简单信号发生器设计
简易信号发生器设计课程设计

摘要波形发生器是一种常常利用的信号源,普遍地应用于电子电路、自动控制系统和教学实验等领域。
本次课程设计利用的AT89C51 单片机组成的发生器可产生锯齿波、三角波、正弦波等多种波形,波形的周期能够用程序改变,并可按照需要选择单极性输出或双极性输出,具有线路简单、结构紧凑等长处。
在本设计的基础上,加上按钮控制和LED显示器,则可通过按钮设定所需要的波形频率,并在LED上显示频率、幅值电压,波形可用示波器显示。
用AT89C51单片机采用程序设计方式组成的波形发生器,可产生方波、三角波、正弦波,再通过DA转换器DAC0832将数字信号转换成模拟信号,并通过LM324集成运放把信号放大,通过示波器将波形显示在屏幕上。
波形的周期可用程序改变,此设计具有线路简单、结构紧凑、性能优越等特点。
通过仿真测试,其性能指标达到了设计要求,均达到了课程设计的目的。
一、设计原理数字信号能够通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方式来取得所需要的波形。
AT89C51单片机本身就是一个完整的微型运算机,具有组成微型运算机的各部份部件:中央处置器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、按时器/计数器和串行通信接口等,只要将AT89C51再配置键盘及其接口、显示器及其接口、数模转换及波形输出、指示灯及其接口等四部份,即可组成所需的波形发生器,其信号发生器组成原理框图如下图所示。
图信号发生器原理框图AT89C51是整个波形发生器的核心部份,通进程序的编写和执行,产生各类各样的信号,当数字信号电路抵达转换电路,将其转换成模拟信号也就是所需要的输出波形。
并通过滤波放大电路将波形输出出来。
二、设计内容一、运用keil软件对程序进行编写,运行程序,并进行程序修改。
二、运用protues软件进行硬件电路仿真设计。
3、将程序下载到仿真单片机中,并观测输出波形。
4、对程序进行修改,再次运行仿真软件,直到输出理想的波形。
简易信号发生器课程设计

简易信号发生器课程设计一、课程目标知识目标:1. 理解信号发生器的基本原理,掌握其组成部分及功能;2. 学会使用简易信号发生器产生不同频率、不同幅度的正弦波、方波和三角波;3. 掌握信号发生器在实际应用中的使用方法,如调整频率、幅度和波形。
技能目标:1. 能够正确组装和调试简易信号发生器,具备基本的动手实践能力;2. 学会运用信号发生器进行简单的信号分析和处理,提高实际操作技能;3. 培养学生对电子电路的故障排查和解决问题的能力。
情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发其探索精神和创新意识;2. 增强学生的团队合作意识,学会在小组讨论中倾听他人意见,共同解决问题;3. 培养学生严谨、认真、负责的学习态度,养成良好的实验操作习惯。
本课程针对高年级学生,结合学科特点,注重理论知识与实践操作的相结合,旨在提高学生的动手能力、创新意识和实际应用能力。
课程设计遵循由浅入深、循序渐进的原则,使学生能够充分理解信号发生器的原理,掌握相关技能,并培养积极的情感态度价值观。
通过本课程的学习,学生将能够独立完成简易信号发生器的组装、调试和应用,为后续电子技术课程打下坚实基础。
二、教学内容1. 信号发生器的基本原理及组成部分- 介绍信号发生器的功能、分类及工作原理;- 分析简易信号发生器的电路结构,包括振荡器、放大器、波形整形电路等。
2. 简易信号发生器的组装与调试- 指导学生根据电路图正确组装简易信号发生器;- 教授调试方法,使学生能够调整信号发生器输出不同频率、不同幅度的正弦波、方波和三角波。
3. 信号发生器的应用- 介绍信号发生器在电子实验、信号分析和故障诊断等方面的应用;- 演示如何使用简易信号发生器进行信号处理和实验操作。
4. 教学内容安排与进度- 第一章节:信号发生器的基本原理及组成部分(2课时)- 第二节点:简易信号发生器的组装与调试(4课时)- 第三节点:信号发生器的应用(2课时)5. 教材章节及内容列举- 教材第四章:振荡器原理及设计;- 教材第五章:放大器原理及设计;- 教材第六章:波形整形电路及信号发生器应用。
简易信号发生器课程设计

简易信号发生器论文系部:计算机科学与技术系专业:计算机科学与技术班级:设计人:学号:一、简易信号发生器基本原理1、函数发生器的组成函数发生器一般是指能自动产生正弦波、方波、三角波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本论文介绍方波、三角波、正弦波函数发生器的方法。
1.方波发生器由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC积分器两大部分。
图11-2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。
它的特点是线路简单,但三角波的线性度较差。
主要用于产生方波,或对三角波要求不高的场合。
调节电位器RW (即改变R2/R1),可以改变振荡频率,但三角波的幅值也随之变化。
如要互不影响,则可通过改变Rf (或Cf)来实现振荡频率的调节。
图11-2 方波发生器2、 三角波和方波发生器如把滞回比较器和积分器首尾相接形成正反馈闭环系统,如图11-3 所示,则比较器A 1输出的方波经积分器A 2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。
图11-4为方波、三角波发生器输出波形图。
由于采用运放组成的积分电路,因此可实现恒流充电,使三角波线性大大改善。
图11-3 三角波、方波发生器电路振荡频率 fW f 12O )C R (R 4R R f +=方波幅值 U ′om =±U Z三角波幅值 Z 21om U R R U调节R W 可以改变振荡频率,改变比值21R R 可调节三角波的幅值。
图11-4 方波、三角波发生器输出波形图3、三角波变换成正弦波由运算放大器单路及分立元件构成,方波——三角波——正弦波函数发生器电路组成如图1所示,由于技术难点在三角波到正弦波的变换,故以下将详细介绍三角波到正弦波的变换。
图1(1) 利用差分放大电路实现三角波——正弦波的变换波形变换的原理是利用差分放大器的传输特性曲线的非线性,波形变换过程如图2所示。
简易信号发生器设计

模拟电子技术课程设计题目:简易信号发生器系别:电子科学系专业:电子信息科学与技术班级:姓名:学号:指导老师:2011.06.28简易信号发生器设计一、设计目的1、掌握信号发生器的设计方法和测试技术;2、了解单片函数发生器IC8038的工作原理和应用;3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。
二、设计要求与技术指标设计要求1、分析电路组成及工作原理;2、单元电路设计计算;3、采用RC桥式正弦波振荡器4、画出完整电路图;5、调试方法;6、小结与讨论。
技术指标失真度:γ<= 5%频率范围:20Hz~20KHz输出电压:不小于1V有效值(方波VP-P≤24V,三角波VP-P=6V,正弦波VP-P=1V;方波tr小于1uS)。
三、方案提示设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。
如下框图所示。
四、电路设计的一般过程1、总体方案所谓总体方案是用具有一定功能的若干单元电路构成一个整体,以满足课题题目所提出的要求和性能指标,实现各项功能。
方案选择就是按照系统总的要求,把电路划分成若干个功能块,得出能表示单元功能的整机原理框图。
按照系统性能指标要求,规划出各单元功能电路所要完成的任务,确定输出与输入的关系,确定单元电路的结构。
总体方案往往不止一个,应当针对糸统提出的任务、要求和条件,进行广泛调查研究,大量查阅参考文献和有关资料,广开思路,要敢于探索,努力创新,提出若干不同方案,仔细分析每个方案的可行性和优缺点,反复比较,争取方案的设计合理、可靠、经济、功能齐全、技术先进。
框图应能说明方案的基本原理,应能正确反映系统完成的任务和各组成部分的功能,清楚表示出系统的基本组成和相互关系。
方案选择必须注意下面两个问题:(1)要有全局观点,抓住主要矛盾。
(2)在方案选择时要充分开动脑筋,不仅要考虑方案是否可行,还要考虑怎样保证性能可靠,考虑如何降低成本,降低功耗,减小体积等许多实际的问题。
简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
课设报告——简易信号发生器

简易信号发生器设计摘要随着电子技术的飞快发展,单片机也应用得越来越广泛,基于单片机的智能仪器的设计技术不断成熟。
单片机构成的仪器具有高可靠性,高性价比。
单利用单片机采用程序设计方法来产生波形,线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强等优点,而且还能对波形进行细微的调整,改良波形,易于程序控制。
只要对电路稍加修改,调整程序,就能实现功能的升级。
本系统利用单片机AT89C51采用程序设计方法产生正弦波、三角波、方波、锯齿波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,并通过按键来控制四种波形的类型选择。
本次设计主要由信号发生模块、数模转换模块和仿真模块。
关键词:单片机;数模转换;液晶显示屏目录第1章概述 (1)第2章系统总体方案选择 (1)2.1 系统硬件设计图 (1)2.2系统软件设计 (1)第3章各单元硬件设计及工作原理 (2)3.1单片机最小系统的设计 (2)3.2 函数信号发生器的设计 (2)3.2.1DAC0832芯片工作方式的选择 (2)3.2.2DAC0832芯片外围电路的设计 (2)3.3LCD12864显示屏 (3)3.3.1LCD12864与LCD1602的区别 (3)3.3.2LCD12864显示屏原理及其硬件设计 (3)第4章软件设计与说明 (3)4.1软件设计思路 (3)4.2波形数据输出程序设计 (4)4.3LCD12864显示程序设计 (5)第5章调试结果及其说明与使用说明 (6)5.1调试过程中遇到的问题 (6)5.1.1LCD12864显示问题 (6)5.1.2幅值调节问题 (6)5.2使用说明 (6)第6章总结 (7)第7章参考文献 (8)附录 (9)第1章概述在本系统中,设计的要求为产生三角波、正弦波、方波信号,要求频率和幅值可调。
并且显示内容可以在LCD显示出来,在本系统中,主控为AT89C51单片机,D/A 转换芯片采用的为ADC0832,LCD显示屏采用LCD12864,本系统设置有三个控制按键,分别为频率转换按键、波形切换按键、幅值切换按键,通过这三个按键,可以对输出的波形进行控制,波形幅值为0—5V,分为5个幅值挡位,频率范围为40Hz—400Hz,分为50个频率挡位。
简易正弦信号发生器设计

简易正弦信号发生器设计
一、实验目的
1.进一步熟悉QuartusII及LPM-RAM宏模块与FPGA硬件资源的使用方法。
二、实验设备
计算机、和软件QuartusII和EDA/SOPC试验箱
三、试验内容
简易正弦信号发生器设计,要求ROM是8位数据线,8位地址线。
四、试验原理
打开QuartusII软件,在连接试验电路之前调入LPM-RAM-DQ宏模块,PLM-COUNER模块和74244芯片,再连接电路图,试验原理设计图如下:
图1-1键入64个正弦信号数据
图1-2简易正弦信号发生器顶层电路设计
五、实验结果
试验结果如下图:
图1-3综合后的RLT图
图1-4仿真波形图3.引脚锁定方案图
图1-5引脚锁定方案图
图1-6编程下载模式图
六、试验小节
一学期匆匆而过,通过大半学期的学习,我们学到了很多处理问题的技巧。
不过我们还要熟记很多单词,大多数的单词我们还不认识,相信通过进一步的学习,我们一定能学好这个软件。
我们也将以浓厚的兴趣和积极的态度去学习。
相信我们一定会有更加长足的进步。
简易函数信号发生器的设计报告

简易函数信号发生器的设计报告设计报告:简易函数信号发生器一、引言函数信号发生器是一种可以产生各种类型函数信号的设备。
在实际的电子实验中,函数信号发生器广泛应用于工程实践和科研领域,可以用于信号测试、测量、调试以及模拟等方面。
本文将着重介绍一种设计简易函数信号发生器的原理和方法。
二、设计目标本设计的目标是实现一个简易的函数信号发生器,能够产生包括正弦波、方波和三角波在内的基本函数信号,并能够调节频率和幅度。
同时,为了提高使用方便性,我们还计划增加一个显示屏,实时显示当前产生的信号波形。
三、设计原理1.信号源函数信号发生器的核心是信号发生电路,由振荡器和输出放大器组成。
振荡器产生所需的函数信号波形,输出放大器负责放大振荡器产生的信号。
2.振荡器为了实现多种函数波形的产生,可以采用集成电路作为振荡器。
例如,使用集成运算放大器构成的和差振荡器可以产生正弦波,使用施密特触发器可以产生方波,使用三角波发生器可以产生三角波。
根据实际需要,设计采用一种或多种振荡器来实现不同类型的函数信号。
3.输出放大器输出放大器负责将振荡器产生的信号放大到适当的电平以输出。
放大器的设计需要考虑到信号的频率范围和幅度调节的灵活性。
4.频率控制为了能够调节信号的频率,可以采用可变电容二极管或可变电阻等元件来实现。
通过调节这些元件的参数,可以改变振荡器中的RC时间常数或LC谐振电路的频率,从而实现频率的调节。
5.幅度控制为了能够调节信号的幅度,可以采用可变电阻作为放大电路的输入阻抗,通过调节电阻阻值来改变信号的幅度。
同时,也可以通过增加放大倍数或使用可变增益放大器来实现幅度的控制。
四、设计步骤1.确定电路结构和信号发生器的类型。
根据功能和性能需求,选择合适的振荡器和放大器电路,并将其组合在一起。
2.根据所选振荡器电路进行参数计算和元件的选择。
例如,根据需要的频率范围选择适合的振荡器电路和元件,并计算所需元件的数值。
3.设计输出放大器电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘.要.函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。
本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
关键词:函数信号发生器,方波,三角波,正弦波目录1.函数发生器的总方案及原理框图 (2)1.1 电路设计原理框图 (2)1.2 电路设计方案设计 (2)2.单元电路设计 (3)2.1 方波发生电路的工作原理 (3)2.2 方波---三角波转换电路的工作原理 (3)2.3 三角波---正弦波转换电路的工作原理 (6)2.4电路的参数选择及计算 (8)2.5 总电路图 (9)3.电路调试与仿真 (10)3.1 电路的调试 (10)3.2 方波---三角波发生电路的仿真 (11)3.3 三角波---正弦波转换电路的仿真 (12)4.课程设计总结 (13)附录:元器件明细清单 (14)参考文献第一章函数发生器的总方案及原理框图1.1 电路设计原理框图图1-11.2 电路方案设计(1)采用滞回比较器产生方波;(2)采用积分器将方波转换成三角波;(3)采用差分放大器将三角波转换成正弦波。
第二章单元电路设计2.1、方波发生电路的工作原理:此电路由反相输入的滞回比较器和RC电路组成。
RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。
设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。
Uo通过R3对电容C正向充电,如图中实线箭头所示。
反相输入端电位n随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。
随后,Uo又通过R3对电容C反向充电,如图中虚线箭头所示。
Un随时间逐渐增长而减低,当t趋于无穷大时,Un趋于-Uz;但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。
上述过程周而复始,电路产生了自激振荡。
图2-1 方波产生电路2.2 方波---三角波转换电路的工作原理:图2-2-1图2-2-1所示的电路能自动产生方波—三角波。
电路工作原理若下:若a 点断开,运放A1与R1、R2及R3、RP3组织成比较器,R1成为平衡电阻,运放的反相端接基准电压,及U_=0,同相端接输入电压Uia;比较器的输出Uo1的高电平等于正电源电压+Vcc,低电平等于负电源电压—VEE(|+Vcc|=|—VEE |),当比较器的U+=U-=0时,比较器翻转,输出U01从高电平+Vcc 跳到低电平—VEE,或从低电平—VEE跳到高电平+Vcc。
设U01=+Vcc,则错误!未找到引用源。
(2-2-1)式子中,RP1指的是电位器(以下同)。
将上式整理,得比较器翻转的下门限电位错误!未找到引用源。
(2-2-2)若Uo1=—VEE,则比较器翻转的上门线电位错误!未找到引用源。
(2-2-3)比较器的门限宽度错误!未找到引用源。
(2-2-4)由式子(2-2-1)~(2-2-4)可以得到比较器的电压传输特性,如图所示。
图2-2-2a点断开后,运放A2与R4、RP3、C2、及R5组成反相积分器,其输入信号为方波U01,则积分器的输出错误!未找到引用源。
(2-2-5)当U01=+Vcc时,错误!未找到引用源。
(2-2-6)当U01=-Vcc时,错误!未找到引用源。
(2-2-7) 可见积分器输入方波时,输出是一个上升速率与下降速率相等的三角波,其波形如图所示。
图2-2-3当a点闭合,即比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。
三角波的幅度为错误!未找到引用源。
(2-2-8)方波—三角波的频率错误!未找到引用源。
(2-2-9)由式子(2-2-8)及(2-2-9)可以得出以下结论:1.电位器RP2在调整方波—三角波的输出频率时,一般不会影响输出波形的幅度。
若要求输出频率的范围比较宽,则可用C2改变频率的范围,RP2实现频率微调。
2.方波的输出幅度约等于电源电压+Vcc 。
三角波的输出幅度不超过电源电压+Vcc。
电位器RP1可以实现幅度微调,但会影响方波—三角波的频率。
2.3 三角波---正弦波转换电路的工作原理三角波——正弦波的变换电路主要由差分放大电路来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
分析表明,传输特性曲线的表达式为:错误!未找到引用源。
(2-3-1)错误!未找到引用源。
(2-3-2)式中错误!未找到引用源。
错误!未找到引用源。
——差分放大器的恒定电流;错误!未找到引用源。
——温度的电压当量,当室温为25oc时,UT≈26mV。
如果Uid为三角波,设表达式为错误!未找到引用源。
错误!未找到引用源。
式中Um——三角波的幅度;T——三角波的周期。
错误!未找到引用源。
图2-3-1 三角波—正弦波变换电路错误!未找到引用源。
2-3-2三角波-正弦波转换传输特性曲线为使输出波形更接近正弦波,由图2-3-2可见:(1)传输特性曲线越对称,线性区越窄越好;(2)三角波的幅度Um应正好使晶体管接近饱和区或截止区。
(3)图为实现三角波——正弦波变换的电路。
其中Rp3调节三角波的幅度,Rp4调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。
电容C3,C4,C5为隔直电容,C6为滤波电容,以滤除谐波分波形量,改善输出2.4电路的参数选择与计算2.4.1方波-三角波部分运放A1与A2用741,因为方波的幅度接近电源电压+V CC=+12V,-V EE=-12V.比较器A1与积分器A2的元件参数计算如下。
由式(2-8)得错误!未找到引用源。
取错误!未找到引用源。
,则R3+RP1=40KΩ,取错误!未找到引用源。
,RP1为47K Ω的电位器。
平衡电阻R1=R2∥(R3+RP1)=8k错误!未找到引用源。
,取R1=8.2K Ω由式(2-2-9)得错误!未找到引用源。
即R4+RP2=(R3+RP1)/(4FC2R2)当100Hz≤f≤1kHz时,取C2=0.1uF, 则10KΩ<R4+RP2<100KΩ,取R4=1kΩ,RP2=100 kΩ。
当1kHz≤f≤10kH时,取C1=0.01uF以实现频率波段的转换,R4及RP2的取值不变。
取平衡电阻R5=10KΩ。
2.4.2三角波—>正弦波部分(1)差分放大器元件参数确定取R C1=R C2=10 KΩ,R B1=R B2=6.8 KΩ,取I0=1.1mA, 而I0=(R E4/R E3)I REF(2-4-1)I REF=V EE-U BE/(R E4+R)=12-0.7/R E4+R (2-4-2)取R E4=R=20 KΩ,代入(2-4-2),得I REF=0.28 mA,将I REF=0.28 mA代入(2-4-1),得R E3=5 KΩ(2)三角波—>正弦波变换电路的参数选择原则是:隔直电容C3、C4、C5要取得较大,因为输出频率不是很大,取C3=47uF,C4=C5=470uF,滤波电容错误!未找到引用源。
视输出的波形而定,若含高次斜波成分较多,错误!未找到引用源。
可取得较小,错误!未找到引用源。
一般为几十皮法至0.1微法。
这里取C6=0.1Uf, RE2=100欧与RP4=100欧姆相并联,以减小差分放大器的线性区。
差分放大器的静态工作点可通过观测传输特性曲线,调整RP4及电阻R确定.2.5总电路图:错误!未找到引用源。
图2-5方波-三角波-正弦波发生器实验电路(主要思路):先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。
第三章电路调试与仿真3.1电路的调试1方波—三角波发生器的调试比较器A1与积分器A2组成正反馈闭环电路,同时输出方波和正弦波,A1输出为方波,A2输出为三角波,微调RP1,使三角波的输出幅度满足设计指标要求,调节RP2,则输出频率连续可变。
2 三角波—正弦波变换的调试1)差分放大器传输传输特性曲线调试。
将C4与RP3的连线断开,经电容C4输入差模信号电压u id=50mV,f i=10kHz的正弦波。
调节R P4及电阻R,使传输特性曲线对称。
再逐渐增大u id,直到传输特曲线形状如图2-3-2所示,记下此时对应的u id,即u idm值。
移去信号源,再将C4左端接地,测量差分放大器的静态工作点Io、U c1Q、U c2Q、U c3Q、U c4Q。
2)三角波-正弦波变换电路的调试。
将RP3与C4连接,调节RP3使三角波的输出幅度经由RP3 后输出等于u idm值,这时U03的输出波形应接近正弦波,调整C6大小可以改善输出波形。
如果U03的波形出现如图3-1-1所示的几种正弦波失真,则应调整和修改电路参数,产生失真的原因及采取的相应措施有:①钟形失真:如图3-1-1(a)所示,传输特性曲线的线性区太宽,应减小R E2。
②半波圆顶或平顶失真:如图3-1-1(b)如示,传输特性曲线对称性差,工作点Q偏上或偏下,应调整电阻R。
③非线性失真:如图图3-1-1(c)所示,三角波的线性度较差引起的失真,主要受运放性能的影响。
可在输出端加滤波网络(如C6=100pF)改善输出波形。
图3-1-1 几种正弦波失真3.2 方波---三角波发生电路的仿真3.3三角波---正弦波转换电路的仿真错误!未找到引用源。
第四章课程设计总结该设计电路通过先产生方波-三角波,再将三角波变换成正弦波,最终艰难而曲折的把简易信号发生器设计了出来。
该设计电路的优点是输出波形的频率和幅度都连续可调。
缺点是在调节频率的过程中正弦波的幅度会有所改变,而且波形的稳定度和失真度都会有很大的变化,这也就增加了电路调节的难度,在制成PCB板后才突然醒悟在比较器部分应该接入一个加速电容C,用来加速比较器的翻转。
因此而留下了很多遗憾。
总之,由于知识的有限,仿真结果不可避免的和设计要求产生了一定的偏差。
通过对函数信号发生器的设计,我学到了很多的知识,一方面,我掌握了常用元件的识别和测试方法;熟悉了常用的仪器仪表;以及如何提高电路的性能等等。
另一方面,我深刻认识到了“理论联系实际”这句话的重要性与真实性。
而且通过对此课程的设计,我不但知道了以前不知道的理论知识,而且也巩固了以前知道的知识。