方面:一是工程结算的依据,工程造价的一个重要特点是造价与施工方案有关。
同一项工程采用不同的施工方案。
其工程量和造价都不一样。
工程投标报价往往是单价的套用和实际工程量的计算。
则应依据批准的施工组织设计确定:二是施工组织设计是工程索赔的依据。
若业主未按承诺提供施工条件(施工图、施工场地等),若由此造成施工工期延误,施工企业可提出工期索赔,若造成工料及其他经济损失。
可提出经济索赔。
索赔的依据包括施工组织设计:三是监理对象。
施工组织设计应用于施工全过程。
集技术、安全质量管理和环水保管理与一体,是一分全面的施工计划。
因此,监理工程师将其视为重要的监理对象。
严格监督其实施。
严格控制承包商对施工组织设计的变更和修改,将擅自变更和修改的行为视为违约行为。
2 、施工组织设计编制与应用的创新2.1 内容创新。
过去,施工组织设计是按技术需要编制的,其主要内容仅限于工程概况、施工方案、施工进度计划、施工平面图、保证施工质量及安全的技术和组织措施。
在市场经济体制下。
施工组织设计作为工程承包合同的一部分,其内容不仅要考虑技术上的需要,更要考虑履行合同的需要,应编成一份集技术、经济、管理、合同于一体的项目管理规划性文件、合同履行的指导性文件、工程结算和索赔的依据性文件,因此,施工组织设计的内容应增加。
应向项目管理规划方向发展。
施工组织设计内容的创新应体现在以下两个方面:一是业主应提供的条件。
施工组织设计作为工程承包合的组成部分。
规定的义务应是承发包双方的。
工程承包合同文件虽有通用条件和专用条件规定业主应尽的义务,但在施工组织设计中应列出业主应提供的施工图、施工场地、水电供应、材料设备、报批手续等施工条件。
并列表说明提供施工条件的时间、地点、数量和质量。
这样,则更具体、更明了、更易于操作,更重要的是有利于日后的索赔;二是工程分包。
工程分包分为承包商分包和业主分包。
我国法律对工程分包有严格的限制。
承包商分包应在业主允许的情况下在投标书中做出声明。
而且承包商要对分包工程承担所有责任。
因此,施工组织设计中应包括承包商分包工程的施工组织设计。
2.2 应用技术和手段创新。
网络计划技术可以通过时间参数计算对计划进行工期、费用和资源的优化。
可以根据计划的执行情况和条件的变化对计划进行动态的调整控制。
使计划目标得以实现。
网络计划技术的应用要实现以下三个转变:一是由静态的网络图向动态的网络计划转变。
静态的网络图随着实际施工进度与计划进度发生偏差及施工环境的改变。
很快就会失去使用价值。
必须根据实际进度定期或不定期对网络计划进行检查和调整,对施工进度进行控制。
以实现工目标:二是由单纯的施工进度计划向施工进度计划、资源计划和成本计划等综合性计划转变。
单纯的施工进度计划只能保证工期的实现。
而不能实现资源的合理利用。
且在资源使用不均衡不合理的条件下。
施工工期也难以保证;三是由满足型计划向效益型计划转变。
计划工期是为了满足合同工期要求;资源的计划使用是受资源的条件所限制。
合理计划利用虽然重要,但并不能带来高效益,只有同时对施工费用、成本进行优化。
才能实现效益的最大化。
这正是项目管理的主要目标。
计算机和计算机网络在施工组织设计中的应用主要有以下三个方面:一是应用计算机编制施工组织设计,应用计算机可以加快编制速度,提高编制质量,有利于及时修改;二是利于计算机进行施工进度计划的优化、检查、调整和控制。
三是利于计算机网络及时获取、处理和利用各种有利信息。
信息的内容来自于项目部内外。
当日完成的工程量、企业内部现有和已占有的资源信息是项目内部的信息:有关法规、政策等是企业外部的信息。
这些信息都可通过计算机网络进行传输。
企业和项目经理部应建立自己的计算机局域网和管理信息系统。
以便及时收集有关信息。
依据收集的信息对施工组织设计进行及时的调整。
以使项目适应环境的变化。
确保项目按计划完成。
建筑业是一个涉及面很广的行业,施工组织设计作为其中的一门学科,有着它独特的地位和作用,施工组织设计不但是施工企业投标的重要文件,而且是项目管理的总体规划。
既然它产生于计划经济时代,它就应该顺应时代的潮流,一改过去教条冗长的模式,真正做到与时俱进。
要编制出切实可行合理的施工组织设计(或方案)应具备很多方面的知识,特别是实践中的经验,只有这样,才能编制出更具有指导性的工程文件,用来指导施工。
参考资料及文献:1、XX隧道设计图(中国中铁二院工程集团有限责任公司)2、铁道部铁路工程建设参考图3、现行的国家有关方针政策及国家和铁道部有关标准、规范、验标及施工指南;4、《XX铁路建设“六位一体”管理文件;5、《新建XX铁路GGTJ-5标段实施性施工组织设计》6、XX铁路公司筹备组《指导性施工组织设计》及《答疑书》7、现场踏勘调查资料8、加强铁路施工的组织与管理中小企业管理与科技(上旬刊) 2009/03 中国期刊全文数据库9 、高等级铁路施工组织设计和工程造价探析铁道工程学报 2009/04 中国期刊全文数据库10、开发铁路施工组织管理信息系统的探讨科技资讯 2009/16 中国期刊全文数据库11、汉口—宜昌铁路施工组织方案优化探讨铁道建筑 2009/06 中国期刊全文数据库12 、铁路施工组织管理系统的研究科技资讯 2008/2413 、山区高速铁路施工组织设计与工程造价铁路工程造价管理 2004/02 中国期刊全文数据库14 、铁路施工组织设计的CAD系统铁道建筑技术 2001/04 中国期刊全文数据库15 、铁路施工组织方案比选的层次分析法铁路工程造价管理 2000/01 中国期刊全文数据库16、铁路施工组织设计分类新方案的构想华东交通大学学报 1999/04 中国期刊全文数据库17、高速铁路施工组织设计与概算编制问题的探讨铁路工程造价管理 1999/03 中国期刊全文数据库18 、计算机辅助铁路施工组织进度控制铁路计算机应用 1998/02 中国期刊全文数据库19 、浅谈西南地区铁路施工组织设计的体会铁路工程造价管理 1995/02 中国期刊全文数据库20 、试论铁路施工组织设计方案比选铁路工程造价管理 1993/03 中国期刊全文数据库21、新建铁路施工组织网络设计的自动化铁道学报 1990/04 中国期刊全文数据库22 、铁路施工组织方案比选方法研究铁道工程学报 1987/04 中国期刊全文数据库23 、铁路施工组织方案比选方法问题的研究铁道科学与工程学报 1987/01 中国期刊全文数据库24 、铁路施工组织设计经济效果的评价铁道工程学报 1986/01 中国期刊全文数据库致谢通过这一阶段的努力,我的毕业论文《XX隧道施工组织设计》终于完成了,这意味着大学生活即将结束。