数字图像实验报告二图像的灰度变换与直方图均衡
数字图像处理实验报告直方图均衡化

数字图像处理实验报告实验名称:直方图均衡化姓名:班级:学号:专业:电子信息工程(2+2)指导教师:陈华华实验日期:2012年5月24日直方图均衡化图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。
直方图均衡化是最常见的间接对比度增强方法。
直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
缺点:1)变换后图像的灰度级减少,某些细节消失;2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。
直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过这种方法,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。
在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。
这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。
(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态范围的一致性。
数字图像处理实验报告(图像灰度变换处理)

数字图像处理实验报告班级:姓名:学号:数字图像处理实验报告一.实验名称:图像灰度变换二.实验目的:1 学会使用Matlab;2 学会用Matlab软件对图像灰度进行变换,感受各种不同的灰度变换方法对最终图像效果的影响。
三.实验原理:Matlab中经常使用的一些图像处理函数:读取图像:img=imread('filename'); //支持TIFF,JPEG,GIF,BMP,PNG,XWD等文件格式。
显示图像:imshow(img,G); //G表示显示该图像的灰度级数,如省略则默认为256。
保存图片:imwrite(img,'filename'); //不支持GIF格式,其他与imread相同。
亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in至high_in之间的值映射到low_out至high_out之间,low_in 以下及high_in以上归零。
绘制直方图:imhist(img);直方图均衡化:histeq(img,newlevel); //newlevel表示输出图像指定的灰度级数。
像平滑与锐化(空间滤波):w=fspecial('type',parameters);imfilter(img,w); //这两个函数结合将变得十分强大,可以实现photoshop里的任意滤镜。
图像复原:deconvlucy(img,PSF); //可用于图像降噪、去模糊等处理。
四.实验步骤:1.获取实验用图像:Fig3.10(b).jpg. 使用imread函数将图像读入Matlab。
2.产生灰度变换函数T1,使得:0.3r r < 0.35s = 0.105+2.6333(r–0.35) 0.35 ≤ r ≤ 0.65 1+0.3(r–1) r > 0.65用T1对原图像Fig3.10(b).jpg进行处理,打印处理后的新图像。
数字图像处理实验报告

目录实验一:数字图像的基本处理操作 (4):实验目的 (4):实验任务和要求 (4):实验步骤和结果 (5):结果分析 (8)实验二:图像的灰度变换和直方图变换 (9):实验目的 (9):实验任务和要求 (9):实验步骤和结果 (9):结果分析 (13)实验三:图像的平滑处理 (14):实验目的 (14):实验任务和要求 (14):实验步骤和结果 (14):结果分析 (18)实验四:图像的锐化处理 (19):实验目的 (19):实验任务和要求 (19):实验步骤和结果 (19):结果分析 (21)实验一:数字图像的基本处理操作:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。
3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。
:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。
3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。
4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。
:实验步骤和结果1.对实验任务1的实现代码如下:a=imread('d:\');i=rgb2gray(a);I=im2bw(a,;subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title('灰度图像');subplot(1,3,3);imshow(I);title('二值图像');subplot(1,3,1);imshow(a);title('原图像');结果如图所示:图原图及其灰度图像,二值图像2.对实验任务2的实现代码如下:a=imread('d:\');A=imresize(a,[800 800]);b=imread('d:\');B=imresize(b,[800 800]);Z1=imadd(A,B);Z2=imsubtract(A,B);Z3=immultiply(A,B);Z4=imdivide(A,B);subplot(3,2,1);imshow(A);title('原图像 A'); subplot(3,2,2);imshow(B);title('原图像 B'); subplot(3,2,3);imshow(Z1);title('加法图像'); subplot(3,2,4);imshow(Z2);title('减法图像'); subplot(3,2,5);imshow(Z3);title('乘法图像'); subplot(3,2,6);imshow(Z2);title('除法图像');结果如图所示:3.对实验任务3的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j); %直流分量移到频谱中心I=log(abs(k)); %对数变换m=fftshift(j); %直流分量移到频谱中心RR=real(m); %取傅里叶变换的实部II=imag(m); %取傅里叶变换的虚部A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶变换频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶变换频谱');结果如图所示:4.对实验任务4的实现代码如下:s=imread('d:\');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j);I=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=imrotate(s,-90);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶频谱');subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱');结果如图所示::结果分析对MATLAB软件的操作开始时不太熟悉,许多语法和函数都不会使用,写出程序后,调试运行,最开始无法显示图像,检查原因,是有些标点符号没有在英文状态下输入和一些其他的细节,学会了imread(),imshow(),rgb2gray()等函数。
数字图像处理实验实验报告 实验二

数字图像处理实验实验报告(实验一)一、实验目的:1、直方图显示2、计算并绘制图像直方图3、直方图均衡化二.程序脚本clear all;RGB=imread('me.jpg');figure;imshow(RGB);title('图1 彩色图');%========================================================== I=rgb2gray(RGB);figure;imshow(I);title('图2 灰度图');%========================================================= figure;imhist(I);title('灰度直方图');%========================================================= hi=imhist(I);j=1;%为使画出的直方图更好看,在此进行了抽样for(i=1:256)if(mod(i,10)==1)h(j)=hi(i);j=j+1;endendn=0:10:255;figure;stem(n,h);axis([0 255 0 2500]);title('图3.1 stem显示直方图');figure;bar(n,h);axis([0 255 0 2500]);title('图3.2 bar显示直方图');figure;plot(n,h);axis([0 255 0 2500]);title('图3.3 plot显示直方图');%========================================================= I=rgb2gray(RGB);figure;subplot(3,2,1);imshow(I);title('图4.1 原始灰度图');subplot(3,2,2);imhist(I);title('图4.2 原始灰度直方图');%=============================J1=imadjust(I);subplot(3,2,3);imshow(J1);title('调整对比度以后的图');subplot(3,2,4);imhist(J1);title('调整对比度以后的灰度直方图');%=================================J2=histeq(I);subplot(3,2,5);imshow(J2);title('均衡化以后的的图');subplot(3,2,6);imhist(J2);title('均衡化以后的灰度直方图');三.实验结果图1 彩色图图2 灰度图010002000灰度直方图10020010020005001000150020002500图3.1 stem 显示直方图10020005001000150020002500图3.2 bar 显示直方图10020005001000150020002500图3.3 plot 显示直方图图4.1 原始灰度图10002000图4.2 原始灰度直方图0100200调整对比度以后的图010002000调整对比度以后的灰度直方图0100200均衡化以后的的图02000均衡化以后的灰度直方图100200。
实验二图像的灰度增强、直方图均衡化

《图像处理技术》实验报告实验名称:图像的灰度增强、直方图均衡化专业:测控技术与仪器班级: B15124 *名:**学号: *********** 实验地点: 9-513 实验日期: 2018.10.22机电工程学院实验二 图像的灰度增强、直方图均衡化一、实验目的⏹ 学习图像读取和显示及图像的矩阵表示; ⏹ 学习图像的灰度变换增强处理方法; ⏹学习图像直方图表示及均衡化。
二、实验要求1 对一幅灰度图像,读取和显示图像;2实现图像的灰度变换增强处理:灰度反转、对数变换、窗切片。
给出处理后的图像。
3实现图像的直方图均衡化。
给出原图和处理后的图像,以及图像处理前后的直方图。
三、主要仪器设备1、 计算机一台2、 Matlab 软件平台四、实验原理1 数字图像的表示:()[]()()()()()()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=1,11,10,11,11,10,11,01,00,0,N M f M f M f N f f f N f f f y x f2 几种图像灰度变换 ● 灰度反转g = L -1-f●对数变换()f c g +⋅=1log●窗切片1) 错误!未找到引用源。
2) 错误!未找到引用源。
● 直方图均衡化五、实验结果及分析1. 读取显示 f=imread('lena.jpg'); imshow(f);2. 灰度反转f=imread('lena.jpg'); fd=double(f);g=256-1-fd;p=uint8(g); imshow(p);3. 对数变换f=imread('lena.jpg'); fd=double(f);g=40*log(1+fd);p=uint8(g); imshow(p);4. 窗切片f=imread('lena.jpg');for i=1:256for j=1:256if f(i,j)>=80&&f(i,j)<=180; g(i,j)=255;elseg(i,j)=0;endendimshow(g);end5. 直方图均衡化f=imread('lena.jpg');subplot(2,2,1);imshow(f);subplot(2,2,2);imhist(f);g=histeq(f,256);subplot(2,2,3);imshow(g);subplot(2,2,4);imhist(g);六、分析思考直方图均衡化之后的图像为什么比原图的视觉效果更好?因为直方图均衡化处理之后,原来比较少像素的灰度会被分配到别的灰度去,像素相对集中,处理后灰度范围变大,对比度变大,清晰度变大,所以能有效增强图像。
数字图像处理实验二报告

贵州大学实验报告学院:专业:班级:姓名学号实验组实验时间指导教师成绩实验项目名称实验二:数字图像的空域增强处理实验目的通过本实验的学习使学生熟悉和掌握数字图像中的空域增强的一些典型方法:直方图的均衡化处理、平滑滤波、锐化滤波。
实验要求集中授课的教学形式实验原理1、直方图均衡化:基本思想:把原始图的直方图变换为均匀分布的形式,这样就增加了灰度值的动态范围从而达到增强图像整体对比度的效果。
其优点是能自动地增强整个图像的对比度。
均衡化步骤:(1)列出原始灰度级;(2)归一化原始灰度级;(3)统计原始直方图个灰度级像素kn;(4)计算原始直方图;(5)计算累计直方图;(6)确定映射关系(原则是:取最靠近的灰度级别);(7)统计新直方图各灰度级像素kn(8)计算新直方图;也可以用以下方法:(1)计算出原始图像的所有灰度级ks,1,,1,0-=Lk ;(2)统计原始图像各灰度即的像素数k n ;(3)计算原始图像的直方图n n s p kk =)(,1,,1,0-=L k ;(4)计算原始图像的累积直方图)()(00∑∑=====ki i s ki ik k s p n n s EH t ;(5)取整运算:])1int[(N kt N t k k +-=;(6)定义映射关系k k t s →;(7)统计新直方图各灰度级的像素数k n ;(8)计算新的直方图n n t p kk t =)(;2、邻域平均法对含噪声原始图像),(y x f 的每个像素点取一个邻域S 。
计算S 中的所有像素灰度级的平均值,作为空间域平均处理后图像),(y x g 的像素值。
即:∑∈=Sy x y x f My x g ),(),(1),(其中M 为邻域S 中的像素点数。
3、中值滤波对含噪声原始图像),(y x f 的每个像素点取一个邻域S (一般选取奇数点模板窗口)。
选取S 中的所有像素灰度级的中间值,作为空间域平均处理后图像),(y x g 的像素值。
数字图像实验报告二图像的灰度变换与直方图均衡

实验二图像的灰度变换与直方图均衡一、实验目的1.理解图像灰度变换与直方图均衡的定义;2.掌握图像灰度变换与直方图均衡化的方法;3.学会利用matlab编程实现灰度变换和直方图均衡的方法。
二、实验内容1. 利用matlab语言直接编程实现图像的对比度调整;2. 利用matlab语言编程实现图像的反转;3. 利用matlab语言直接编程实现图像的二值化;4. 利用matlab语言直接编程实现图像的直方图均衡化处理。
三、实验步骤(一)利用matlab语言直接编程实现图像的对比度调整实验代码如下:A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');I=double(A);J=I*0.5+40;A1=uint8(J);figure(1);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=I*1+40;A1=uint8(J);figure(2);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=I*3+40;A1=uint8(J);figure(3);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1);J=exp(I);A1=uint8(J);figure(4);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(A1); 生成图像如下:从图中可以看出,第一幅图相对于原图的对比度降低了,第二幅图相对于原图对比度提高了40个灰度级,第三幅图对比度提高太多,效果反而不好。
在三幅图中,第二幅图视觉效果最好,对比度明显又不至于太亮。
第四幅图是指数灰度变换。
(二)利用matlab语言编程实现图像的反转实验代码如下:A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');E=imadjust(A,[0.35 0.65],[1 0]);figure;imshow(E);生成图像如下:从图中可以看出,原来亮的部分经过反转之后变暗,暗的部分经过反转变亮。
数字图像处理实验二(直方图均衡化)

数字图像处理实验二直方图均衡化(直方图均衡化实质上是减少图象的灰度级以换取对比度的加大)例如:假设原图的灰度分布级为126(最大为256,也就是从0到255的级上的灰度都有或多或少的出现),经过直方图均衡化后,灰度分布级别将会小于126。
编程的时候请按照直方图均衡化公式进行。
下面给出大致的编程思路和源代码:其中黑框部分需要自己编写源代码1)利用第一次实验课提供的dhc.h 和dhc.c文件以获取位图的高宽以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。
利用include命令#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"思考问题:#include <*.h> 和#include "*.h"在程序运行中有什么差别?2)定义结构指针struct bmphdr *hdr;定义用于直方图变量unsigned char *bitmap, new_color[256];定义计算灰度分布,灰度累计分布的数组int count[256], acum[256];3)main()函数编写//定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j, nr_pixels;//定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像FILE *fp, *fpnew;//定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。
argc=3;argv[1]="test.bmp";argv[2]="testzf.bmp";//参数输入出错显示if (argc != 3) {printf("please input the name of input and out bitmap files\n");exit(1);}// 获取位图文件相关信息hdr = get_header(argv[1]);if (!hdr) exit(1);//以二进制可读方式打开输入位图文件fp = fopen(argv[1], "rb");if (!fp) {printf("File open error!\n");exit(1);}// 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET);//计算位图像素的个数nr_pixels = hdr->width * hdr->height;bitmap = malloc(nr_pixels);//读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp);memset(count, 0, sizeof(count));//计算每个灰度级上像素的个数结果存入count[]数组中memcpy(acum, count, sizeof(acum));//计算灰度的累计分布for (i = 1; i < 256; i++)acum[i] += acum[i-1];//灰度直方图的均衡化(核心程序部分,请仔细分析)为了方便大家编程实现,这里直接给出了源代码,本实验最核心的部分就在这里//}//对所有的像素灰度值按照均衡化得到的灰度对应规则进行转换,结果存入bitmap[]中//fpnew = fopen(argv[2], "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew);////关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);return 0;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二图像的灰度变换与直方图均衡
一、实验目的
1.理解图像灰度变换与直方图均衡的定义;
2.掌握图像灰度变换与直方图均衡化的方法;
3.学会利用matlab编程实现灰度变换和直方图均衡的方法。
二、实验内容
1. 利用matlab语言直接编程实现图像的对比度调整;
2. 利用matlab语言编程实现图像的反转;
3. 利用matlab语言直接编程实现图像的二值化;
4. 利用matlab语言直接编程实现图像的直方图均衡化处理。
三、实验步骤
(一)利用matlab语言直接编程实现图像的对比度调整
实验代码如下:
A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');
I=double(A);
J=I*0.5+40;
A1=uint8(J);
figure(1);subplot(1,2,1),imshow(A);
subplot(1,2,2),imshow(A1);
J=I*1+40;
A1=uint8(J);
figure(2);subplot(1,2,1),imshow(A);
subplot(1,2,2),imshow(A1);
J=I*3+40;
A1=uint8(J);
figure(3);subplot(1,2,1),imshow(A);
subplot(1,2,2),imshow(A1);
J=exp(I);
A1=uint8(J);
figure(4);subplot(1,2,1),imshow(A);
subplot(1,2,2),imshow(A1); 生成图像如下:
从图中可以看出,第一幅图相对于原图的对比度降低了,第二幅图相对于原图对比度提高了40个灰度级,第三幅图对比度提高太多,效果反而不好。
在三幅图中,第二幅图视觉效果最好,对比度明显又不至于太亮。
第四幅图是指数灰度变换。
(二)利用matlab语言编程实现图像的反转
实验代码如下:
A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');
E=imadjust(A,[0.35 0.65],[1 0]);
figure;imshow(E);
生成图像如下:
从图中可以看出,原来亮的部分经过反转之后变暗,暗的部分经过反转变亮。
(三)利用matlab语言直接编程实现图像的二值化
实验代码如下:
I=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg');%要阈值化的图像
imshow(I);
M=I;
[m,n]=size(M);
for i=1:m
for j=1:n
if(M(i,j)<120)
M(i,j)=0;
else
M(i,j)=255;
end
end
end
figure,imshow(M);%M是二值化的图像生成图像如下:
程序设置的阈值是120,灰度级低于120的变为0(最暗),高于120的将变为255(最亮)。
(四)利用matlab语言直接编程实现图像的直方图均衡化处理
实验代码如下:
PS=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\qiao.jpg'); %读入JPG图像文件
PS=rgb2gray(PS);
imwrite(PS,'qiao灰度图.bmp'); %转换为灰度化并保存
figure(1);
imshow(PS) %显示出来
title('输入图像')
%绘制直方图
[m,n]=size(PS); %测量图像尺寸参数
GP=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置
end
figure(2),bar(0:255,GP,'g') %绘制直方图
title('原图像直方图')
xlabel('灰度值')
ylabel('出现概率')
%直方图均衡化
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=GP(j)+S1(i); %计算Sk
end
end
S2=round((S1*256)+0.5); %将Sk归到相近级的灰度
for i=1:256
GPeq(i)=sum(GP(find(S2==i))); %计算现有每个灰度级出现的概率
end
figure(3),bar(0:255,GPeq,'b') %显示均衡化后的直方图
title('均衡化后的直方图')
xlabel('灰度值')
ylabel('出现概率')
%均衡化后的图像
PA=PS;
for i=0:255
PA(find(PS==i))=S2(i+1); %将各个像素归一化后的灰度值赋给这个像素
end
figure(4),imshow(PA) %显示均衡化后的图像
title('均衡化后图像')
imwrite(PA,'qiao均衡后.bmp');
生成图像如下:
从图中可以看出,经过直方图均衡后,各灰度级出现概率有了一定的
变化,原先概率大的略有降低,概率小的略有升高,尤其是220~25
灰度级有了明显的提高。
从图片质量上来看,均衡化后的图像桥的钢架结构更加清晰,天空中云彩更加艳丽,总体效果比均衡化之前好。
四、实验总结
这次实验主要是对图像的灰度变换和直方图均衡化,实验内容包括灰度拉伸、图像反转、图像的二值化以及直方图均衡。
通过实验将课本上理论知识加以实践,实验过程中明白了图像处理的一些技巧,同时也明白了,不同的图像的处理方法是不完全一致的,例如,实验时,我发现对“qiao”图像的直方图均衡处理效果很好,但同样的方法对于“lena”图像效果却不是很明显。
-11 -。