随机信号上机实验报告

合集下载

随机信号实验报告材料(实用模板)(1)

随机信号实验报告材料(实用模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级1401051班制作人文杰14010510039 制作人晓鹏14010510003一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。

二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值E[x(t)](μ)表示集合平均值或数学期望值。

基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:∑-==10/)()]([N t Nt x t x E均值表达了信号变化的中心趋势,或称之为直流分量。

② 随机过程的均方值:信号x(t)的均方值E[x2(t)](2ϕ),或称为平均功率,其表达式为:Nt x t x E N t /)()]([(122∑-==均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

③ 随机信号的方差:信号x(t)的方差定义为:Nt x E t x N t /)]]([)([1022∑-=-=σ2σ称为均方差或标准差。

可以证明,222μϕσ+= 其中:2σ描述了信号的波动量;2μ 描述了信号的静态量,方差反映了信号绕均值的波动程度。

在已知均值和均方值的前提下,方差就很容易求得了。

④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。

哈工大随机信号实验报告

哈工大随机信号实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电信学院班级: 1205201 姓名:学号:指导教师:郑薇实验时间: 2014年 11月哈尔滨工业大学实验一 各种分布随机数的产生一、 实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。

利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

二、 实验内容产生均匀分布的随机数、高斯分布的随机数和其它分布的随机数。

三、 实验原理1. 均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(m od 1M c y y n n +=+My x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(m od 1M ay y nn =+M y x n n 11++=式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(m od 1M c ay y n n +=+My x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

随机信号分析上机实验指导书(金科院新版)

随机信号分析上机实验指导书(金科院新版)

目录实验1 随机信号的计算机仿真(验证性实验) (1)实验2 随机信号平稳性分析(验证性实验) (5)实验3 高斯白噪声通过线性系统分析(综合实验) (6)实验4 窄带随机过程仿真分析 (验证性实验) (13)实验1 随机信号的计算机仿真(验证性实验)一、实验目的(1)掌握均匀分布随机信号产生的常用方法。

(2)掌握高斯分布随机信号的仿真,并对其数字特征进行估计。

(3)了解随机过程特征估计的基本概念和方法,学会运用 Matlab 函数对随机过程进行特征估计,并且通过实验了解不同估计方法所估计出来结果之间的差异。

二、实验原理无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。

各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

1.均匀分布随机信号的产生利用混合同余法产生均匀分布的随机数,并显示所有的样本。

(mod )n n y ay c M =+ 11n n x y M +=+ 2.高斯分布随机信号的仿真若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(x),则Y 必是在[0,1]上均匀分布的随机变量。

反之,若Y 是在[0,1]上均匀分布的随机变量,那么1()X F Y -= (1)就是分布函数为F(x)的随机变量。

这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1)的变换,便可以求得所需要分布的随机数。

利用函数变换法产生高斯分布的随机数的方法:如果X1、X2是两个互相独立的均匀分布随机数,那么下式给出的Y1、Y2就是数学期望为m ,方差为2s 的高斯分布随机数m X X Y +-=)2cos(ln 2211πσ m X X Y +-=)2s i n (ln 2212πσ 3.均值的估计11ˆN x n n m x N -==å 4.方差的估计方差估计有两种情况,如果均值x m 已知,则()12201ˆN xn x n x m N s -==-å 如果均值未知,那么()12201ˆˆ1N xn x n x m N s -==--å5. 相关函数估计11ˆ()N m xn m n n R m x x N m--+==-å6. 功率谱估计功率谱的估计有几种方法,此处介绍自相关法: 先求相关函数的估计,11ˆ()N m xn m n n R m x x N m--+==-å然后对估计的相关函数做傅立叶变换,1(1)ˆ()()N jm xx m N G R m e ww +-=--=åMATLAB 有许多估计数字特征的统计函数: (1)均值与方差mean(A),返回序列的均值,序列用矢量 A 表示。

随机信号分析上机实验指导书

随机信号分析上机实验指导书

目录实验1 离散随机变量的仿真与计算(验证性实验) (1)实验2 离散随机信号的计算机仿真(验证性实验) (5)实验3 随机信号平稳性分析(验证性实验) (8)实验4 实验数据分析(综合性实验) (10)实验5 窄带随机过程仿真分析 (验证性实验) (11)实验6 高斯白噪声通过线性系统分析(综合实验) (13)实验1 离散随机变量的仿真与计算(验证性实验)一、实验目的掌握均匀分布的随机变量产生的常用方法。

掌握由均匀分布的随机变量产生任意分布的随机变量的方法。

掌握高斯分布随机变量的仿真,并对其数字特征进行估计。

二、实验步骤无论是系统数学模型的建立,还是原始实验数据的产生,最基本的需求就是产生一个所需分布的随机变量。

比如在通信与信息处理领域中,电子设备的热噪声,通信信道的畸变,图像中的灰度失真等都是遵循某一分布的随机信号。

在产生随机变量时候,虽然运算量很大,但是基本上都是简单的重复,利用计算机可以很方便的产生不同分布的随机变量。

各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分不得阿随机变量,就可以用函数变换等方法得到其他分布的随机变量。

1.均匀分布随机数的产生利用混合同余法产生均匀分布的随机数,并显示所有的样本,如图1所示。

yn+1=ayn+c (mod M)xn+1=yn+1/M2.高斯分布随机数的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

若X 是分布函数为FX (x )的随机变量,且分布函数FX (x )为严格单调升函数,令Y=FX (x ),则Y 必是在[0,1]上均匀分布的随机变量。

繁殖,若Y 是在[0,1]上均匀分布的随机变量,那么X=F-1X(Y) (1.4.5)就是分布函数为FX (x )的随机变量。

这样,欲求某个分布的随机变量,先产生[0,1]区间上的均匀分布随机数,在经过(1.4.5)的变换,便可以求得所需要分布的随机数,产生指数分布的随机数 fX(x)=ae-ax Y=FX(X)=1-e-aX X=-ln(1-Y)/a利用函数变换法产生高斯分布的随机数的方法:图1-1生成均匀分布随机数的结果如果X1X2是两个互相独立的均匀分布随机数,那么下式给出的Y1Y2就是数学期望为m ,方差为σ2的高斯分布随机数mX X Y +-=)2cos(ln 2211πσmX X Y +-=)2s i n (ln 2212πσ生成高斯分布随机数的结果如图1-2所示:3.随机变量数字特征的计算(均值)在很多情况下我们不能得到随机变量所有的样本,只能利用部分样本来获得随机变量数字特征的估计值。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机过程上机实验报告讲解

随机过程上机实验报告讲解

2015-2016第一学期随机过程第二次上机实验报告实验目的:通过随机过程上机实验,熟悉Monte Carlo计算机随机模拟方法,熟悉Matlab的运行环境,了解随机模拟的原理,熟悉随机过程的编码规律即各种随机过程的实现方法,加深对随机过程的理解。

上机内容:(1 )模拟随机游走。

(2)模拟Brown运动的样本轨道。

(3)模拟Markov过程。

实验步骤:(1)给出随机游走的样本轨道模拟结果,并附带模拟程序。

①一维情形%—维简单随机游走% “从0开始,向前跳一步的概率为p,向后跳一步的概率为1-p”n=50;p=0.5;y=[0 cumsum(2.*(rand(1,n-1)v=p)-1)]; % n 步。

plot([0:n-1],y); %画出折线图如下。

w%一维随机步长的随机游动%选取任一零均值的分布为步长,比如,均匀分布。

n=50;x=rand(1,n)-1/2;y=[0 (cumsum(x)-l)];plot([0:n],y);②二维情形%在(u, v)坐标平面上画出点(u(k), v(k)), k=1:n,其中(u(k)) 和(v(k))是一维随机游动。

例%子程序是用四种不同颜色画了同一随机游动的四条轨道。

n=100000;colorstr=['b' 'r' 'g' 'y'];for k=1:4z=2.*(rand(2,n)<0.5)-1;x=[zeros(1,2); cumsum(z')];col=colorstr(k);plot(x(:,1),x(:,2),col);③%三维随机游走 ranwalk3dp=0.5;n=10000; colorstr=['b' 'r' 'g' 'y'];for k=1:4z=2.*(rand(3,n)v=p)-1; x=[zeros(1,3); cumsum(z')];col=colorstr(k);plot3(x(:,1),x(:,2),x(:,3),col);hold on end gridhold onendgrid4:04003?0-200-300-400-2OD20050、-100-200 -20D⑵给出一维,二维Brown运动和Poisson过程的模拟结果,并附带模拟程序,没有结果的也要把程序记录下来。

2011秋随机信号实验报告模板

2011秋随机信号实验报告模板

实验一一、实验目的熟悉并练习使用Matlab 的函数,明确各个函数的功能说明和内部参数的意义二、实验内容和步骤实验代码:A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];rand(3)randn(3)n3 = normrnd([1 2 3;4 5 6],0.1,2,3)mean(A)mean(A,2)var(A)%%%xcorr%%%%%ww = randn(1000,1);[c_ww,lags] = xcorr(ww,10,'coeff');figure(7);stem(lags,c_ww) %%%%%%%%%%%%%%%%%%%%%%%%% %常用的傅立叶变换是找到在嘈杂的域%信号下掩埋了信号的频率成分。

%考虑数据采样在1000赫兹。

现有一信号%由以下部分组成,50赫兹振幅%为0.7的正弦和120赫兹振幅为1的正弦%并且受到一些零均值的随机噪声的污染%%%%%%%%%%%%%%%%%%%%%%%%% Fs = 1000; % 采样频率T = 1/Fs; % 采样时间L = 1000; % 信号长度t = (0:L-1)*T; % 时间矢量% 50赫兹正弦波与120赫兹正弦波的和x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); y = x + 2*randn(size(t)); % 正弦波加噪声figure(6);plot(Fs*t(1:50),y(1:50)) %画此信号的时域图title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')%这在寻找原始信号的频率成分上是很难%确定的。

转换到频域,噪音信号Y%的傅立叶变换采取快速傅立叶变换%(FFT):NFFT = 2^nextpow2(L); %y长度L附近%的幂级数Y = fft(y,NFFT)/L;f = Fs/2*linspace(0,1,NFFT/2+1); % 单边拉普拉斯变换plot(f,2*abs(Y(1:NFFT/2+1))) %画单边频谱图title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|') %%%%%%%%%%%%%%%%%%%%%%%%% mu = [0:0.1:2];[y i] = max(normpdf(1.5,mu,1));MLE = mu(i) %%%%%%%%%%%%%%%%%%%%%%%%% p = normcdf([-1 1]);p(2) - p(1) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0.1:0.1:0.6;y = unifpdf(x) %%%%%%%%%%%%%%%%%%%%%%%%% probability = unifcdf(0.75) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylpdf(x,1);figure(5);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylcdf(x,1);figure(4);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% y = exppdf(5,1:5) %%%%%%%%%%%%%%%%%%%%%%%%% mu = 10:10:60;p = expcdf(log(2)*mu,mu) %%%%%%%%%%%%%%%%%%%%%%%%% n = 5;X = pascal(n)R = chol(X)X(n,n) = X(n,n)-1 %%%%%%%%%%%%%%%%%%%%%%%%% x = [randn(30,1); 5+randn(30,1)];[f,xi] = ksdensity(x);figure(3);plot(xi,f); %%%%%%%%%%%%%%%%%%%%%%%%% x = -2.9:0.1:2.9;y = randn(10000,1);hist(y,x) %%%%%%%%%%%%%%%%%%%%%%%%% %求y=x*log(1+x)在[0 1]上的定积分,积分%变量为系统默认syms x;S=x.*log(1+x) Y=int(S,x,0,1) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 2 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %(1)产生数学期望为0,方差为1 的高斯随机变量SIGMA=sqrt(1);n2 = normrnd(0,SIGMA,[2 5]) %两行五列数学期望为0,方差为1 的高斯随机变量%产生数学期望为5,方差为10 的高斯随机变量SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[2 5])%利用计算机求上述随机变量的100个样本的数学期望和方差n1 = normrnd(0,1,[1 100]);SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[1 100]);M1 = mean(n1)M2 = mean(n2)V1 = var(n1)V2 = var(n2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 3 %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生自由度为2,数学期望为2,方差为 4 的具有中心2χ分布的随机变量SIGMA=sqrt(2);n1 = normrnd(2,SIGMA);n2 = normrnd(2,SIGMA);y=(n1).^2+(n2).^2%产生自由度为2,数学期望为4,方差为12 的具有中心2χ分布的随机变量SIGMA=sqrt(12);n1 = normrnd(4,SIGMA);n2 = normrnd(4,SIGMA);y=(n1).^2+(n2).^2%利用计算机求上述随机变量的100个样本的数学期望和方差,并与理论值比较SIGMA=sqrt(2);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y)SIGMA=sqrt(12);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 4 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %利用Matlab 现有pdf 和cdf 函数,画出均值为零、方差为4 的%高斯随机变量的概率密度曲线和概率分布曲线x=-10:0.1:10;Y1 = normpdf(x,0,2);Y2=normcdf(x,0,2);figure(1);plot(x,Y1)figure(2);plot(x,Y2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 5 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生长度为1000 数学期望为5,方差为10 的高斯随机序列,%并根据该序列值画出其概率密度曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电信学院班级:哈尔滨工业大学实验一各种分布随机数的产生实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。

利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

实验内容产生均匀分布的随机数、高斯分布的随机数和其它分布的随机数。

实验原理均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(mod 1M c y y n n +=+My x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y nn =+M y x n n 11++=式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+My x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。

随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

若X 是分布函数为F(x)的随机变量,且分布函数F(x)为严格单调升函数,令Y=F(X),则Y 必为在[0,1]上均匀分布的随机变量。

反之,若Y 是在[0,1]上均匀分布的随机变量,那么)(1Y F X X -=即是分布函数为FX(x)的随机变量。

式中F X-⋅1()为F X ()⋅的反函数。

这样,欲求某个分布的随机变量,先产生在[0,1]区间上的均匀分布随机数,再经上式变换,便可求得所需分布的随机数。

高斯分布随机数的仿真广泛应用的有两种产生高斯随机数的方法,一种是变换法,一种是近似法。

如果X1,X2是两个互相独立的均匀分布随机数,那么下式给出的Y1,Y2⎪⎩⎪⎨⎧+-=+-=mX X Y mX X Y )π2sin(ln 2)π2cos(ln 2212211σσ 便是数学期望为m ,方差为2σ的高斯分布随机数,且互相独立,这就是变换法。

另外一种产生高斯随机数的方法是近似法。

在学习中心极限定理时,曾提到n 个在[0,1]区间上均匀分布的互相独立随机变量Xi (i=1,2…,n),当n 足够大时,其和的分布接近高斯分布。

当然,只要n 不是无穷大,这个高斯分布是近似的。

由于近似法避免了开方和三角函数运算,计算量大大降低。

当精度要求不太高时,近似法还是具有很大应用价值的。

各种分布随机数的仿真有了高斯随机变量的仿真方法,就可以构成与高斯变量有关的其他分布随机变量,如瑞利分布、指数分布和2分布随机变量。

实验过程和结果分析1.产生均匀分布的随机数>> for n=1:1024 y=rand();x(n)=y*(6-3)+3; end>> plot(x);2.产生高斯分布的随机数 x=random('Normal',0,2,1,1024);3.产生瑞利分布和分布>> N=30000; >> g=-6:0.1:6;>> G1=random('Normal',0,1,1,N); >> G2=random('Normal',0,1,1,N); >> G3=random('Normal',0,1,1,N); >> G4=random('Normal',0,1,1,N); >> R=sqrt(G1.*G1+G2.*G2);>> X2=G1.*G1+G2.*G2+G3.*G3+G4.*G4;实验结论使用Matlab产生均匀分布的随机数、高斯分布的随机数、瑞利分布和分布的随机数。

实验二随机变量检验实验目的随机数产生之后,必须对它的统计特性做严格的检验。

一般来讲,统计特性的检验包括参数检验、均匀性检验和独立性检验等。

事实上,我们如果在二阶矩范围内讨论随机信号,那么参数检验只对产生的随机数一、二阶矩进行检验。

我们可以把产生的随机数序列作为一个随机变量,也可以看成随机过程中的一个样本函数。

不论是随机变量还是随机过程的样本函数,都会遇到求其数字特征的情况,有时需要计算随机变量的概率密度直方图等。

实验内容1. 对实验一产生的各种分布的随机数进行均值和方差的检验。

2. 对实验一产生的各种分布的随机数概率分布进行统计,并在计算机屏幕上显示实际统计的概率密度直方图。

实验原理1. 均值的计算在实际计算时,如果平稳随机序列满足各态历经性,则统计均值可用时间均值代替。

这样,在计算统计均值时,并不需要大量样本函数的集合,只需对一个样本函数求时间平均即可。

甚至有时也不需要计算N →∞时的极限,况且也不可能。

通常的做法是取一个有限的、计算系统能够承受的N 求时间均值和时间方差。

根据强调计算速度或精度的不同,可选择不同的算法。

设随机数序列{N x x x ,,,21Λ},一种计算均值的方法是直接计算下式∑==Nn n x N m 11式中,xn 为随机数序列中的第n 个随机数。

另一种方法是利用递推算法,第n 次迭代的均值也亦即前n 个随机数的均值为)(111111----+=+-=n n n n n n m x nm x n m n n m 迭代结束后,便得到随机数序列的均值m m N =递推算法的优点是可以实时计算均值,这种方法常用在实时获取数据的场合。

当数据量较大时,为防止计算误差的积累,也可采用)(1111m x N m m n Nn -+=∑= 式中,m1是取一小部分随机数计算的均值。

方差的计算计算方差也分为直接法和递推法。

仿照均值的做法212)(1m x N Nn n -=∑=σ21221m x N N n n -=∑=σ方差的递推算法需要同时递推均值和方差m m nx m n n n n =+---111() ])(1[121212---+-=n n n n m x nn n σσ迭代结束后,得到随机数序列的方差为22N σσ=其它矩函数也可用类似的方法得到。

统计随机数的概率密度直方图假定被统计的序列)(n x 的最大值和最小值分别为a 和b 。

将),(b a 区间等分M (M 应与被统计的序列)(n x 的个数N 相适应,否则统计效果不好。

)份后的区间为))(,(M a b a a -+,))(*2,)((Ma b a M a b a -+-+,… , )*)(*2,)1)(((Mia b a M i a b a -+--+,… , ),)1)(((b M M a b a --+。

用)(i f ,表示序列)(n x 的值落在)*)(*2,)1)(((M ia b a M i a b a -+--+区间里的个数,统计序列)(n x 的值在各个区间的个数)(i f ,1,,2,0-=M i Λ,则)(i f 就粗略地反映了随机序列的概率密度的情况。

用图形方式显示出来就是随机数的概率密度直方图。

实验过程和结果分析1.均值和方差的检验(1)均匀分布随机数x=random('unif',3,6,1,1024) >>>> m=mean(x) m =4.5064 >> d=var(x) d =0.7523(2)产生高斯分布,瑞利分布和分布的均值与方差>> N=30000; g=-6:0.1:6;G1=random('Normal',0,1,1,N); G2=random('Normal',0,1,1,N); G3=random('Normal',0,1,1,N); G4=random('Normal',0,1,1,N); R=sqrt(G1.*G1+G2.*G2);X2=G1.*G1+G2.*G2+G3.*G3+G4.*G4; >> m1=mean(G1)m1 =0.0055>> d1=var(G1)d1 =1.0101>> m2=mean(R)m2 =1.2576>> d2=var(R)d2 =0.4320>> m3=mean(X2)m3 =4.0194>> d3=var(X2)d3 =8.16842.概率密度直方图(1)均匀分布随机数x=random('unif',3,6,1,1024);>> subplot;hist(x,2:0.01:7);(2)高斯分布,瑞利分布和分布>> N=30000;>> g=-6:0.1:6;>> G1=random('Normal',0,1,1,N);>> G2=random('Normal',0,1,1,N);>> G3=random('Normal',0,1,1,N);>> G4=random('Normal',0,1,1,N);>> R=sqrt(G1.*G1+G2.*G2);>> X2=G1.*G1+G2.*G2+G3.*G3+G4.*G4; >> subplot(311);hist(G1,g);>> subplot(312);hist(R,0:0.05:6);>> subplot(313);hist(X2,0:0.02:30);实验结论1.对实验一产生各种分布的均值和方差验证,结果如下(1)均匀分布m = 4.5064 d = 0.7523(2)高斯分布,瑞利分布和分布的均值与方差m1 = 0.0055 d1 =1.0101m2 =1.2576 d2 = 0.4320m3 =4.0194 d3 =8.16842.概率密度直方图如图所示实验三中心极限定理的验证实验目的利用计算机产生均匀分布的随机数。

相关文档
最新文档