2021届高三上学期期中考试物理试卷汇编
2021年高三物理上学期期中试题2 (含解析)

2021年高三物理上学期期中试题2 (含解析)时间 90分钟满分 100分【试卷综析】本试卷是高三模拟试题,包含了高中物理的必修一、必修二等内容,主要包含受力分析、物体的平衡、匀变速直线运动规律、牛顿运动定律、运动的合成和分解、万有引力定律及其应用、动能定理、电场等内容,在考查问题上以基本定义、基本规律为主,重视生素养的考查,注重主干知识,兼顾覆盖面。
第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求,全部选对的得4分,选不全的得2分,有选错、多选或不选的得0分)【题文】1.做匀减速直线运动的质点,它的位移随时间变化的规律是s=24t-1.5t2(m),当质点的速度为零,则t为多少()A.1.5s B.8s C.16s D.24s【知识点】匀变速直线运动A2【答案解析】B 解析:根据x==24t-1.5t2知,初速度v=24m/s,加速度a=-3m/s2.根据速度时间公式v=v+at得,t==8s.故B正确,A、C、D错误.【思路点拨】根据匀变速直线运动的位移时间公式x=求出初速度和加速度,再根据匀变速直线运动的速度时间公式v=v+at求出质点速度为零所需的时间.【题文】2.欲使在粗糙斜面上匀速下滑的物体静止,如图所示,可采用的方法是( ) A.对物体施一垂直于斜面的力 B.增大斜面的倾角C.对物体施一竖直向下的力 D.在物体上叠放一重物【知识点】受力分析物体的平衡B4【答案解析】A 解析:物体沿斜面匀速下滑时满足下滑力等于摩擦力,即mgsinθ=μFN=μmgcosθ所以μ=tanθ, C D选项的结果是下滑力和摩擦力同时增加相同的数值,物体仍匀速下滑,不能达到要求.A选项FN增加,下滑力不变,有mgsinθ<μmgcosθ,B 选项FN减小,下滑力增大,mgsinθ>μmgcosθ,选项A能使物体静止.【思路点拨】审题注意题意已说明物体粗糙斜面上匀速下滑说明重力沿斜面向下的分力已等于滑动摩擦力,mgsinθ=μmgcosθ可得出μ=tanθ。
2021年高三上学期期中练习物理试题 Word版含答案

2021年高三上学期期中练习物理试题 Word 版含答案说明:本试卷共8页,共100分。
考试时长90分钟。
考生务必将答案写在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
一、本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的。
全部选对的得3分,选不全的得2分,有选错或不答的得0分。
把你认为正确的答案填涂在答题纸上。
1.如图1所示,用轻绳OA 把球挂在光滑的竖直墙壁上,O 点为绳的固定点,B 点为球与墙壁的接触点。
现保持固定点O 不动,将轻绳OA 加长,使绳与墙壁的夹角θ变小,则球静止后与绳OA 加长之前相比A .绳对球的拉力变大B .球对墙壁的压力变小C .球对墙壁的压力不变D .球所受的合力变大2.从同一高度水平抛出的物体,在空中运动一段时间,落到同一水平地面上。
在不计空气阻力的条件下,由平抛运动规律可知A .水平初速度越大,物体在空中运动的时间越长B .质量越大,物体在空中运动的时间越短C .水平初速度越大,物体的水平位移越大D .水平初速度越大,物体落地时的速度越大3.在游乐园中,游客乘坐升降机可以体验超重与失重的感觉。
关于游客在随升降机一起运动的过程中所处的状态,下列说法中正确的是A .当升降机加速上升时,游客处在失重状态B .当升降机减速下降时,游客处在超重状态C .当升降机减速上升时,游客处在失重状态D .当升降机加速下降时,游客处在超重状态4.在不计空气阻力作用的条件下,下列说法中正确的是A .自由下落的小球,其所受合外力的方向与其速度方向相同B .做平抛运动的小球,其所受合外力的方向不断改变C .做匀速圆周运动的小球,其所受合外力的方向一定指向圆心D .做简谐运动的单摆小球,其所受合外力的方向总与速度方向相同图15.一列波速为2.0m/s ,沿x 轴正向传播的简谐机械横波某时刻的波形图如图2所示,P 为介质中的一个质点。
山东省临沂市2021届高三上学期期中考试物理试卷 Word版含解析

高三教学质量检测考试物理试题2020.11注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题共40分)一、单项选择题:本题共8小题,每小题3分,共24分。
每小题只有一个选项符合题目要求。
1. 图示为空降兵某旅新兵开展首次大飞机跳伞训练,数千名新兵在严寒天气下经历高强度伞降磨砺,为成为一名合格的空降兵战斗员蓄力跃进,当空降兵从飞机上由静止跳下后,在下落过程中将会受到水平风速的影响,关于空降兵下列说法中正确的是()A. 风速越大,下落时间越长B. 风速越大,着地速度越小C. 风速越大,动量变化越大D. 风速越大,着地时重力的功率越大【答案】C【解析】【详解】A.空降兵在竖直方向的运动与水平方向的风速大小无关,则风速越大,下落时间不变,选项A错误;B.着地的竖直速度与风速无关,不变,而风速越大,水平速度变大,则着地速度越大,选项B错误;C.根据动量定理,风速越大,合外力越大,则动量变化越大,选项C正确;D.因为着地的竖直速度不变,则根据P G=mgv y可知,风速越大,着地时重力的功率不变,选项D错误。
故选C。
2. 2020年9月20日23时,在我国首次火星探测任务飞行控制团队控制下,天问一号探测器4台120N发动机同时点火工作20秒,顺利完成第二次轨道中途修正,至此,天问一号已在轨飞行60天,距离地球约1900万千米如图所示为天问一号飞向火星先后经历发射段、地火转移段、火星捕获段、火星停泊段、离轨着陆段、科学探索段六个阶段,下列说法正确的是()A. “天问一号”在科学探测段的周期大于火星捕获段的周期B. “天问一号”从火星捕获段到火星停泊段,需要在P点朝运动的反方向喷气C. “天问一号”在科学探测段经过P点时的加速度大小等于在火星捕获期经过P点时的加速度大小D. “天问一号”在离轨着陆段,动能逐渐增大,引力势能逐渐减小,机械能增大【答案】C【解析】【详解】A.“天问一号”在科学探测段的半长轴小于火星捕获段的半长轴,根据开普勒第三定律可知,“天问一号”在科学探测段的周期小于火星捕获段的周期,A错误;B.“天问一号”从火星捕获段到火星停泊段要降低轨道做向心运动,需要在P点朝运动方向喷气,B错误;C.“天问一号”在科学探测段经过P点时受到的火星的引力等于它在火星捕获期经过P点时的引力大小,则“天问一号”在科学探测段经过P点时的加速度大小等于在火星捕获期经过P 点时的加速度大小,C正确;D.“天问一号”在离轨着陆段,动能逐渐增大,引力势能逐渐减小,机械能保持不变,D错误。
2021年高三物理第一学期期中考试试卷

高三物理第一学期期中考试试卷高三物理试卷一.选择题(本题共有18小题;每小题3分;共54分。
在每小题给出的4个选项中;有的只有一个选项正确;有的有多个选项正确。
全部选对的得3分;选不全的得1分;有错选或不答的得0分)1.人在沼泽地行走时容易下陷;下陷时( )A.人对沼泽地面的压力大于沼泽地面对人的支持力B.人对沼泽地面的压力等于沼泽地面对人的支持力C.人对沼泽地面的压力小于沼泽地面对人的支持力D.人所受合外力为零2.一个物体在同一方向上作加速运动;当它的加速度逐渐减小时;其速度和位移的变化情况是( )A .速度增加;位移减小B .速度减小;位移增加C .速度和位移都减小D .速度和位移都增加3.如图;在地面上;水平拉力F 1和F 2作用在木块和小车上;使木块和小车一起作匀速运动。
则在这个过程中( )A .木块受到的摩擦力向左B .木块没有受到摩擦力作用C.木块受到的摩擦力向右 D.不能对木块所受的摩擦力作出判断4.小球做自由落体运动;与地面发生碰撞;反弹后速度大小与落地速度大小相等。
若从释放小球时开始计时;且不计小球与地面发生碰撞的时间;则小球运动的速度图线可能是图中的()5.下列运动过程中;在任意相等时间内;物体动量变化相等的是( )A .匀速圆周运动B .自由落体运动C .平抛运动D .匀减速直线运动6.如图所示;两车厢的质量相同;其中一个车厢内有一人拉动绳子使两车厢相互靠近.若不计绳子质量及车厢与轨道间的摩擦;下列对于哪个车厢里有人的判断;正确的是( )A .绳子的拉力较大的那一端车厢里有人B .先开始运动的车厢里有人C .后到达两车中点的车厢里有人D .不去称量质量无法确定哪个车厢有人7.已知做匀加速直线运动的物体第2s 末速度为4m/s ;则物体( )A .加速度一定为2m/s 2B .前2s 内位移可能是4mC .前4s 内位移一定为16mD .前4s 内位移不一定为16m 0 t t t t v0 v v v A B C DF a b c p 8.游乐园中;游客乘坐某些游乐设施可以体会超重或失重的感觉。
2021学年度高三第一学期期中考试物理卷含答案

第Ⅰ卷(选择题共40分)一、选择题(4×10分=40分):至少有一个答案正确。
1.下列说法正确的是()A.电荷在某处不受电场力作用,则该处电场强度为零;B.一小段通电导线在某处不受磁场力作用,则该处磁感强度一定为零;C.表征空间某点电场的强度,是用一个检验电荷在该点受到的电场力与检验电荷本身电量的比值;D.表征空间某点磁场的强弱,是用一小段通电导线放在该点受到的磁场力与该小段导线的长度和电流的乘积的比值。
2.在同一水平直线上的两位置分别沿同方向抛出两球A和B,其运动轨迹如图所示,则要使两球在空中相遇,则必须()A.先抛出A球;B.先抛出B球;C.同时抛出两球;D.使两球质量相等。
3.在电场中存在A、B、C、D四点,AB连线和CD连线垂直,在AB连线和CD连线上各点的电场强度方向相同,下列说法正确的是()A.此电场一定是匀强电场;B.此电场可能是一个点电荷形成的;C.此电场可能是两个同种电荷形成的;D.此电场可能是两个异种电荷形成的。
4.一太阳能电池板,测得它的开路电压为800mV,短路电流为40mA,若将该电池板与一阻值为20欧的电阻器连成一闭合电路,则它的路端电压是()A.0.10V;B.0.20V;C.0.30V;D.0.40V。
5.如图所示,一物体恰能在一个斜面体上沿斜面匀速下滑,可以证明出此时斜面体不受地面的摩擦力作用,若沿斜面方向用力F向下推此物体,使物体加速下滑,斜面体依然和地面保持相对静止,则斜面体受地面的摩擦力()A.大小为零;B.方向水平向右;C.方向水平向左;D.大小和方向无法判断。
6.A、B两个物体从同一地点在同一直线上作匀变速直线运动,它们的速度图像如图所示,则()A.A、B两物体运动方向相反;a R 1AR 2R 3 bII 1B .t =4s 时,A 、B 两物体相遇;C .在相遇前,t =4s 时A 、B 两物体相距最远;D .在相遇前,A 、B 两物体最远距离是20m 。
高三上学期期中考试理综物理试卷 Word版含答案

平罗中学2021届高三上学期期中考试理综物理试卷二、选择题:(本大题共8小题,每小题6分。
在每小题给出的四个选项中,第l4~17题只有一项符合题目要求;第19~21题有多项符合要求。
全部选对得6分,选对但不全的得3分,有选错的得0分)14、如图甲所示,火箭发射时,速度能在10 s内由0增加到100 m/s;如图乙所示,汽车以108 km/h的速度行驶,急刹车时能在2.5 s内停下来,下列说法中正确的( )A.10 s内火箭的速度改变量为10 m/sB.2.5 s内汽车的速度改变量为30 m/sC.火箭的加速度比汽车的加速度大D.火箭的速度变化比汽车的慢15、如图所示,两块相同的竖直木板之间有质量均为m的四块相同的砖,用两个大小均为F 的水平压力压木板,使砖静止不动,设所有接触面均粗糙,则第三块砖对第二块砖的摩擦力大小为()A.0B.mgC.μFD.2mg16、如图所示,从倾角为θ的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点时所用的时间为( )A. B.C. D.17、光滑的圆锥漏斗的内壁,有两个质量相等的小球A、B,它们分别紧贴漏斗,在不同水平面上做匀速圆周运动,如右图所示,则下列说法正确的是:( )A. 小球A的速率等于小球B的速率B. 小球A的速率小于小球B的速率C. 小球A对漏斗壁的压力等于小球B对漏斗壁的压力D. 小球A的转动周期小于小球B 的转动周期18、图是“嫦娥一号奔月”示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测,下列说法正确的是( )A .发射“嫦娥一号”的速度必须达到第三宇宙速度B .在绕月圆轨道上,卫星周期与卫星质量有关C .卫星受月球的引力与它到月球中心距离的平方成反比D .在绕月轨道上,卫星受地球的引力大于受月球的引力19、跳伞运动员从高空悬停的直升机跳下,运动员沿竖直方向运动,其v t 图象如图所示,下列说法正确的是( )A .运动员在0~10 s 内的平均速度大小大于10 m/sB .从15 s 末开始运动员处于静止状态C .10 s 末运动员的速度方向改变D .10~15 s 内运动员做加速度逐渐减小的减速运动20、一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变21、如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,将某一物体每次以大小不变的初速度0v 沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x 与斜面倾角θ的关系如图乙所示,取10 m/s 2,根据图象可求出( )A.物体的初速度0υ=3m/sB.物体与斜面间的动摩擦因数μ=0.75C.取不同的倾角θ,物体在斜面上能达到的位移x 的最小值m x 44.1min =D.当某次θ=30°时,物体达到最大位移后将沿斜面下滑第Ⅱ卷 (非选择题 共174分)三、非选择题:(包括必考题和选考题两部分。
2021-2022年高三物理上学期期中试卷(含解析)

2021年高三物理上学期期中试卷(含解析)一、选择题(每小题4分,共40分.第1~6小题只有一个选项正确,第7~10小题有多个选项正确;全部选对的得4分,选对但不全的得2分,有选错或不答的得零分)1.学习物理除了知识的学习外,还要领悟并掌握处理物理问题的思想与方法.下列关于物理学中的思想方法叙述正确的是( )A.万有引力定律和牛顿运动定律一样都是自然界普遍适用的基本规律B.在探究加速度与力、质量的关系实验中使用了理想化模型的思想方法C.库伦利用库伦扭秤巧妙地实现了他对电荷间相互作用力规律的研究D.伽利略用“月﹣地检验”证实了万有引力定律的正确性2.伽利略曾利用对接斜面研究“力与运动”的关系.如图,固定在水平地面上的倾角均为θ的两斜面,以光滑小圆弧相连接,左侧顶端有一小球,与两斜面的动摩擦因数均为μ.小球从左侧顶端滑到最低点的时间为t1,滑到右侧最高点的时间为t2.规定斜面连接处为参考平面,则小球在这个运动过程中速度的大小v、加速度的大小a、动能E k及机械能E随时间t变化的关系图线正确的是( )A.B.C.D.3.如图所示,水平面B点以左是光滑的,B点以右是粗糙的,质量为m1和m2的两个小物块,在B点以左的光滑水平面上相距L,以相同的速度向右运动.它们先后进入表面粗糙的水平面后,最后停止运动.它们与粗糙表面的动摩擦因数相同,静止后两个质点的距离为x,则有( )A.若m1>m2,x>LB.若m1=m2,x=LC.若m1<m2,x>LD.无论m1、m2大小关系如何,都应该x=04.如图所示,将一个质量为m的球固定在弹性杆AB的上端,今用测力计沿水平方向缓慢拉球,使杆发生弯曲,在测力计的示数逐渐增大的过程中,AB杆对球的弹力方向为( )A.始终水平向左B.始终竖直向上C.斜向左上方,与竖直方向的夹角逐渐增大D.斜向左下方,与竖直方向的夹角逐渐增大5.如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C 两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是( )A.斜面倾角α=60°B.A获得最大速度为2gC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒6.如图所示,质量为m,带电量为q的粒子,以初速度v0,从A点竖直向上射入空气中的沿水平方向的匀强电场中,粒子通过电场中B点时,速率v B=2v0,方向与电场的方向一致,则A,B两点的电势差为( )A.B.C.D.7.如图所示,A、B分别为竖直放置的光滑圆轨道的最低点和最高点,已知小球通过A点时的速度大小为v A=2m/s 则该小球通过最高点B的速度值可能是( )A.10m/s B.m/s C.3m/s D.1.8m/s8.假设将来人类登上了火星,考察完毕后,乘坐一艘宇宙飞船从火星返回地球时,经历了如图所示的变轨过程,则有关这艘飞船的下列说法正确的是( )A.飞船在轨道Ⅰ上运动时的机械能大于飞船在轨道Ⅱ上运动时的机械能B.飞船在轨道Ⅱ上运动时,经过P点时的速度大于经过Q点时的速度C.飞船在轨道Ⅲ上运动到P点时的加速度等于飞船在轨道Ⅱ上运动到P点时的加速度D.飞船绕火星在轨道Ⅰ上运动的周期跟飞船返回地球的过程中绕地球以轨道Ⅰ同样的轨道半径运动的周期相同9.如图所示,一个由轻杆组成的等边三角形ABO的A点和B点分别固定着质量为m和2m 的小球,三角形ABO可绕光滑的水平转轴O自由转动,现使OA处于竖直位置,OB与水平方向的夹角为30°,此时将它们由静止释放,不考虑空气阻力作用,则( )A.B球到达最低点时速度为零B.A球向左摆动所能达到的最高点应高于B球开始运动时的最高点C.当它们从左向右回摆时,B球一定能回到起始位置D.B球到达最低点的过程中,B球机械能的减少量等于A球机械能的增加量10.如图所示,在场强大小为E的匀强电场中,一根不可伸长的绝缘细线一端拴一个质量为m、电荷量为q的带负电小球,另一端固定在O点.把小球拉到使细线水平的位置A,然后将小球由静止释放,小球沿弧线运动到细线与水平成θ=60°的位置B时速度为零.以下说法正确的是( )A.小球重力与电场力的关系是mg=EqB.小球重力与电场力的关系是Eq=mgC.球在B点时,细线拉力为T=mgD.球在B点时,细线拉力为T=2Eq二、实验题(2小题,第11题10分,第12题8分,共18分11.某实验小组在“探究加速度与物体质量、物体受力的关系”实验中,设计出如下的实验方案,其实验装置如图1所示.已知小车质量M=214.6g,砝码盘质量m0=7.8g,打点计时器所使用的交流电频率为f=50Hz.其实验步骤是A.按图所示安装好实验装置;B.调节长木板的倾角,轻推小车后,使小车能沿长木板向下做匀速运动;C.取下细绳和砝码盘,记下砝码盘中砝码的质量m;D.将小车置于打点计时器旁,先接通电源,再放开小车,打出一条纸带,由纸带求得小车的加速度a;E.重新挂上细绳和砝码盘,改变砝码盘中砝码的质量,重复A、B、C、D步骤,求得小车在不同合外力F作用下的加速度.回答下列问题:(1)按上述方案做实验,是否要求砝码和砝码盘的总质量远小于小车的质量?__________(填“是”或“否”).(2)实验中打出的其中一条纸带如图2所示,由该纸带可求得小车的加速度a=__________ m/s2.(3)某同学将有关测量数据填入他所设计的表格中,如表:次数 1 2 3 4 5砝码盘中砝码的重力F/N 0.10 0.20 0.29 0.39 0.49小车的加速度a/(m•s﹣2)0.88 1.44 1.84 2.38 2.89他根据表中的数据画出a﹣F图象(如图3).造成图线不过坐标原点的最主要原因是__________,从该图线延长线与横轴的交点可求出的物理量是__________,其大小为__________.12.某同学利用如图所示的实验装置验证机械能守恒定律.弧形轨道末端水平,离地面的高度为H.将钢球从轨道的不同高度h处静止释放,钢球的落点距轨道末端的水平距离为s.(1)若轨道完全光滑,s2与h的理论关系应满足s2=__________(用H、h表示).(2)该同学经实验测量得到一组数据,如下表所示:h(10﹣1m) 2.00 3.00 4.00 5.00 6.00s2(10﹣1m2) 2.62 3.89 5.20 6.53 7.78请在坐标纸上作出s2﹣h关系图.(3)对比实验结果与理论计算得到的s2﹣﹣h关系图线(图中已画出),自同一高度静止释放的钢球,水平抛出的速率__________ (填“小于”或“大于”)理论值.(4)从s2﹣h关系图线中分析得出钢球水平抛出的速率差十分显著,你认为造成上述偏差的可能原因是__________.三、计算题(4小题,共42分.解题过程应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分)13.如图AB两滑环分别套在间距为1m的两根光滑平直杆上,A和B的质量之比为1:3,用一自然长度为1m的轻弹簧将两环相连,在 A环上作用一沿杆方向大小为20N的拉力F,当两环都沿杆以相同的加速度a运动时,弹簧与杆夹角为53°.(cos53°=0.6)求:(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F,在撤去拉力F的瞬间,A的加速度为a′,a′与a之间比为多少?14.如图所示,M是水平放置的半径足够大的圆盘,可绕过其圆心的竖直轴OO′匀速转动,在圆心O正上方h处有一个正在间断滴水的容器,每当一滴水落在盘面时恰好下一滴水离开滴口.某次一滴水离开滴口时,容器恰好开始水平向右做速度为v的匀速直线运动,将此滴水记作第一滴水.不计空气阻力,重力加速度为g.求:(1)相邻两滴水下落的时间间隔;(2)要使每一滴水在盘面上的落点都在一条直线上,求圆盘转动的角速度;(3)第二滴和第三滴水在盘面上落点之间的距离最大可为多少?15.静电喷漆技术具有效率高,浪费少,质量好,有利于工人健康等优点,其装置示意图如图所示.A、B为两块平行金属板,间距d=0.30m,两板间有方向由B指向A、电场强度E=1.0×103N/C的匀强电场.在A板的中央放置一个安全接地的静电油漆喷枪P,油漆喷枪的半圆形喷嘴可向各个方向均匀地喷出带电油漆微粒,油漆微粒的质量m=2.0×10﹣15kg、电荷量为q=﹣2.0×10﹣16C,喷出的初速度v0=2.0m/s.油漆微粒最后都落在金属板B上.微粒所受重力和空气阻力以及微粒之间的相互作用力均可忽略.试求:(1)微粒落在B板上的动能;(2)微粒从离开喷枪后到达B板所需的最短时间;(3)微粒最后落在B板上所形成图形的面积.16.质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆孤轨道下滑.B、C 为圆弧的两端点,其连线水平.已知圆弧半径R=1.0m圆弧对应圆心角θ=1060,轨道最低点为O,A点距水平面的高度h=0.8m.小物块离开C点后恰能无碰撞的沿固定斜面向上运动,0.8s后经过D点,物块与斜面间的滑动摩擦因数为μ1=(g=10m/s2,sin37°=0.6,cos37°=0.8)试求:(1)小物块离开A点的水平初速度v1(2)小物块经过O点时对轨道的压力(3)斜面上CD间的距离(4)假设小物块与传送带间的动摩擦因数为μ2=0.3,传送带的速度为5m/s,则PA间的距离是多少?江西省赣州中学xx高三上学期期中物理试卷一、选择题(每小题4分,共40分.第1~6小题只有一个选项正确,第7~10小题有多个选项正确;全部选对的得4分,选对但不全的得2分,有选错或不答的得零分)1.学习物理除了知识的学习外,还要领悟并掌握处理物理问题的思想与方法.下列关于物理学中的思想方法叙述正确的是( )A.万有引力定律和牛顿运动定律一样都是自然界普遍适用的基本规律B.在探究加速度与力、质量的关系实验中使用了理想化模型的思想方法C.库伦利用库伦扭秤巧妙地实现了他对电荷间相互作用力规律的研究D.伽利略用“月﹣地检验”证实了万有引力定律的正确性考点:物理学史.分析:牛顿定律不是普适规律,具有局限性.运用控制变量法探究加速度与力、质量的关系.库仑发现了电荷间作用力的规律.牛顿用“月﹣地“检验法验证了牛顿定律的正确性,解答:解:A、牛顿第二定律不适用于微观粒子和高速运动的物体,万有引力定律是自然界普遍适用的基本规律,故A错误;B、在探究加速度与力、质量的关系实验中使用了控制变量法,不是理想化模型的思想方法;故B错误.C、库伦利用库伦扭秤实验,发现了电荷间相互作用力的规律,故C正确;D、牛顿用“月﹣地“检验法验证了万有引力定律的正确性,故D错误.故选:C点评:对于著名物理学家、经典实验和重要学说要记牢,还要学习他们的科学研究的方法.2.伽利略曾利用对接斜面研究“力与运动”的关系.如图,固定在水平地面上的倾角均为θ的两斜面,以光滑小圆弧相连接,左侧顶端有一小球,与两斜面的动摩擦因数均为μ.小球从左侧顶端滑到最低点的时间为t1,滑到右侧最高点的时间为t2.规定斜面连接处为参考平面,则小球在这个运动过程中速度的大小v、加速度的大小a、动能E k及机械能E随时间t变化的关系图线正确的是( )A.B.C.D.考点:伽利略研究自由落体运动的实验和推理方法.专题:常规题型.分析:据牛顿第二定律求出上滑和下滑过程中的加速度大小,从而得出速度随时间的变化规律,根据动能与速度大小的关系得出动能与时间t变化的关系求解.解答:解:A、由牛顿第二定律可知,小球在两斜面的运动都是匀变速直线运动,两阶段的加速度都恒定不变,小球在左侧斜面下滑时的加速度:a1=gsinθ﹣μgcosθ小球在右侧斜面下滑时的加速度:a2=gsinθ+μgcosθ,小球在左侧斜面下滑时的加速度较小,故A错误,B正确;C、小球的动能与速率的二次方成正比,即E k=mv2,因此,动能与时间关系图象是曲线,故C 错误;D、由于小球在两斜面运动时的加速度大小不相等,因此,小球机械能与时间的关系图象不是连续曲线,故D错误;故选:B.点评:解决本题的关键根据牛顿第二定律得出上滑和下滑的加速度,判断出物体的运动情况.3.如图所示,水平面B点以左是光滑的,B点以右是粗糙的,质量为m1和m2的两个小物块,在B点以左的光滑水平面上相距L,以相同的速度向右运动.它们先后进入表面粗糙的水平面后,最后停止运动.它们与粗糙表面的动摩擦因数相同,静止后两个质点的距离为x,则有( )A.若m1>m2,x>LB.若m1=m2,x=LC.若m1<m2,x>LD.无论m1、m2大小关系如何,都应该x=0考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:两物块进入粗糙水平面的初速度相同,末速度都为零,根据牛顿第二定律比较出两物块的加速度大小,即可比较出两物块在粗糙水平面上运行的位移大小,从而得出x.解答:解:根据牛顿第二定律得,物块进入粗糙水平面的加速度a=,知两物块的加速度相等,又进入粗糙水平面的初速度相同,末速度都为零,根据运动学公式,知两物块运行的位移s相等,则x=0.故D正确,A、B、C错误.故选D.点评:解决本题的关键掌握牛顿第二定律求出加速度,以及知道两物块的初末速度相等,加速度相等,所以在粗糙水平面上运行的位移相等.4.如图所示,将一个质量为m的球固定在弹性杆AB的上端,今用测力计沿水平方向缓慢拉球,使杆发生弯曲,在测力计的示数逐渐增大的过程中,AB杆对球的弹力方向为( )A.始终水平向左B.始终竖直向上C.斜向左上方,与竖直方向的夹角逐渐增大D.斜向左下方,与竖直方向的夹角逐渐增大考点:牛顿第三定律.专题:牛顿运动定律综合专题.分析:分析球的受力情况:重力、测力计的拉力和AB杆对球作用力,由平衡条件求出AB杆对球弹力方向.解答:解:以球为研究对象,分析受力情况:重力G、测力计的拉力T和AB杆对球作用力F,由平衡条件知,F与G、T的合力大小相等、方向相反,作出力的合成图如图.则有G、T的合力方向斜向右下方,测力计的示数逐渐增大,T逐渐增长,根据向量加法可知G、T的合力方向与竖直方向的夹角逐渐增大,所以AB杆对球的弹力方向斜向左上方,与竖直方向的夹角逐渐增大,所以选项ABD错误,C正确.故选C.点评:本题是三力平衡问题,分析受力情况,作出力图是关键.难度不大.5.如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C 两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是( )A.斜面倾角α=60°B.A获得最大速度为2gC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒考点:机械能守恒定律;牛顿第二定律.专题:机械能守恒定律应用专题.分析:C刚离开地面时,弹簧的弹力等于C的重力,根据牛顿第二定律知B的加速度为零,B、C加速度相同,分别对B、A受力分析,列出平衡方程,求出斜面的倾角.A、B、C组成的系统机械能守恒,初始位置弹簧处于压缩状态,当B具有最大速度时,弹簧处于伸长状态,根据受力知,压缩量与伸长量相等.在整个过程中弹性势能变化为零,根据系统机械能守恒求出B的最大速度,A的最大速度与B相等.解答:解:A、A刚离开地面时,对A有:kx2=mg此时B有最大速度,即a B=a C=0则对B有:T﹣kx2﹣mg=0对A有:4mgsinα﹣T=0以上方程联立可解得:sinα=0.5,α=30°,故A错误;B、初始系统静止,且线上无拉力,对B有:kx1=mg由上问知x1=x2=,则从释放至A刚离开地面过程中,弹性势能变化量为零;此过程中A、B、C组成的系统机械能守恒,即:4mg(x1+x2)sinα=m g(x1+x2)+(4m+m)v Bm2以上方程联立可解得:v Bm=2g所以A获得最大速度为2g,故B正确;C、对B球进行受力分析可知,刚释放A时,B所受合力最大,此时B具有最大加速度,故C 错误;D、从释放A到C刚离开地面的过程中,A、B、C及弹簧组成的系统机械能守恒,故D错误.故选:B.点评:本题关键是对三个物体分别受力分析,得出物体B速度最大时各个物体都受力平衡,然后根据平衡条件分析;同时要注意是那个系统机械能守恒.6.如图所示,质量为m,带电量为q的粒子,以初速度v0,从A点竖直向上射入空气中的沿水平方向的匀强电场中,粒子通过电场中B点时,速率v B=2v0,方向与电场的方向一致,则A,B两点的电势差为( )A.B.C.D.考点:电势差;动能定理的应用;带电粒子在匀强电场中的运动.专题:电场力与电势的性质专题.分析:微粒在匀强电场中受到重力和电场力两个力作用,根据动能定理求出AB两点间的电势差U AB解答:解:粒子,从A到B,根据动能定理得:qU AB﹣mgh=因为v B=2v0,若只考虑粒子在竖直方向,只受到重力,所以机械能守恒,则有mgh=由以上三式,则有U AB=故选:C点评:涉及到电势差的问题,常常要用到动能定理.本题的难点在于运动的处理,由于微粒受到两个恒力作用,运用运动的分解是常用的方法.7.如图所示,A、B分别为竖直放置的光滑圆轨道的最低点和最高点,已知小球通过A点时的速度大小为v A=2m/s 则该小球通过最高点B的速度值可能是( )A.10m/s B.m/s C.3m/s D.1.8m/s考点:牛顿第二定律;向心力.专题:牛顿第二定律在圆周运动中的应用.分析:小球在光滑的圆轨道内运动,只有重力做功,其机械能守恒,根据机械能守恒定律得到小球在最高点的速度表达式.小球要能到达最高点,向心力要大于重力,得到最高点速度的范围,再进行选择.解答:解:设小球到达最高点B的速度为v B.根据机械能守恒定律得mg•2R+=得到v B= ①小球要能到达最高点,则在最高点B时,得到 v B②由①②联立得≥解得gR≤代入得gR≤4代入①得 v B≥2m/s又机械能守恒定律可知,v B<v A=2m/s所以2m/s≤v B<2m/s故选BC点评:本题是机械能守恒定律、向心力等知识的综合应用,关键是临界条件的应用:当小球恰好到达最高点时,由重力提供向心力,临界速度v0=,与细线的模型相似.8.假设将来人类登上了火星,考察完毕后,乘坐一艘宇宙飞船从火星返回地球时,经历了如图所示的变轨过程,则有关这艘飞船的下列说法正确的是( )A.飞船在轨道Ⅰ上运动时的机械能大于飞船在轨道Ⅱ上运动时的机械能B.飞船在轨道Ⅱ上运动时,经过P点时的速度大于经过Q点时的速度C.飞船在轨道Ⅲ上运动到P点时的加速度等于飞船在轨道Ⅱ上运动到P点时的加速度D.飞船绕火星在轨道Ⅰ上运动的周期跟飞船返回地球的过程中绕地球以轨道Ⅰ同样的轨道半径运动的周期相同考点:人造卫星的环绕速度.专题:人造卫星问题.分析:1、飞船从轨道Ⅰ转移到轨道Ⅱ上运动,必须在P点时,点火加速,使其速度增大做离心运动,即机械能增大.2、根据开普勒第二定律可知,飞船在轨道Ⅱ上运动时,在P点速度大于在Q点的速度.3、飞船在轨道Ⅰ上运动到P点时与飞船在轨道Ⅱ上运动到P点时,都由火星的万有引力产生加速度,根据牛顿第二定律列式比较加速度.4、根据万有引力等于向心力列式,比较周期.解答:解:A、飞船在轨道Ⅰ上经过P点时,要点火加速,使其速度增大做离心运动,从而转移到轨道Ⅱ上运动.所以飞船在轨道Ⅰ上运动时的机械能小于轨道Ⅱ上运动的机械能.故A错误.B、根据开普勒第二定律可知,飞船在轨道Ⅱ上运动时,在P点速度大于在Q点的速度.故B正确.C、飞船在轨道Ⅲ上运动到P点时与飞船在轨道Ⅱ上运动到P点时受到的万有引力大小相等,根据牛顿第二定律可知加速度必定相等.故C正确.D、根据G=m,得周期公式T=2π,虽然r相等,但是由于地球和火星的质量不等,所以周期T不相等.故D错误.故选BC.点评:本题要知道飞船在轨道Ⅰ上运动到P点时与飞船在轨道Ⅱ上运动到P点时受到的万有引力大小相等,根据牛顿第二定律可知加速度必定相等,与轨道和其它量无关.9.如图所示,一个由轻杆组成的等边三角形ABO的A点和B点分别固定着质量为m和2m 的小球,三角形ABO可绕光滑的水平转轴O自由转动,现使OA处于竖直位置,OB与水平方向的夹角为30°,此时将它们由静止释放,不考虑空气阻力作用,则( )A.B球到达最低点时速度为零B.A球向左摆动所能达到的最高点应高于B球开始运动时的最高点C.当它们从左向右回摆时,B球一定能回到起始位置D.B球到达最低点的过程中,B球机械能的减少量等于A球机械能的增加量考点:机械能守恒定律.专题:机械能守恒定律应用专题.分析:对于两球组成的系统只有重力做功,机械能守恒.根据机械能定律进行分析.解答:解:A、当B球到达最低点时,A上升到B球原来等高的位置,因为B减少的势能比A增加的势能要在,所以系统的重力势能减少,动能增加,A、B两者还具有相同大小的速度,故B球到达最低点时速度不为零,故A错误.B、由上分析可知,当A向左摆到与B球开始时的高度时,B球到达最低点,由于此时仍有速度,还要向左摆动,可知A摆的高度比B球的高度要xx高一些,故B正确.C、根据系统的机械能守恒可知当它们从左向右回摆时,B球一定能回到起始位置,故C正确.D、对于两球组成的系统只有重力做功,机械能守恒,根据系统机械能守恒得知:B球到达最低点的过程中,B球机械能的减少量等于A球机械能的增加量,故D正确.故选:BCD点评:本题是轻杆构成的系统机械能守恒,要正确分析动能和重力势能是如何转化,结合几何关系和对称性进行分析这类问题.10.如图所示,在场强大小为E的匀强电场中,一根不可伸长的绝缘细线一端拴一个质量为m、电荷量为q的带负电小球,另一端固定在O点.把小球拉到使细线水平的位置A,然后将小球由静止释放,小球沿弧线运动到细线与水平成θ=60°的位置B时速度为零.以下说法正确的是( )A.小球重力与电场力的关系是mg=EqB.小球重力与电场力的关系是Eq=mgC.球在B点时,细线拉力为T=mgD.球在B点时,细线拉力为T=2Eq考点:匀强电场;力的合成与分解的运用;向心力;动能定理的应用;电势能.专题:压轴题;电场力与电势的性质专题.分析:类比单摆,小球从A点静止释放,运动到B点速度为0,说明弧AB的中点是运动的最低点,对小球进行受力分析,小球处在弧线中点位置时切线方向合力为零,再根据几何关系可以求出Eq,球到达B点时速度为零,向心力为零,则沿细线方向合力为零,此时对小球受力分析,再根据几何关系即可解题.解答:解:(1)类比单摆,根据对称性可知,小球处在弧线中点位置时切线方向合力为零,此时细线与水平方向夹角恰为30°,根据三角函数关系可得:qEsin30°=mgcos30°,化简可知Eq=mg,选项A错误、B正确;(2)小球到达B点时速度为零,向心力为零,则沿细线方向合力为零,此时对小球受力分析可知:T=qEcos60°+mgsin60°,故细线拉力T=mg,选项C正确、D错误.故选BC.点评:本题要求同学们能正确进行受力,并能联想到已学的物理模型,根据相关公式解题.二、实验题(2小题,第11题10分,第12题8分,共18分11.某实验小组在“探究加速度与物体质量、物体受力的关系”实验中,设计出如下的实验方案,其实验装置如图1所示.已知小车质量M=214.6g,砝码盘质量m0=7.8g,打点计时器所使用的交流电频率为f=50Hz.其实验步骤是A.按图所示安装好实验装置;B.调节长木板的倾角,轻推小车后,使小车能沿长木板向下做匀速运动;C.取下细绳和砝码盘,记下砝码盘中砝码的质量m;D.将小车置于打点计时器旁,先接通电源,再放开小车,打出一条纸带,由纸带求得小车的加速度a;E.重新挂上细绳和砝码盘,改变砝码盘中砝码的质量,重复A、B、C、D步骤,求得小车在不同合外力F作用下的加速度.。
2021年高三物理上学期期中试题(含解析)新人教版

2021年高三物理上学期期中试题(含解析)新人教版一、选择题(本大题共14小题,在每小题给出的四个选项中,1-8题只有一个选项符合题目要求,选对得3分,选错得0分,9-14题有的有多个选项符合要求,全部选对得4分,选对但不全的得2分,有错选的得0分)1.(3分)以下说法正确的是()A.法拉第通过实验发现了在磁场中产生电流的条件B.根据麦克斯韦电磁场理论,变化的电场周围一定产生变化的磁场C.电场强度是用比值法定义,因而电场强度与电场力成正比,与试探电荷的电量成反比D.奥斯特发现了电流的磁效应和电磁感应现象考点:感应电流的产生条件..分析:根据物理学史和常识解答,记住著名物理学家的主要贡献即可.解答:解:A、法拉第通过实验发现了在磁场中产生电流的条件,故A正确;B、根据麦克斯韦的电磁场理论,在变化的电场周围一定产生磁场,只有非均匀变化的电场周围才产生变化的磁场;在变化的磁场周围一定产生电场,只有非均匀变化的磁场周围才产生变化的电场.故B错误;C、电场强度是用比值法定义,因而电场强度与电场力、试探电荷的电量无直接关系,故C错误;D、奥斯特发现了电流的磁效应,法拉第发现电磁感应现象,故D错误;故选:A.点评:本题考查物理学史,是常识性问题,对于物理学上重大发现、发明、著名理论要加强记忆,这也是考试内容之一.2.(3分)某人骑自行车在平直道路上行进,图中的实线记录了自行车开始一段时间内的v ﹣t图象.某同学为了简化计算,用虚线作近似处理,下列说法正确的是()A.在t1时刻,虚线反映的加速度比实际的大B.在t3﹣t4时间内,虚线反映的是匀速运动C.在0﹣t1时间内,由虚线计算出的平均速度比实际的小D.在t1﹣t2时间内,由虚线计算出的位移比实际的大考点:匀变速直线运动的图像..专题:运动学中的图像专题.分析:速度图象的斜率代表物体加速度,速度图象与时间轴围成的面积等于物体通过的位移.解答:解:A、由于v﹣t图象的斜率等于物体的加速度,在t1时刻,实线的斜率大于虚线的斜率,故实线表示的加速度大于虚线表示的加速度,故虚线反映的加速度比实际的小.故A错误.B、在t3﹣t4时间内,虚线是一条水平的直线,即物体的速度保持不变,即反映的是匀速直线运动.故B正确.C、在0﹣t1时间内实线与时间轴围成的面积小于虚线与时间轴的面积,故实线反映的运动在0﹣t1时间内通过的位移小于虚线反映的运动在0﹣t1时间内通过的位移,故由虚线计算出的平均速度比实际的大.故C错误.D、在t1﹣t2时间内,虚线围成的面积小于实线围成的面积,故由虚线计算出的位移比实际的小.故D错误.故选:B.点评:本题告诉了我们估算平均速度的方法:估算实际物体在0﹣t1时间内平均速度,可用0到t1的虚线反映的平均速度,故实际平均速度大于.3.(3分)如图所示,恒力F大小与物体重力相等,物体在恒力F的作用下,沿水平面做匀速直线运动,恒力F的方向与水平成θ 角,那么物体与桌面间的动摩擦因数为()A.c osθB.c tgθC.D.t gθ考点:共点力平衡的条件及其应用;滑动摩擦力..专题:计算题.分析:对物体受力分析,受推力、重力、支持力、摩擦力,根据平衡条件用正交分解法列式求解.解解:对物体受力分析,如图答:根据共点力平衡条件水平方向Fcosθ﹣f=0竖直方向 N﹣Fsinθ﹣mg=0摩擦力f=μN由以上三式解得μ=故选C.点评:解决共点力平衡问题最终要运用平衡条件列方程求解,选择恰当的方法,往往可以使问题简化,常用方法有:正交分解法;相似三角形法;直角三角形法;隔离法与整体法;极限法.4.如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图(乙)所示,则()A.t1时刻小球动能最大B.t2时刻小球动能最大C.t2~t3这段时间内,小球的动能先增加后减少D.t2~t3段时间内,小球增加的动能等于弹簧减少的弹性势能考点:弹性势能;动能;动能定理的应用;动能和势能的相互转化..专题:压轴题;定性思想;牛顿运动定律综合专题.分析:小球先自由下落,与弹簧接触后,弹簧被压缩,在下降的过程中,弹力不断变大,当弹力小于重力时,物体加速下降,但合力变小,加速度变小,故做加速度减小的加速运动,当加速度减为零时,速度达到最大,之后物体由于惯性继续下降,弹力变的大于重力,合力变为向上且不断变大,故加速度向上且不断变大,故物体做加速度不断增大的减速运动;同理,上升过程,先做加速度不断不断减小的加速运动,当加速度减为零时,速度达到最大,之后做加速度不断增大的减速运动,直到小球离开弹簧为止.解答:解:A、t1时刻小球小球刚与弹簧接触,与弹簧接触后,先做加速度不断减小的加速运动,当弹力增大到与重力平衡,即加速度减为零时,速度达到最大,故A错误;B、t2时刻,弹力最大,故弹簧的压缩量最大,小球运动到最低点,速度等于零,故B错误;C、t2~t3这段时间内,小球处于上升过程,先做加速度不断减小的加速运动,后做加速度不断增大的减速运动,故C正确;D、t2~t3段时间内,小球和弹簧系统机械能守恒,故小球增加的动能和重力势能之和等于弹簧减少的弹性势能,故D错误;故选C.点评:本题关键要将小球的运动分为自由下落过程、向下的加速和减速过程、向上的加速和减速过程进行分析处理,同时要能结合图象分析.5.如图,人沿平直的河岸以速度v行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α,船的速率为()A.v si nαB.C.v cosαD.考点:运动的合成和分解..分析:人在行走的过程中,小船前进的同时逐渐靠岸,将人的运动沿着绳子方向和垂直绳子方向正交分解,由于绳子始终处于绷紧状态,故小船的速度等于人沿着绳子方向的分速度,根据平行四边形定则,将人的速度v分解后,可得结论.解答:解:将人的运动速度v沿着绳子方向和垂直绳子方向正交分解,如图,由于绳子始终处于绷紧状态,因而小船的速度等于人沿着绳子方向的分速度根据此图得v船=vcosα故选C.点评:本题关键找到人的合运动和分运动,然后根据正交分解法将人的速度分解即可;本题容易把v船分解而错选D,要分清楚谁是合速度,谁是分速度.6.(3分)物体在恒定的合力F作用下,做直线运动,在时间△t1内速度由O增大到v,在时间△t2内速度同v增大到2v,设F在△t1内做功是W1,冲量是I1,在△t2内做的功是W2,冲量是I2,那么()A.I1<I2,W1=W2B.I1<I2,W1<W2C.I1=I2,W1=W2D.I1=I2,W1<W2考动量定理..点:专题:动量定理应用专题.分析:根据动能定理研究功的关系,根据动量定理研究冲量的关系.解答:解:根据动能定理得:,,则W1<W2.根据动量定理得,I1=mv﹣0=mv,I2=2mv﹣mv=mv,知I1=I2.故D正确,A、B、C错误.故选D.点评:根据动能的变化由动能定理求合力的功、根据动量的变化由动量定理求合力的冲量是这两大定理基本的应用.7.如图是一个示波管工作原理图的一部分,电子经过加速后以速度v0垂直进入偏转电场,离开偏转电场时的偏转量为y,两平行板间距为d、板长为L、板间电压为U.每单位电压引起的偏转量(y/U)叫做示波管的灵敏度,为了提高灵敏度,可以采用的方法是()A.增加两板间的电势差U B.尽可能缩短板长LC.尽可能减小板距d D.使电子的入射速度v0大些考点:示波管及其使用..分析:电子在匀强电场中发生偏转,根据已知的条件,写出偏转量的表达式,根据公式进行说明.解答:解:设电子的电量为q,质量为m,加速度为a,运动的时间为t,则加速度:a==,运动时间t=,偏转量h==.所以示波管的灵敏度:=.通过公式可以看出,提高灵敏度可以采用的方法是:加长板长L,减小两板间距离d 和减小入射速度v0.故C正确,ABD错误.故选:C.点评:该题本意是考查带电粒子在电场中的偏转,要熟记偏转量的公式以及它的推导的过程.8.(3分)如图所示,正方形区域ABCD内存在方向垂直纸面向里的匀强磁场,三个完全相同的带电粒子a、b、c分别以大小不同的初速度v a、v b、v c从A点沿图示方向射入该磁场区域,经磁场偏转后粒子a、b、c分别从BC边中点、CD边中点、AD边中点射出.若t a、t b、t c分别表示粒子a、b、c在磁场中的运动时间.则以下判断正确的是()A.v a<v b<v c B.v a=v b<v c C.t a<t b<t c D.t a=t b<t c考点:带电粒子在匀强磁场中的运动..专题:带电粒子在磁场中的运动专题.分析:带电粒子在你匀强磁场中做匀速圆周运动,粒子的运动时间t=T,θ为粒子轨迹所对应的圆心角.解答:解:粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB=m,解得:v=,粒子做圆周运动的周期:T=,由于三个粒子完全相同,则它们做圆周运动的周期T 相等,如图所示,粒子的轨道半径:r a>r b>r c,v c<v b<v a,故AB错误;粒子在磁场中做圆周运动转过的圆心角间的关系为:θa<θb<θc,粒子运动时间t=T,则粒子在磁场中的运动时间:t a<t b<t c,故C正确,D错误;故选:C.点评:本题考查了比较粒子的运动速度、时间关系,根据题意作出粒子的运动轨迹是正确解题的关键,应用牛顿第二定律、t=T即可正确解题.9.(4分)如图所示,斜面体质量为M,倾角为θ,置于水平地面上,当质量为m的小木块沿斜面匀速下滑时,斜面体仍静止不动.则()A.斜面体受地面的支持力为MgB.斜面体受地面的支持力为(m+M)gC.斜面体受地面的摩擦力为mgcosθsinθD.斜面体受地面的摩擦力为0考点:牛顿第二定律;摩擦力的判断与计算..专题:牛顿运动定律综合专题.分析:对整体分析,通过共点力平衡求出斜面体所受地面的摩擦力和支持力的大小.解解:因为小木块匀速下滑,对整体分析,整体合力为零,整体受重力和支持力,摩答:擦力为零,所以N=(M+m)g.故B、D正确,A、C错误.故选BD.点评:解决本题的关键能够正确地受力分析,运用共点力平衡进行求解,掌握整体法和隔离法的运用.10.(4分)如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置由静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是()A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒C.斜劈的机械能守恒D.小球机械能的减少量等于斜劈动能的增加量考点:动能和势能的相互转化..分析:小球和斜劈组成的系统中,只有重力势能和动能相互转化,机械能守恒;而小球和斜劈的机械能都不守恒.解答:解:A、斜劈由静到动,动能增加,只有弹力对斜劈做功,根据动能定理,斜劈对小球的弹力做正功,故A错误;B、C、D、小球和斜劈组成的系统中,只有重力势能和动能相互转化,机械能守恒,故BD正确,C错误‘故选BD.点评:本题关键分析清楚物体的运动和能量的转化情况,要明确是小球和斜劈组成的系统机械能守恒,而不是单个物体机械能守恒.11.在匀强磁场中,一矩形金属线框绕与磁感线垂直的转动轴匀速转动,如图甲所示.产生的交变电动势随时间变化的规律如图乙所示.则下列说法正确的是()A.t=0.01s时穿过线框的磁通量最小B.该交变电动势的有效值为11VC.该交变电动势的瞬时值表达式为e=22sin(100πt)VD.电动势瞬时值为22V时,线圈平面与中性面的夹角为45°考交流的峰值、有效值以及它们的关系..点:专题:交流电专题.分析:从图象得出电动势最大值、周期,从而算出频率、角速度;磁通量最大时电动势为零,磁通量为零时电动势最大,转速加倍,最大值加倍.解答:解:A、由图象知:t=0.01s时,感应电动势为零,则穿过线框的磁通量最大,A错误;B、该交变电动势的有效值为E=,B错误;C、当t=0时,电动势为零,线圈平面与磁场方向垂直,故该交变电动势的瞬时值表达式为,C正确;D、电动势瞬时值为22V时,代入瞬时表达式,则有线圈平面与中性面的夹角为45°,D正确;故选:CD点评:本题考查了对交流电图象的认识,要具备从图象中获得有用信息的能力,并掌握有效值与最大值的关系.12.(4分)如图所示,甲带正电,乙是不带电的绝缘物块,甲、乙叠放在一起,置于粗糙的固定斜面上,地面上方空间有垂直纸面向里的匀强磁场,现用平行于斜面的恒力F拉乙物块,在使甲、乙一起无相对滑动沿斜面向上加速运动的阶段中()A.甲、乙两物块间的摩擦力不断增大B.甲、乙两物块间的摩擦力保持不变C.甲、乙两物块间的摩擦力不断减小D.乙物块与斜面之间的摩擦力不断减小考点:洛仑兹力;摩擦力的判断与计算..分析:先以整体为研究对象,分析受力情况,根据牛顿第二定律求出加速度,分析斜面对乙的摩擦力如何变化,再对甲分析,由牛顿第二定律研究甲、乙之间的摩擦力、弹力变化情况.解答:解:对整体,分析受力情况:重力、斜面的支持力和摩擦力、洛伦兹力,洛伦兹力方向垂直于斜面向上,则由牛顿第二定律得:m总gsinα﹣f=ma ①F N=m总gcosα﹣F洛②随着速度的增大,洛伦兹力增大,则由②知:F N减小,乙所受的滑动摩擦力f=μF N 减小,故D正确;以乙为研究对象,有:m乙gsinθ﹣f=m乙a ③m乙gcosθ=F N′+F洛④由①知,f减小,加速度增大,因此根据③可知,甲乙两物块之间的摩擦力不断增大,故A正确,BC错误;故选:AD.点评:解决本题运用整体法和隔离法结合研究,关键是抓住洛伦兹力随速度而增大的特点进行分析13.如图所示为一卫星绕地球运行的轨道示意图,O点为地球球心,已知引力常量为G,地球质量为M,,,下列说法正确的是()A.卫星在A点的速率B.卫星在B点的速率C.卫星在A点的加速度D.卫星在B点的加速度考点:人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用..专题:人造卫星问题.分析:卫星在圆轨道运行时,万有引力提供向心力,根据牛顿第二定律列式求解出线速度和加速度的表达式;卫星在椭圆轨道运动时,根据离心运动和向心运动的知识比较速度与圆轨道对应速度的大小.解答:解:卫星在圆轨道运行时,万有引力提供向心力,根据牛顿第二定律,有:解得:v=,a=A、卫星经过椭圆轨道的A点时,由于万有引力小于向心力,故做离心运动,故:解得:v>,故A错误;B、卫星经过椭圆轨道的B点时,由于万有引力大于向心力,故做向心运动,故:解得:v<,故B正确;C、根据牛顿第二定律,卫星在A点的加速度:,故C正确;D、根据牛顿第二定律,卫星在B点的加速度,故D错误;故选:BC.点评:本题关键是明确当万有引力大于向心力时,卫星做向心运动,当万有引力小于向心力时,物体做离心运动.14.(4分)半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示.则()A.θ=0时,杆产生的电动势为2BavB.θ=时,杆产生的电动势为BavC.θ=时,杆受的安培力大小为D.θ=0时,杆受的安培力为考点:导体切割磁感线时的感应电动势;安培力..专题:电磁感应与电路结合.分析:根据几何关系求出此时导体棒的有效切割长度,根据法拉第电磁感应定律求出电动势.注意总电阻的求解,进一步求出电流值,即可算出安培力的大小.解答:解;A、θ=0时,杆产生的电动势E=BLv=2Bav,故A正确B、θ=时,根据几何关系得出此时导体棒的有效切割长度是a,所以杆产生的电动势为Bav,故B错误;C、θ=时,电路中总电阻是(π+1)aR0,所以杆受的安培力大小为:F′=BI′L′=,故C正确;D、θ=0时,由于单位长度电阻均为R0.所以电路中总电阻(2+π)aR0,所以杆受的安培力大小为:F=BIL=B•2a=,故D错误;故选:AC.点评:电磁感应与电路的结合问题,关键是弄清电源和外电路的构造,然后根据电学知识进一步求解.二、非选择题(本大题共9小题,第1个小题为实验填空题,只需要写出相应结果,后3个小题为计算题,需要写出详细解答过程方能得分)15.(8分)某同学用如图甲所示的装置验证机械能守恒定律,他将两物块A和B用轻质细绳连接跨过轻质定滑轮,B下端连接纸带,纸带穿过固定的打点计时器.(1)按图甲所示安装实验装置时,使A的质量大于B的质量.(2)图乙是实验中得到的一条纸带,O为释放纸带瞬间打点计时器打下的点,A、B、C为纸带上连续取出的三个计时点,测得OA间、AB间及BC间的距离如图所示,已知打点计时器计时周期为T=0.02s,用天平测出A、B两物体的质量mA=150g,mB=50g,根据以上数据计算,可得从O到B的过程中,物块A、B组成的系统重力势能减少量为0.42 J,动能增加量为0.40 J,由此可得出的结论是在误差允许范围内,系统机械能守恒(取g=9.8m/s2,计算结果保留2位有效数字)考点:验证机械能守恒定律..专题:实验题.分析:纸带实验中,若纸带匀变速直线运动,测得纸带上的点间距,得到A物体下落的高度和B物体上升的高度,即可求出系统重力势能的减小量.根据某段时间内的平均速度等于中间时刻的瞬时速度求出B点的速度,从而得出动能的增加量,再进行比较,即可得出结论.解答:解:从O到B的过程中,物块A、B组成的系统重力势能减少量为:△E p=(m A﹣m B)gh OB=(150﹣50)×10﹣3×9.8×(38.89+3.91)×10﹣2J=0.42J;B点的速度为:v B=m/s=2m/s系统动能增加量为:△E k=×(150+50)×10﹣3×22J=0.40J因为△E p≈△E k所以由此可得出的结论是:在实验误差允许范围内,系统机械能守恒.故答案为:0.42;0.40;在误差允许范围内,系统机械能守恒.点评:本题用连接体为例来验证机械能守恒,要注意研究的对象是A、B组成的系统,运用匀变速直线运动规律求B点的速度是关键.要关注有效数字.16.(8分)要测量一个量程已知的电压表的内阻,所备器材如下:A.待测电压表V(量程3V,内阻待测)B.电流表A(量程3A,内阻约0.01Ω)C.定值电阻R(已知阻值6kΩ,额定电流50mA)D.蓄电池E(电动势略小于3V,内阻不计)E.多用电表F.开关K1、K2,导线若干有一同学利用上面所给器材,进行如下实验操作:(1)首先,用多用电表进行粗测,选用“×1K”挡且操作方法正确.若这时刻度盘上的指针位置如图甲所示,则测量的结果是7KΩ.(2)为了更精确地测出此电压表内阻,该同学设计了如图乙所示的(a)、(b)实验电路,你认为其中较合理的电路图是 b .(3)用你选择的电路进行实验时,用上述所测量的符号表示电压表的内阻R v= .考点:伏安法测电阻..专题:实验题.分析:(1)欧姆表读数等于表盘读数乘以倍率;(2)(3)图a中电流表读数太小,读数误差太大,采用图b,结合闭合电路欧姆定律列式求解.解答:解:(1)选用“×1K”挡且操作方法正确,由图1所示可知,则测量的结果是:R=7×1k=7kΩ.(2)由于电源电动势小于3V,电压表内阻很大,图a所示电路电流很小,不能准确对电流表读数,实验误差太大,因此应选择图b所示电路进行实验.(3)实验时,要先闭合开关K1,再闭合开关K2,读得电压表示数U1;再断开开关K2,读得电压表示数U2,电源的内阻忽略不计,断开开关K2,读得电压表示数U2,电阻R上的电压为:U R=U1﹣U2,由串联电路的分压关系得:=解得:R V=;故答案为:(1)7KΩ或7000Ω;(2)b;(3).点评:欧姆表的读数为:表盘的读数×倍率;要理解乙和丙两个电路图测量电压表内阻的原理,根据它们的测量原理进行解答.17.航模兴趣小组设计出一架遥控飞行器,其质量m=2㎏,动力系统提供的恒定升力F=28N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10m/s2.(1)第一次试飞,飞行器飞行t1=8s 时到达高度H=64m.求飞行器所阻力f的大小;(2)第二次试飞,飞行器飞行t2=6s 时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大宽度h;(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.考点:牛顿第二定律;匀变速直线运动规律的综合运用..分析:(1)第一次试飞时,飞行器从地面由静止开始竖直上升做匀加速直线运动,根据位移时间公式可求出加速度,再根据牛顿第二定律就可以求出阻力f的大小;(2)失去升力飞行器受重力和阻力作用做匀减速直线运动,当速度减为0时,高度最高,等于失去升力前的位移加上失去升力后的位移之和;(3)求飞行器从开始下落时做匀加速直线运动,恢复升力后做匀减速直线运动,为了使飞行器不致坠落到地面,到达地面时速度恰好为0,根据牛顿第二定律以及运动学基本公式即可求得飞行器从开始下落到恢复升力的最长时间t3.解答:解:(1)第一次飞行中,设加速度为a1匀加速运动由牛顿第二定律F﹣mg﹣f=ma1解得f=4N(2)第二次飞行中,设失去升力时的速度为v1,上升的高度为s1匀加速运动设失去升力后的加速度为a2,上升的高度为s2由牛顿第二定律mg+f=ma2v1=a1t2解得h=s1+s2=42m(3)设失去升力下降阶段加速度为a3;恢复升力后加速度为a4,恢复升力时速度为v3由牛顿第二定律 mg﹣f=ma3F+f﹣mg=ma4且V3=a3t3解得t3=s(或2.1s)答:(1)飞行器所阻力f的大小为4N;(2)第二次试飞,飞行器飞行t2=6s 时遥控器出现故障,飞行器立即失去升力,飞行器能达到的最大高度h为42m;(3)为了使飞行器不致坠落到地面,飞行器从开始下落到恢复升力的最长时间为s.点评:本题的关键是对飞行器的受力分析以及运动情况的分析,结合牛顿第二定律和运动学基本公式求解,本题难度适中.18.(10分)如图所示,坐标系xOy在竖直平面内,水平轨道AB和斜面BC均光滑且绝缘,AB和BC的长度均为L,斜面BC与水平地面间的夹角θ=600,有一质量为m、电量为+q的带电小球(可看成质点)被放在A点.已知在第一象限分布着互相垂直的匀强电场和匀强磁场,电场方向竖直向上,场强大小E2=,磁场垂直纸面向外,磁感应强度大小为B;在第二象限分布着沿x轴正向的匀强电场,场强大小未知.现将放在A点的带电小球由静止释放,恰能到达C点,问(1)分析说明小球在第一象限做什么运动;(2)小球运动到B点的速度;(3)第二象限内匀强电场的场强E1.考点:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.. 专题:带电粒子在复合场中的运动专题.分析:(1)分析小球的受力情况,根据小球受力情况判断小球的运动情况.(2)小球在磁场中做匀速圆周运动,由牛顿第二定律可以求出小球的速度.(3)由小球,应用动能定理可以求出电场强度.解答:解:(1)当带电小球进入第一象限后所受电场力:F=qE2=mg,方向竖直向上,电场力与重力合力为零,小球所受合外力为洛伦兹力,小球在洛伦兹力作用下做匀速圆周运动;(2)小球运动轨迹如图所示:由几何关系可得:R==L,小球在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qv B B=m,解得:v B=;(3)小球从A到B过程,由动能定理得:qE1L=mv B2﹣0,解得:E1=;答:(1)小球在第一象限做匀速圆周运动;(2)小球运动到B点的速度为;(3)第二象限内匀强电场的场强E1为.点评:本题考查了求小球的速度、电场强度,分析清楚小球的运动过程,对小球正确受力分析、应用牛顿第二定律、动能定理即可正确解题.19.如图所示,质量为M的导体棒ab,垂直放在相距为l 的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B方向垂直于导轨平面向上的匀强磁场。