随机信号分析实验报告(基于MATLAB语言)

合集下载

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机信号实验报告(模板)(1)

随机信号实验报告(模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。

二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。

基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。

② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。

在已知均值和均方值的前提下,方差就很容易求得了。

④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。

对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。

在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。

⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。

时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。

随机信号分析实验报告

随机信号分析实验报告

一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

本实验中算法都是一种估算法,条件是N要足够大。

2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。

噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。

②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。

对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。

对微弱信号检测与提取有很多方法,本实验采用多重自相关法。

多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。

即令:式中,是和的叠加;是和的叠加。

对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。

信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。

多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

随机信号分析实验百度

随机信号分析实验百度

《随机信号分析》试验报告班级班学号姓名实验一1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)randn()产生随机数数组或矩阵,其元素服从均值为0,方差为1的正态分布(1)Y = randn 产生一个伪随机数(2)Y = randn(n) 产生n×n的矩阵,其元素服从均值为0,方差为1的正态分布(3)Y = randn(m,n) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布(4)Y= randn([m n]) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布选择(2)作为例子,运行结果如下:>> Y = randn(3)Y =1.3005 0.0342 0.97920.2691 0.9913 -0.8863-0.1551 -1.3618 -0.35622)rand()(1)Y = rand(n) 生成n×n 随机矩阵,其元素在(0,1)内(2)Y = rand(m,n) 生成m×n 随机矩阵(3)Y = rand([m n]) 生成m×n 随机矩阵(4)Y = rand(m,n,p,…) 生成m×n×p×…随机矩阵或数组(5)Y = rand([m n p…]) 生成m×n×p×…随机矩阵或数组(6)Y = rand(size(A)) 生成与矩阵A 相同大小的随机矩阵选择(3)作为例子,运行结果如下:>> Y = rand([3 4])Y =0.0579 0.0099 0.1987 0.19880.3529 0.1389 0.6038 0.01530.8132 0.2028 0.2722 0.74683)normrnd()产生服从正态分布的随机数(1)R = normrnd(mu,sigma) 产生服从均值为mu,标准差为sigma的随机数,mu和sigma可以为向量、矩阵、或多维数组。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告目录随机信号分析 (1)实验报告 (1)理想白噪声和带限白噪声的产生与测试 (2)一、摘要 (2)二、实验的背景与目的 (2)背景: (2)实验目的: (2)三、实验原理 (3)四、实验的设计与结果 (4)实验设计: (4)实验结果: (5)五、实验结论 (12)六、参考文献 (13)七、附件 (13)1理想白噪声和带限白噪声的产生与测试一、摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。

理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。

在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。

关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度二、实验的背景与目的背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。

定义2:不同频率、不同强度无规则地组合在一起的声音。

如电噪声、机械噪声,可引伸为任何不希望有的干扰。

第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。

而第二种定义则相对抽象一些,大部分应用于机械工程当中。

在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。

为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。

实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。

确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。

随机信号分析 MATLAB实验2

随机信号分析 MATLAB实验2

随机信号分析与处理实验报告2实验二 随机信号处理的工程编程实现一、实验目的1、熟悉各种随机信号分析及处理方法。

2、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理1.正态分布:其概率密度为221()()exp ,0,122x m f x m σσπσ⎡⎤--==⎢⎥⎣⎦Matlab 中的功能函数为: x=normpdf(x,mu,sigma)计算正太概率密度在x 处的值,x 为标量或矢量,对于标准正态分布而言,mu=0,sigma=1,这时 x=normpdf(x,mu,sigma),可以简写为 x=normpdf(x);正态分布概率分布函数Matlab 中的功能函数为; x=normcdf(x,mu,sigma)计算正太概率密度在x 处的值,x 为标量或矢量,对于标准正态分布而言,mu=0,sigma=1,这时 x=normcdf(x,mu,sigma),可以简写为 x=normcdf(x). 2.均匀分布0-1分布,其概率密度为101()0x f x <<⎧=⎨⎩其他其概率密度y=unifpdf(x,a,b)计算在[a,b]区间上均匀分布概率密度函数在x 处的值,x,a ,b 为矢量或者标量;均匀分布概率分布函数y=unifcdf(x,a,b)计算在[a,b]区间上均匀分布概率分布函数在x 处的值,x,a ,b 为矢量或者标量。

3.指数分布:其概率密度为1()e x p (),2x f x μμμ=-= 其概率密度y=exppdf(x,mu)计算参数为mu 的指数分布概率密度函数在x 处的值,x,xu 为矢量或者标量;指数分布概率分布函数y=expcdf(x,mu)计算参数为mu 的指数分布概率密度函数在x 处的值,x,xu 为矢量或者标量.4.瑞利分布概率密度y=raylpdf(x,a)计算参数为a(δ)的瑞利分布概率密度函数在x 处的值,x,a 为矢量或者标量;瑞利分布概率f 分布函数y=raylcdf(x,a)计算参数为a(δ)的瑞利分布概率分布函数在x 处的值,x,a 为矢量或者标量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

如果要产生服从分布的随机序列,则可以由标准正态随机序列产生。

(3)其他分布的随机序列分布函数分布函数二项分布binornd 指数分布exprnd泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd 分布chi2rnd3.随机序列的数字特征估计对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。

这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。

那么,X(n)的均值、方差和自相关函数的估计为利用MATLAB的统计分析函数可以分析随机序列的数字特征。

(1)均值函数函数:mean用法:m = mean(x)功能:返回按1.3式估计X(n)的均值,其中x为样本序列x(n)。

(2)方差函数函数:var用法:sigma2 = var(x)功能:返回按(1.4)式估计X(n)的方差,其中x为样本序列x(n),这一估计为无偏估计。

(3)互相关函数函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition')c = xcorr(x,'opition')功能:xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。

option 选项可以设定为:'biased' 有偏估计'unbiased' 无偏估计'coeff' m = 0 时的相关函数值归一化为1'none' 不做归一化处理实验内容及实验结果1.采用线性同余法产生均匀分布随机数1000个,计算该序列均值和方差与理论值之间的误差大小。

改变样本个数重新计算。

程序代码:y=1;k=7;N=10^10;xn=[];for i=1:1000y=mod(y*k,N);x=y/N;xn=[xn x];endm=mean(xn)n=var(xn)me=0.5-mne=1/12-n实验结果:m = 0.4813n = 0.0847me= 0.0187ne= -0.00132.参数为的指数分布的分布函数为利用反函数法产生参数为0.5的指数分布随机数1000个,测试其方差和相关函数。

程序代码:j=1:1999;y=1;k=7;N=10^10;xn=[];for i=1:1000y=mod(y*k,N);x=y/N;xn=[xn x];endy=(-2)*log(1-xn);n=var(y)c=xcorr(y,'coeff');plot(j-1000,c);实验结果:方差 n=3.7596自相关函数:3. 产生一组N(1,4)分布的高斯随机数(1000个样本),估计该序列的均值、方差、和相关函数。

程序代码: i=1:1000; j=1:1999;x=normrnd(1,2,1,1000); m=mean(x) n=var(x)c=xcorr(x,'coeff'); subplot(211); plot(i,x);title(‘随机序列’); subplot(212); plot(j-1000,c);title(‘自相关函数’);实验结果: 均值 m=1.0082 方差 n=3.8418-1000-800-600-400-200200400600800100000.10.20.30.40.50.60.70.80.91实验小结本次实验对随机数的生成做了练习。

具体来说,包括线性同余法,生成已知分布函数的随机数,rand 函数等,还有就是有关均值、方差、相关的调用函数。

01002003004005006007008009001000-5510随机序列-1000-800-600-400-20002004006008001000-0.500.51自相关函数实验二随机过程的模拟与数字特征实验目的1.学习利用 MATLAB模拟产生随机过程的方法。

2.熟悉和掌握特征估计的基本方法及其 MATLAB实现。

实验原理1.正态分布白噪声序列的产生MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。

函数:randn用法:x = randn(m,n)功能:产生 m×n的标准正态分布随机数矩阵。

如果要产生服从分布的随机序列,则可以由标准正态随机序列产生。

如果则。

2.相关函数估计MATLAB提供了函数 xcorr用于自相关函数的估计。

函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition')c = xcorr(x,'opition')功能:xcorr(x,y)计算 X (n)与 Y(n)的互相关,xcorr(x)计算 X (n)的自相关。

Option 选项可以设定为:'biased' 有偏估计。

'unbiased' 无偏估计。

'coeff' m =0时的相关函数值归一化为1。

'none' 不做归一化处理。

3.功率谱估计对于平稳随机序列 X (n),如果它的相关函数满足那么它的功率谱定义为自相关函数的傅里叶变换:功率谱表示随机信号频域的统计特性,有着重要的物理意义。

我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。

功率谱估计的方法有很多种,以下是两种通用谱估计方法。

(1)自相关法先求自相关函数的估计,然后对自相关函数做傅里叶变换。

其中N表示用于估计样本序列的样本个数。

(2)周期图法先对样本序列 x(n)做傅里叶变换其中,则功率谱估计为MATLAB函数 periodogram实现了周期图法的功率谱估计。

函数:periodogram用法:[Pxx,w] = periodogram(x)[Pxx,w] = periodogram(x,window)[Pxx,w] = periodogram(x,window,nfft)[Pxx,f] = periodogram(x,window,nfft,fs)periodogram(...)功能:实现周期图法的功率谱估计。

其中:Pxx为输出的功率谱估计值;f为频率向量;w为归一化的频率向量;window代表窗函数,这种用法种对数据进行了加窗,对数据加窗是为了减少功率谱估计中因为数据截断产生的截断误差,表 2.1列出了产生常用窗函数的 MATLAB函数窗函数MATLAB函数窗函数MATLAB函数矩形窗boxcar Blackman窗blackman三角窗triang Chebyshev窗chebwinHanning窗hann Bartlett窗bartlettHamming hamming Kaiser窗kaisernfft设定 FFT算法的长度;fs表示采样频率;如果不指定输出参数(最后一种用法),则直接会出功率谱估计的波形。

实验内容及实验结果1.按如下模型产生一组随机序列其中是均值为1,方差为4的正态分布白噪声序列。

估计过程的自相关函数和功率谱。

程序代码:w=normrnd(1,4,1,1024);x(1)=w(1);i=2;while i<1025x(i)=0.8*x(i-1)+w(i); i=i+1;endR=xcorr(x);[S,W]=periodogram(x);subplot(3,1,1); plot(x);title('x(n)');axis tight; subplot(3,1,2); plot(R);title('R(m)');axis tight; subplot(3,1,3); plot(S);title('S(W)');axis tight;实验结果:2. 设信号为其中 , , 为正态分布白噪声序列,试在N=256和N=1024点时,分别产生随机序列 ,画出 的波形并估计 的相关函数和功率谱。

N=256: 程序代码: N=256; n=1:1:N;w=randn(1,N); f1=0.05; f2=0.12;x=sin(2*pi*f1*n)+2*cos(2*pi*f2*n)+w(n);1002003004005006007008009001000-1001020x(n)2004006008001000120014001600180020002464R(m)50100150200250300350400450500100020003000S(W)R=xcorr(x);[S,W]=periodogram(x);subplot(3,1,1); plot(x);title('x(n)');axis tight; subplot(3,1,2); plot(R);title('R(m)');axis tight; subplot(3,1,3); plot(S);title('S(W)');axis tight;实验结果:N=1024: 程序代码: N=1024; n=1:1:N;w=randn(1,N); f1=0.05; f2=0.12;x=sin(2*pi*f1*n)+2*cos(2*pi*f2*n)+w(n); R=xcorr(x);[S,W]=periodogram(x);subplot(3,1,1); plot(x);title('x(n) N=256');axis tight; subplot(3,1,2); plot(R);title('R(m) N=256');axis tight; subplot(3,1,3); plot(S);title('S(W) N=256');axis tight;实验结果:50100150200250-4-2024x(n) N=25650100150200250300350400450500-500500R(m) N=25620406080100120S(W) N=256实验小结本次实验对随机序列的产生进行了复习,对自相关函数与功率谱密度的产生进行了练习。

相关文档
最新文档