石墨烯制作加工
生物质石墨烯的工艺流程

生物质石墨烯的工艺流程:
1、在0°C冰水浴下,将6g天然鳞片石墨在搅拌下缓慢加入到装有120ml浓硫酸的三口烧瓶中。
2、持续搅拌半个小时后,缓慢加入高锰酸钾18g,在搅拌下继续维持0°C搅拌半小时,控制温度不能高于20°C搅拌2小时,不高于35°C搅拌2小时。
3、在保持室温条件下,加入适量去离子水直至反应瓶中不再有溅射现象,继续搅拌半小时。
4、加入适量30%双氧水,直至混合物由黑棕色变为亮黄色且不再有气泡产生。
5、洗涤杂质并干燥,得到氧化石墨絮状固体
6、溶入去离子水中,在超声强度90-105w下超声1-2小时,使氧化石墨片层剥离,获得淡黄色的氧化石墨悬浮液。
石墨烯生产工艺流程

石墨烯生产工艺流程
《石墨烯生产工艺流程》
石墨烯是一种由碳原子构成的二维晶格结构材料,其出色的导电性、热导性和机械性能使其成为研究人员和工程师们的研究重点。
但要生产高质量的石墨烯并非易事,需要精密的工艺流程以确保其品质和性能。
石墨烯的生产工艺流程通常包括以下几个步骤:
1. 石墨氧化:首先,天然石墨粉末会被氧化成石墨烯的前体物质——氧化石墨(GO)。
这一步通常采用氧化剂如硫酸和硝
酸对石墨进行氧化反应,使得石墨表面附着上氧原子和羟基,形成氧化石墨。
2. 氧化石墨的还原:接着,氧化石墨会被还原为石墨烯。
这一步通常使用还原剂如高温还原、化学还原或电化学还原等方法,将氧原子和羟基去除,恢复碳原子的结构,得到石墨烯。
3. 石墨烯的分散和修饰:最后,生产得到的石墨烯需要进行分散和修饰,以确保其在材料和设备中的应用性能。
这通常包括超声分散、添加表面活性剂、聚合物包覆等步骤,以使得石墨烯能够均匀分散在介质中,并且具有一定的稳定性。
以上就是一般的石墨烯生产工艺流程。
当然,随着科技的发展和工艺的改进,也可能会有一些新的方法被引入到石墨烯生产中。
总的来说,石墨烯的生产需要高度的技术和设备支持,并
且对于材料本身的品质和性能有严格的要求。
希望随着科技的不断进步,石墨烯的生产工艺也会更加完善和成熟。
石墨烯粉体生产工艺流程

石墨烯粉体生产工艺流程石墨烯是一种新型高级材料,具有优异的力学、导电等性能,在各个行业都得到广泛应用。
其中,石墨烯粉体是制备石墨烯制品的重要原材料。
本文将介绍石墨烯粉体生产的工艺流程。
第一步:制备原材料制备石墨烯粉体的原材料主要是石墨,因为石墨极易受到氧化影响,容易产生杂质,所以在制备过程中需要注意严密的氧化防护措施。
此外,还需要辅助原材料加入剂,如表面活性剂和还原剂,以控制反应速率和粒度大小。
第二步:氧化石墨将石墨与氧化剂(一般采用硫酸、硝酸等)混合,进行氧化反应。
该反应可在大气条件下进行,但需要注意搅拌均匀、反应控制等问题,以充分保证反应效率和产物质量。
第三步:还原氧化石墨将氧化石墨与还原剂(一般采用氢气、氨气等)混合,进行还原反应,将氧化物还原成金属。
该反应需要控制还原剂的浓度、温度、反应时间等因素,以达到还原效果最好、石墨烯粉体的产率最高的目的。
第四步:分离石墨烯将还原产生的混合物进行分离,得到石墨烯粉体。
在分离过程中,主要采用离心、过滤等技术。
第五步:干燥处理将分离得到的石墨烯粉体进行干燥处理,以便去除水分和相应的溶剂,使其具备更好的储存和再加工条件。
第六步:粉末处理将石墨烯粉体进行粉末处理,通过研磨、超声波等技术,使其分散均匀。
此外,还需要注意粉末中杂质的问题,以确保产品质量。
以上是石墨烯粉体的生产工艺流程,通过以上步骤可以得到优质高效的石墨烯粉体产品。
未来,随着石墨烯研究和产业应用的不断深入,石墨烯粉体生产工艺也将得到不断创新和改进,以适应市场需求。
石墨烯生产工艺流程

石墨烯生产工艺流程石墨烯是由单层碳原子组成的二维晶体材料,具有极高的导电性、热导性和强度,被认为是未来科技领域的重要材料之一。
下面将介绍石墨烯的生产工艺流程。
石墨烯的生产可以通过机械剥离法、化学气相沉积法和化学氧化还原法等多种方法实现,其中机械剥离法是最早被发现和广泛应用的方法之一。
机械剥离法利用石墨材料的层状结构,通过在石墨表面撕开石墨层之间的键合力,剥离出单层石墨烯。
首先,选取合适的石墨材料,通常是石墨矿石或石墨粉末。
然后,将石墨材料放置在一个具有粘性的基底上,如胶水、胶带或聚甲基丙烯酸酯等。
再加上适当的力度进行剥离,就可以得到单层的石墨烯薄膜。
最后,将石墨烯薄膜转移到目标基底上,如硅片、玻璃片等。
这种方法简单易行,但产量较低,适用于研究和实验室规模的生产。
化学气相沉积法是一种常用的大规模石墨烯制备方法。
它是通过在具有高温的反应室中,将碳源沉积到基底上,形成石墨烯。
首先,选择适当的碳源物质,如甲烷。
然后,将碳源以一定的流量供给到高温反应室中,一般在1000℃以上。
在高温下,碳源分解生成碳原子,然后通过热解的碳原子重新组合成石墨烯的结构。
最后,将得到的石墨烯薄膜转移到目标基底上。
化学氧化还原法是通过利用化学反应将石墨材料氧化,再将氧化的石墨还原得到石墨烯。
首先,将石墨材料与氧化剂搅拌,使其与石墨发生反应生成氧化石墨,例如硫酸和氧化剂混合。
然后,将氧化石墨与还原剂反应,如加热处理或化学还原剂处理,将氧化石墨还原成石墨烯。
最后,将得到的石墨烯转移到目标基底上。
除了以上介绍的方法,还有一些其他的石墨烯生产方法,如气体剥离法、电化学剥离法等。
这些方法各有特点和适用范围,可以根据实际需要选择使用。
总而言之,石墨烯的生产工艺流程包括选择合适的原材料,进行剥离、化学反应和基底转移等步骤。
随着石墨烯的广泛应用,相关的生产工艺也在不断发展和完善,以满足不同规模和需求的生产要求。
石墨烯的制备方法

石墨烯的制备方法1.1.1石墨烯的制备方法目前以石墨为原料制备石墨烯的方法主要有微机械剥离法、SiC热解外延生长法、化学气相沉积法、化学氧化还原法等。
1.3.1.1微机械剥离法微机械剥离法是最初用于获得石墨烯片的一种简单的物理方法,该法是通过透明光刻胶反复的从较大的高定向热解石墨(HOPG)上分离出石墨烯片,接着将留在光刻胶上的石墨烯溶解在丙酮中,然后利用硅片与石墨烯片之间的范德华力和毛细管作用力将石墨烯吸附在硅片上分离出来。
Geim等[33]通过微机械剥离法制备出只有几个原子层厚度大小为10 μm的石墨烯片,当厚度>3 nm时,制得的石墨烯片达到100 μm,可以达到用肉眼观察的范围。
通过微机械剥离法可以制得晶格完好的高质量的石墨烯片,但该法存在着产量低,不易精确控制,重复性差等缺点。
1.3.1.2 SiC热解外延生长法该方法首先将样品的表面通过氧化或H2刻蚀,然后在高真空下(1.32×10-8 Pa )电子轰击加热到1000 ℃以去除氧化物,并用俄歇电子能谱检测表面氧化物的℃℃,即可形成石墨去除情况,氧化物被完全去除后将样品加热至1250 ~1450烯层。
Berger等[34, 35]通过热解脱除单晶6H-SiC的(00001)面上的Si而得到了单层和多层的石墨烯片。
通过SiC热解外延生长法可以制备出大面积的石墨烯,且质量较高,但是制备条件比较苛刻,要在高温高真空条件下进行,SiC的价格也比较昂贵,且制得的石墨烯片不易从SiC转移下来。
1.3.1.3化学气相沉积法(CVD)用CVD法制备石墨烯的研究早在上世纪70年代就已有报道,直到2009年Reina研究组及Kim研究组通过CVD法成功制备出石墨烯才掀起了石墨烯的CVD制备法的热潮[36-38]。
CVD法是以甲烷等含碳化合物作为碳源,在镍、铜等具有溶碳量的金属基体上通过将碳源高温分解然后采用强迫冷却的方式而在基体表面形成石墨烯。
CVD法制备石墨烯简单易行,可以得到大面积的质量较高的石墨烯,且易于从基体上分离,主要被用于石墨烯透明导电薄膜和晶体管的制备[39]。
石墨烯工艺流程

石墨烯工艺流程
《石墨烯工艺流程》
石墨烯是一种由碳原子排列成的单层蜂窝结构的二维材料,具有出色的导电性、导热性和机械强度。
由于其独特的性能,石墨烯被认为是未来材料领域的重要发展方向之一。
而要制备出优质的石墨烯,需要经过复杂的工艺流程。
首先,最基础的石墨烯制备方法是机械剥离法。
这种方法通过在石墨晶体上使用胶带或粘性纸来剥离单层石墨烯。
然而,这种方法的制备效率较低且不够稳定,因此工业化生产中很少采用。
其次,化学氧化还原法也是一种常见的制备石墨烯的方法。
该方法通过将石墨氧化成石墨烯氧化物,再将其还原成石墨烯。
这种方法可以制备出大面积的石墨烯薄膜,适用于柔性电子领域。
此外,化学气相沉积法也是一种常见的石墨烯制备方法。
该方法通过在金属基底上用化学气相沉积技术生长石墨烯薄膜。
这种方法制备出的石墨烯具有良好的晶体结构和大面积尺寸,适用于一些需要大面积石墨烯薄膜的场合。
除了以上几种常见的石墨烯制备方法外,还有一些其他的方法,例如热解剥离法、化学氧化还原气相沉积法等。
随着石墨烯技术的不断发展,石墨烯制备方法也在不断创新和完善。
相信随着科技的进步,石墨烯工艺流程会变得更加高效、稳定和成熟。
石墨烯发热片制作工艺

石墨烯发热片制作工艺石墨烯是一种由碳原子构成的单层二维材料,具有优异的导电性、热导性和机械性能,被认为是一种极具潜力的新型材料。
由于其独特的物理和化学性质,石墨烯在许多领域都有着广泛的应用前景,其中之一就是作为发热片材料。
石墨烯发热片具有高效的加热速度、温度均匀等优点,被广泛应用于工业制冷、医疗保健、汽车零部件等领域。
本文将介绍石墨烯发热片的制作工艺及其在各个领域的应用。
首先,石墨烯发热片的制作工艺包括原料准备、石墨烯生长、石墨烯薄膜制备、发热片加工等多个步骤。
首先,选择高纯度的碳源材料,如氧化石墨、碳纳米管等,作为石墨烯的原料。
其次,在高温气氛中进行化学气相沉积或机械剥离等方法,使碳原子形成一层单原子厚的石墨烯薄膜。
然后,将石墨烯薄膜转移到基底材料上,通过光刻、蒸发、干膜等工艺,制作成具有特定形状和尺寸的发热片。
最后,通过对发热片进行电极连接、封装等处理,使其具有良好的性能和可靠性。
石墨烯发热片具有许多优点,如高热传导性能、高效的加热速度、温度均匀等,被广泛应用于工业、医疗保健、汽车零部件等领域。
在工业制冷领域,石墨烯发热片可以作为加热元件,用于加热设备、采暖系统等,具有节能、环保、高效等优点。
在医疗保健领域,石墨烯发热片可以作为热疗设备,用于治疗风湿关节炎、肌肉疼痛等疾病,具有热效应迅速、疗效显著等优点。
在汽车零部件领域,石墨烯发热片可以作为汽车座椅加热元件,提高座椅的舒适性和安全性,具有快热、均匀加热等优点。
梳理一下本文的重点,我们可以发现,石墨烯发热片作为一种新型材料,在各个领域都有着广泛的应用前景。
通过优化制备工艺和提高材料性能,可以进一步扩大石墨烯发热片的应用范围,促进其在工业生产、医疗保健、汽车等领域的应用。
希望未来能够有更多的研究者投入到石墨烯发热片的研究与开发中,为其应用于更多领域提供有力支持。
石墨烯加abc多次注塑成型加工工艺流程

石墨烯加abc多次注塑成型加工工艺流程如下:
1.制备石墨烯/ABS混合物:将石墨烯和ABS树脂混合均匀,可以
采用机械混合或化学混合的方法。
2.热压成型:将混合物放入热压机内进行热压成型,压力和温度
需要控制好,以确保混合物能够均匀地热融合。
3.切割:将热压成型后的块状混合物切割成适当大小的块。
4.注塑成型第一次:将切割好的混合物块放入注塑机中进行第一
次注塑成型,注塑温度和压力需要控制好,以确保成型品的尺寸和形状符合要求。
5.切除注塑件的槽:将注塑成型好的件放入切割机中,进行槽的
切除,以便后续的注塑加工。
6.注塑成型第二次:将槽切除后的件放入注塑机中进行第二次注
塑成型,注塑温度和压力需要控制好,以确保成型品的尺寸和形状符合要求。
7.表面处理:将注塑成型好的件进行表面处理,可以采用涂装、
烤漆、喷涂等方法,以提高产品的美观度和防腐性能。
8.检验和包装:对成型好的产品进行检验,确保产品质量符合要
求后进行包装,以便运输和销售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯,不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快,作为一种新型高科技材料,石墨烯具有超薄、强韧、稳定、导电性好等诸多现有材料无法比拟的优点,石墨烯最终可能替代硅,引发一场全面的电子工业革命。
石墨烯广泛用于军事、电子工业领域。
石墨烯在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂。
产业链结构分析
石墨烯的研究热潮也吸引了国内外材料制备研究的兴趣,石墨烯材料的制备方法已报道的有:机械剥离法、化学氧化法、晶体外延生长法、化学气相沉积法、有机合成法和碳纳米管剥离法等。
微机械剥离法
2004年,Geim等首次用微机械剥离法,成功地从高定向热裂解石墨(highlyorientedpyrolyticgraphite)上剥离并观测到单层石墨烯。
Geim研究组利用这一方法成功制备了准二维石墨烯并观测到其形貌,揭示了石墨烯二维晶体结构存在的原因。
微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求,2004年只能作为实验室小规模制备。
化学气相沉积法
化学气相沉积法(ChemicalVaporDeposition,CVD)首次在规模化制备石墨烯的问题方面有了新的突破(参考化学气相沉积法制备高质量石墨烯)。
CVD法是指反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。
麻省理工学院的Kong等、韩国成均馆大学的Hong等和普渡大学的Chen等在利用CVD法制备石墨烯。
他们使用的是一种以镍为基片的管状简易沉积炉,通入含碳气体,如:碳氢化合物,它在高温下分解成碳原子沉积在镍的表面,形成石墨烯,通过轻微的化学刻蚀,使石墨烯薄膜和镍片分离得到石墨烯薄膜。
这种薄膜在透光率为80%时电导率即可达到1.1×106S/m,成为透明导电薄膜的潜在替代品。
用CVD法可以制备出高质量大面积的石墨烯,但是理想的基片材料单晶镍的价格太昂贵,这可能是影响石墨烯工业化生产的重要因素。
CVD法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。
溶剂剥离法
溶剂剥离法的原理是将少量的石墨分散于溶剂中,形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,此时溶剂可以插入石墨层间,进行层层剥离,制备出石墨烯。
此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。
在氮甲基吡咯烷酮中石墨烯的产率最高(大约为8%),电导率为6500S/m。
研究发现高定向热裂解石墨、热膨胀石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。
溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学、多功能复合材料等领域的应用提供了广阔的应用前景。
缺点是产率很低。
溶剂热法
溶剂热法是指在特制的密闭反应器(高压釜)中,采用有机溶剂作为反应介质,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中自身产生高压而进行材料制备的一种有效方法。
溶剂热法解决了规模化制备石墨烯的问题,同时也带来了电导率很低的负面影响。
为解决由此带来的不足,研究者将溶剂热法和氧化还原法相结合制备出了高质量的石墨烯。
Dai 等发现溶剂热条件下还原氧化石墨烯制备的石墨烯薄膜电阻小于传统条件下制备石墨烯。
溶
剂热法因高温高压封闭体系下可制备高质量石墨烯的特点越来越受科学家的关注。
溶剂热法和其他制备方法的结合将成为石墨烯制备的又一亮点。
氧化-还原法
氧化-还原法制备成本低廉且容易实现,成为制备石墨烯的最佳方法,而且可以制备稳定的石墨烯悬浮液,解决了石墨烯不易分散的问题。
氧化-还原法是指将天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。
氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的最简便的方法,得到广大石墨烯研究者的青睐。
Ruoff等发现通过加入化学物质例如二甲肼、对苯二酚、硼氢化钠(NaBH4)和液肼等除去氧化石墨烯的含氧基团,就能得到石墨烯。
氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。
氧化-还原法的缺点是宏量制备容易带来废液污染和制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些将导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制。