Multisim模拟电子技术仿真实验

合集下载

虚拟仿真实验报告

虚拟仿真实验报告

电子技术虚拟仿真实验报告专业:班级:姓名:学号:实验一、单级阻容耦合放大电路仿真实验一、实验目的1、进一步熟悉multisim10软件的使用方法。

2、学会用multisim10软件分析单管放大电路的主要性能指标。

3、了解仿真分析法中的直流工作点分析法。

4、掌握测量放大器的电压放大倍数。

5、掌握静态工作点变化对放大器输出波形的影响。

6、了解不同的负载对放大倍数的影响。

7、学会测量放大器输入、输出电阻的方法。

二、实验内容及步骤1.静态工作点的测试(1)在电子仿真软件Multisim 10基本界面的电子平台上组建如图1所示的仿真电路。

双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”R”。

栏改成“1”,将“Label”选项卡的“RefDes”栏改成“P图1单级阻容耦合放大电路仿真电路图R大约在35%左右时,利用直流工作点分析方法分析直流工作点(2)调节P的值。

直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 10自动将电路分析条件设为电感、交流电压源短路,电容断开。

单击Multisim 10菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。

单击Simulate 按钮进行直流工作点分析。

分析结果如图3所示。

列出了单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。

图2 直流工作点分析选项对话框图3 直流工作点分析结果2. 电压放大倍数测试(1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验1.实验目的用Multisim 的仿真软件对数字电路进行仿真研究。

2.实验内容实验19.1 交通灯报警电路仿真交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。

出故障时报警灯亮。

设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。

字母Z 表示报警灯,高电平表示报警。

则真值表如表 19.1所示。

逻辑表达式为:RY RG G Y R Z ++=若用与非门实现,则表达式可化为:RY RG G Y R Z ⋅⋅= Multisim 仿真设计图如图19.1所示:图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。

用发光二极管LED1的亮暗模拟报警灯的亮暗。

另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500表19.1LED_redLED1图19.1欧姆电阻。

在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。

实验19.2数字频率计电路仿真数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。

如果用2位数码管,则测量的最大频率是99Hz。

数字频率计电路Multisim仿真设计图如图19.2所示。

其电路结构是:用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。

四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。

信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。

Multisim模拟电路仿真实例

Multisim模拟电路仿真实例
同时R3还将Vo反馈到运放U1的同相输入端,作为滞回比较器的 输入, 构成闭环。
滞回比较器
UREF 为参考电压;输 出电压 uO 为 +UZ 或 -UZ;uI 为输入电压。
当 u+ = u- 时,输出电压 的状态发生跳变。
u
RF R2 RF
U REF
R2 R2 RF
uO
UT-
比较器有两个不同的门限电平,
故传输特性呈滞回形状。
uO
+UZ
UT+
O
uI
-UZ
若 uO = UZ ,当 uI 逐渐增大时,使 uO 由 +UZ 跳变为
-UZ 所需的门限电平 UT+
UT
Байду номын сангаас
RF R2 RF
U REF
R2 R2 RF
UZ
若 uO= UZ ,当 uI 逐渐减小时,使 uO 由 UZ 跳变 为 UZ 所需的门限电平 UT
图5-25 乙类互补对称功放电路
运行仿真: 从中可以发现输出信号的波形有明显的交越失真。
其失真原因
当输入信号较小时,达不到三极 管的开启电压,三极管不导电。
因此在正、负半周交替过零处会出 现非线性失真,即交越失真。
输入波形
输出波形
其失真范围如何呢? 下面进行直流扫描分析,以便确定其交越失真的范围。
图5-24 波特图仪显示结果
若将信号源的频率分别修改为200Hz 和1MHz ,再次启动仿真,其输出电 压有何变化?
200Hz
1KHz
适当修改参数R1、R2、R3、R4和C1、C2,观察通带电压放大倍数和通带
截止频率的变化?
增如大果RR11输太出大波, 形输幅出度会增?大

模拟电子技术基础仿真实验

模拟电子技术基础仿真实验

模拟电子技术基础仿真
实验报告
2013020913018 张东恒
研究二极管对直流量和交流量表现的不同特点仿真电路如下:
图中所使用的直流电压源电压大小分别为1V和6V
采用了在multisim中型号为1N3064的二极管进行试验
三,仿真内容
1,在直流电流不同时二极管管压降的变化。

利用万用表测得电阻上的直流电压,从而得到二极管管压降
2,在直流电流不同时二极管等效电阻的变化。

利用万用表的交流电压档测得电阻上交流电压的有效值,从而得到二极管交流电压的有效值
四,仿真结果
在读仿真结果的时候,为了方便读数,在电阻两端并接了一个万用表,以便一次读取直流和交流两个参数
数据汇总如下
直流电源V1/V 交流信号
V2/mV
R直流电压
表读数
R交流电压
表读数/mV
二极管直流
电压/V
二极管交流
电压/mV
1 10 406.56mV 9.33
2 593.44mV 0.668
4 10 5.301V 9.873 0.699V 0.127
五,结论
1,比较直流电源取值为1V和6V的条件下二极管的直流管压降可知,二极管的直流电流月大,管压降越大,管压降并不是常量
2,比较直流电源取值为1V和6V两种情况下二极管的直流管压降可知,二极管的直流电流越大,其交流管压降越小,说明随着静态电流的增大,动态电阻将减小;两种情况下电阻的交流压降均接近输入交流电压值,说明二极管的动态电阻很小。

模电实验-共射放大电路Multisim仿真

模电实验-共射放大电路Multisim仿真

Multisim模拟电路仿真实验1.Multisim用户界面与根本操作1.1Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件与仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司〔Interactive Image Technologies,简称IIT公司〕推出的以Windows为根底的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench〔电子工作台,简称EWB〕,以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB 进展了较大变动,名称改为Multisim〔多功能仿真软件〕。

IIT后被美国国家仪器〔NI,National Instruments〕公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其根本操作。

图1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成局部。

图1-1 Multisim10用户界面菜单栏与Windows应用程序相似,如图1-2所示。

图1-2 Multisim菜单栏其中,Options菜单下的Global Preferences和Sheet Properties可进展个性化界面设置,Multisim10提供两套电气元器件符号标准:ANSI:美国国家标准学会,美国标准,默认为该标准,本章采用默认设置;DIN:德国国家标准学会,欧洲标准,与中国符号标准一致。

模拟电子技术仿真与实验报告

模拟电子技术仿真与实验报告
2、电压放大倍数的测量
4
(1)打开信号发生器的电源,输入信号频率为 1KHz、幅度为 20mV 的正弦信号,输出端 开路时,用示波器分别测出 Vi,Vo’的大小,然后根据式(2.1-5)算出电压放大倍数。 (2)放大器输入端接入 2kΩ的负载电阻 R6,保持输入电压 Vi 不变,测出此时的输出电 压 Vo,并算出此时的电压放大倍数,分析负载对放大电路电压放大倍数的影响。 (3)用示波器双踪观察 Vo 和 Vi 的波形,比较它们之间的相位关系。 3、输入电阻和输出电阻的测量 (1)用示波器分别测出电阻两端的电压 V 和 V,利用式(2.1-6)便可算出放大电路的 输入电阻 Ri 的大小。 (2)根据测得的负载开路时输出电压 Vo’和接上负载时的输出电压 Vo,利用式(2.1-7) 便可算出放大电路的输出电阻 Ro。记录实验数据。
三、实验内容
计算机仿真部分: 根据电路画出实验仿真电路图。其中得到的波特图绘制仪的命令为 “SimulateInstrumentBode Plotter”。
(2)调节 J1 将开关打到下面,测试电路的开环基本特性。
10
将信号发生器输出调为 1kHz、10mVp(峰值)正弦波,然后接入放大器的输入端到网络的波 特图如下图。
当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点具
体的调节步骤如下:
现象
出现截止失真 出现饱和失真 两种失真都出现
无失真
动作
减小 R
增大 R
减小输入信号 加大输入信号
根据示波器上观察到的现象,做出不同的调整动作,反复进行。当加大输入信号,两种失
真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流
电极电流 ICQ 和管压降 VCEQ。其中 VCEQ 可直接用万用表直流电压档测 C-E 极间的电压既得, 而 ICQ 的测量则有直接法和间接法两种: 直接法:将万用表电流档串入集电极电路直接测量。此法精度高,但要断开集电极回路,

Multisim电路仿真实验报告

Multisim电路仿真实验报告

Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。

2使用软件:NI Multisim student V12。

(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。

4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。

初步了解各部分的功能。

(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。

自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。

(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。

通过显示隐藏各工具栏,体会其功能和工具栏的含义。

关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。

(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。

另有一类只有封装没有模型的元件,只能布线不能仿真。

在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。

元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。

其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。

本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。

通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。

一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。

Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。

Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。

2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。

例如,电阻器的阻值、电容器的容值、电源的电压等。

这些参数值将直接影响到电路的仿真结果。

3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。

根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。

4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。

通过分析这些仿真结果,可以评估电路的性能和工作情况。

二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。

以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档