常用运算放大器电路 (全集)
运算放大器基本电路大全

运算放大器基本电路大全关键字:运算放大器电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明V oh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
经典的运算放大器基本电路大全

运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运算放大器详细的应用电路(很详细)

§8.1 比例运算电路8.1.1 反相比例电路1. 基本电路电压并联负反馈输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求放大倍数较大时,反馈电阻阻值高,稳定性差。
如果要求放大倍数100,R1=100K,Rf=10M2. T型反馈网络(T型反馈网络的优点是什么?)虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反馈输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟随器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路8.2.1 求和电路1.反相求和电路2.虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系3.同相求和电路4.虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K例2:如图电路,求Avf,Ri解:§8.3 积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变为三角波(Vi:方波,频率500Hz,幅度1V)将三角波变为正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频干扰将方波变为三角波移相在模数转换中将电压量变为时间量§8.3 积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变为方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§8.4 对数和指数运算电路8.4.1 对数电路对数电路改进基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差不多大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性差别较大,所以运算只在较小的电流范围内误差较小。
运算放大器基本电路大全

运算放大器基本电路大全运算放大器电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运算放大器11种经典电路

运算放大器的11中经典电路虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。
而运放的输出电压是有限的,一般在 10 V~14 V。
因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。
开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。
显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。
因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。
故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。
“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。
显然不能将两输入端真正断路。
运放电路工作原理的分析图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。
流过R1的电流I1 = (Vi - V-)/R1 ……a 流过R2的电流I2 = (V- - Vout)/R2 ……b V- = V+ =0 ……c I1 = I2 ……d 求解上面的初中代数方程得Vout = (-R2/R1)*Vi 这就是反向放大器的输入输出关系式。
图二中Vi与V-虚短,则 Vi = V- ……a 因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等,设此电流为I,由欧姆定律得:I = Vout/(R1+R2) ……b Vi等于R2上的分压,即:Vi = I*R2 ……c 由abc式得Vout=Vi*(R1+R2)/R2,即 Vout=Vi*(1+R1/R2)这就是同向放大器的公式了。
运算放大器的常见电路

2.3.1 同相放大电路
3. 虚假短路 ▪ 图中输出通过负反馈的作用, 使vn自动地跟踪vp, 即vp≈vn,或vid=vp-vn≈0。 这种现象称为虚假短路,简称 虚短
▪ 由于运放的输入电阻ri很大,所以,运放两输入端之间的 ip=-in = (vp-vn) / ri ≈0,这种现象称为虚断。
由运放引入负反馈而得到的虚短和虚断两个重要概念,是分 析由运放组成的各种线性应用电路的利器,必须熟练掌握。
根据“虚短”,vP vP 0
根得据 “ 虚 断 ” , ii 0
得 因此
i2
i1
vI R
电容器被充电,其充电电流为 i2
设电容器C的初始电压为零,则
vN
vO
1 C
1 i2dt C
vI dt R
vO
1 RC
vIdt
式中,负号表示vO与vI在相位上是相反的。
(积分运算)
2.4.4 积分电路和微分电路
3. 若V-< vO <V+ 则 (vP-vN)0
4. 输入电阻ri的阻值很高 使 iP≈ 0、iN≈ 0
5. 输出电阻很小, ro ≈ 0
图2.2.1 运放的简化电路模型
理想:ri≈∞ ro≈0 Avo→∞ vo=Avo(vp-vn)
2.3 基本线性运放电路
2.3.1 同相放大电路 2.3.2 反相放大电路
2.3.1 同相放大电路
1. 基本电路
(a)电路图
(b)小信号电路模型
图2.3.1 同相放大电路
2.3.1 同相放大电路
2. 负反馈的基本概念 ▪ 开环 ▪ 闭环 ▪ 反馈:将放大电路输出量, 通过某种方式送回到输入回路 的过程。 ▪ 瞬时电位变化极性——某时刻电位的斜率
常用运算放大器16个基本运算电路

5. 微分运算电路
微分运算电路如图 5 所示,
XFG1
R2 15kΩ
C2
22nF
V3
R1
C1
4
12 V
2
1kΩ
22nF
U1A
1
3
T L082CD
8
V2 12 V
XSC1
A +_
B +_
Ext Trig +
_
图5
电路的输出电压为 uo 为:
uo = −R2C1 dui dt
式中, R2C1 为微分电路的时间常数。若选用集成运放的最大输出电压为UOM ,
式中,Auf = 1+ RF / R1 为同相比例放大电路的电压增益。同样要求 Auf 必须小于 3, 电路才能稳定工作,当 f = fo 时,带通滤波器具有最大电压增益 Auo ,其值为:
Auo = Auf / (3 − Auf )
10. 二阶带阻滤波电路
二阶带阻滤波电路如图 10 所示,
C1
1nF R1
_
图 15 全波整流电路是一种对交流整流的电路,能够把交流转换成单一方向电 流,最少由两个整流器合并而成,一个负责正方向,一个负责负方向,最典 型的全波整流电路是由四个二极管组成的整流桥,一般用于电源的整流。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需 要中心抽头、制造麻烦,整流二极管需承受的反向电压高,故一般适用于要 求输出电压不太高的场合。
R1 10kΩ
4 2
12 V
U1A 1
3
8 TL082CD
R3 9kΩ
V2 12 V
D2 1N4148
XSC1
A +_
运算放大器构成的18种功能电路(带multisim仿真)

(1)反相比例放大器:将输入加至反相端,同时将正相端子接地,由运放的虚短和虚断V U U 0==+-,又有102R U U R U U i -=---,得输出为:i U R RU 210-= 仿真电路为:取:Ω==k R R 2221,tV U sin 21=,得到输出结果为:tV U sin 40-=输出波形为:(2)电压跟随器:当同相比例放大器的增益为1时,可得到电压跟随器,其在两个电路的级联中具有隔离缓冲作用。
可消除两级电路间的相互影响。
其仿真波形为:取输入为4V,频率为1kHz的方波,得到输出结果为:(3)同相比例放大器:将INA133的2,5和1,3端子分别并联,以此运放作为基本放大器,反馈网络串联在输入回路中,且反馈电压正比于输入电压,引入串联电压负反馈。
反馈电压1211U R R R U f +=由运放的虚短和虚断,有输出电压为:1120)1(U R R U += 其仿真电路为:取tV U sin 21=,Ω==k R R 2212,得到结果为:tV U sin 60= 其输出波形为:(4)反相器:当方向比例放大器增益为1时可得到反相器电路,其仿真电路为:取:tV U sin 21=,输出结果为:tV U U sin 210-=-=仿真输出波形为:(5)同相相加器;将输入信号引至同相端,得到同相相加器由INA133内置电阻设计如下电路,得到输出结果为:210U U U += 仿真电路为:取tV U sin 21=,tV U sin 32=,由公式得到结果为:tV U sin 50= 仿真输出波形为:(6)相减器:将输入信号分别加在INA133的正相和反相输入端,可得到相减电路,其仿真电路如下: 其输出结果为:210U U U -=取tV U sin 51=,tV U sin 22=,计算输出结果为:tV U sin 30=其仿真输出波形为:(7)积分器:利用INA133及电容可构成反相积分器,仿真电路如下图,电阻2R 与运放构成积分器,电阻1R 可起到保护作用,防止低频信号增益过大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用运算放大器电路(全集)
下面是[常用运算放大器电路(全集)]的电路图
常用OP电路类型如下:
1. Inverter Amp. 反相位放大电路:
放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。
R3 = R4 提供1 / 2 电源偏压
C3 为电源去耦合滤波
C1, C2 输入及输出端隔直流
此时输出端信号相位与输入端相反
2. Non-inverter Amp. 同相位放大电路:
放大倍数为Av=R2 / R1
R3 = R4提供1 / 2电源偏压
C1, C2, C3 为隔直流
此时输出端信号相位与输入端相同
3. Voltage follower 缓冲放大电路:
O/P输出端电位与I/P输入端电位相同
单双电源皆可工作
4. Comparator比较器电路:
I/P 电压高于Ref时O/P输出端为Logic低电位
I/P 电压低于Ref时O/P输出端为Logic高电位
R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M)
单双电源皆可工作
5. Square-wave oscillator 方块波震荡电路:
R2 = R3 = R4 = 100 K
R1 = 100 K, C1 = 0.01 uF
Freq = 1 /(2π* R1 * C1)
6. Pulse generator脉波产生器电路:
R2 = R3 = R4 = 100 K
R1 = 30 K, C1 = 0.01 uF, R5 = 150 K
O/P输出端On Cycle = 1 /(2π* R5 * C1)
O/P输出端Off Cycle =1 /(2π* R1 * C1)
7. Active low-pass filter 主动低通滤波器电路:
R1 = R2 = 16 K
R3 = R4 = 100 K
C1 = C2 = 0.01 uF
放大倍数Av = R4 / (R3+R4)
Freq = 1 KHz
8. Active band-pass filter 主动带通滤波器电路:
R7 = R8 = 100 K, C3 = 10 uF
R1 = R2 = 390 K, C1 = C2 = 0.01 uF
R3 = 620, R4 = 620K
Freq = 1 KHz, Q=25
9. High-pass filter 高通滤波器电路:
C1 = 2*C2 = 0.02 uF, C2 = 0.01 uF
R1 = R2 = 110 K
6 dB Low-cut Freq = 100 Hz
10. Adj. Q-notch filter 频宽可调型滤波器电路:
R1 = R2 = 2 * R3
C1 = C2 = C3 / 2
Freq = 1 /(2π* R1 * C1)
VR1调整负回授量, 越大则Q值越低。
(表示频带变宽,但是衰减值相对减少。
)R1, R2, R3, C1, C2, C3 为Twin-T filter结构。
11. Wien-bridge Sine-wave Oscillator文桥正弦波震荡电路:
R1 = R2, C1 = C2
R3 与D1, D2 Zener 产生定点压负回授
Freq = 1 / (2π* R1 * C1)
D1与D2 可使用Lamp效果更佳(产生阻抗负变化系数)
12. Peak detector峰值检知器电路: (范例均为正峰值检知)
本电路仅提供思维参考用(右方电路具放大功能)
Eo = Ei * (R4 + R3) / R3
S1为连续取样开关,因应峰值不断的变化。
13. Positive-peak detector正峰值检知器电路:
R1 = 1 K, R2 = 1 M, C1 = 10 uF
只有在I/P电位高于OP-端电位时, 才能使Q1导通, O/P电位继续升高.
正峰值必须低于电源正值,所得数据为最高值。
14. Negative-peak detector负峰值检知器电路:
R1= 1 M, C1= 10 uF
只有在I/P电位低于OP-端电位时, O/P电位继续降低.
负峰值必须高于电源负值,所得数据为最高值。
15. RMS(Absolute value) detector绝对值检知器电路:
不论I/P端极性为何, 皆可由O/P端输出, 若后端再接上正峰值检知器电路, 即可取得RMS数值.。