测井原理

合集下载

测井方法与原理

测井方法与原理

测井方法与原理测井是一种在石油勘探和开发中广泛应用的技术手段,其主要目的是通过测量地下岩石的物理性质,以评估地下地层中的油气储层并确定井孔的产能。

本文将介绍几种常用的测井方法及其原理。

一、电测井方法电测井是通过测量井眼周围地层的电阻率来评估石油储层的方法。

它的原理是通过向井眼中注入电流,然后测量所产生的电位差,从而计算出地层的电阻率。

电测井方法有许多具体的技术实现,如侧向电测井、正向电测井和声波电阻率测井等。

这些方法在实际应用中能够提供丰富的地下岩石信息,帮助确定储层的类型和含油气性质。

二、声波测井方法声波测井是通过测量地下岩石对声波的传播速度和衰减程度来评估石油储层的方法。

它的原理是利用井壁的物理特性和波的传播规律,通过发送声波信号并接收回波信号,从而推断出地层中的可用信息。

声波测井方法常用的技术包括声波传输率测井、声波振幅测井和声波时差测井等。

这些方法能够提供有关地下岩石的密度、孔隙度和饱和度等关键参数,对于油气勘探与开发具有重要意义。

三、核子测井方法核子测井是通过测量地下岩石散射或吸收射线的能量来评估石油储层的方法。

它的原理是使用放射性同位素或射线源,通过测量射线经过地层后的射线强度变化,从而反推出地层的性质和组成。

核子测井方法包括伽马射线测井、中子测井和密度测井等。

这些方法可以提供地下岩石的密度、孔隙度、含水饱和度以及岩石组成的定量信息,对于评估储层的含油气性能十分重要。

四、导电测井方法导电测井是通过测量地下岩石对电磁波的响应来评估石油储层的方法。

它的原理是利用电磁波在地下岩石中传播时的电磁感应效应,通过测量反射波的幅度和相位变化,推导出地层的导电性能。

导电测井方法包括感应测井和电阻率测井等。

这些方法可以提供有关地下岩石的电导率、水饱和度、渗透率和孔隙度等信息,对于确定储层的含油气性质具有重要的意义。

总结:测井方法是石油勘探与开发中不可或缺的技术手段,通过测量地下岩石的物理性质,能够评估地层的含油气性能、类型和产能等关键参数。

测井的原理和应用

测井的原理和应用

测井的原理和应用1. 测井的概述测井是石油工程中的一项重要技术,通过下井仪器的测量,以获得井内地层的物性参数,从而评估石油和天然气储层的含油气性质和储量。

测井技术在石油勘探、开发和生产中起到了至关重要的作用。

2. 测井的原理测井的原理是基于下井仪器通过测量井壁周围的物理量,利用物理和地质的关联关系来推断井内地层性质的一种技术。

下面将介绍几种常用的测井技术及其原理。

2.1 电测井电测井是一种通过测量井壁周围的电性参数来推断地层性质的技术。

它利用地层的电导率差异,通过测量电阻率来判断地层的类型和特征。

2.2 声波测井声波测井是一种通过测量地层对声波的传播速度来推断地层性质的技术。

它利用地层的声波传播速度差异,通过测量声波传播时间来判断地层的类型和充实度。

2.3 核磁共振测井核磁共振测井是一种通过测量地层中核磁共振信号来推断地层性质的技术。

它利用地层中的核磁共振信号,通过测量共振频率和幅度来反演地层的物性参数。

3. 测井的应用测井技术在石油勘探、开发和生产中有着广泛的应用。

下面将介绍几个常见的应用领域。

3.1 储层评价测井技术可以提供储层的物性参数,如孔隙度、渗透率、饱和度等,从而评价储层的质量和产能。

3.2 油气井完井设计测井技术可以提供地层的性质参数,帮助优化油气井的完井设计,提高油气井的产能。

3.3 水驱和聚驱监测测井技术可以提供油层和水层的界面位置和分布,帮助监测水驱和聚驱过程中的流体移动和驱替效果。

3.4 储层模型建立测井技术可以提供地层的性质参数,用于建立储层模型,从而进行油气资源评估和储量计算。

3.5 井眼修复和沉积环境研究测井技术可以提供井眼的形态和修复情况,帮助判断沉积环境和地层演化过程。

4. 测井的发展趋势随着科技的不断进步,测井技术也在不断发展。

以下是测井技术的一些发展趋势。

4.1 多物性测井技术随着对复杂储层的勘探和开发需求增加,多物性测井技术被广泛关注。

通过融合多种测井技术,可以获得更加全面准确的地层信息。

测井原理及方法范文

测井原理及方法范文

测井原理及方法范文测井是油气勘探开采过程中的一项重要技术,通过测井可以获取地下储层的岩性、含油气性、物性等信息,并对油气藏进行评价和预测。

本文将介绍测井的原理及方法。

测井原理主要基于地球物理学原理,利用地下岩石的物理性质与测量地下电、声、弹等信号的相互作用进行解释。

其中,电测井、声测井和弹性波测井是最常用的测井方法。

1.电测井原理及方法:电测井是利用地下岩石导电性的差异对不同岩石进行识别和判别的方法。

主要包括自然电位测井、直流电测井和交流电测井。

自然电位测井是通过测量地下自然电位差来分析地下储层的物性和构造信息。

直流电测井则是通过向地下注入直流电流,并测量电位差来计算电阻率,从而识别不同岩石。

交流电测井是通过向地下注入交流电流,并测量频率和幅度数据来计算电性参数以识别岩性和物性。

2.声测井原理及方法:声测井是利用声波在地下传播时的反射、折射和散射等特性来分析岩石的物性和构造的方法。

常用的声测井包括全波形测井和具有不同频率的测井。

全波形测井是将地下反射、折射和散射的声波信号接收并记录下来,通过分析波形的变化来识别不同岩性。

具有不同频率的测井则是通过发送不同频率的声波信号,并记录不同频率下的声波反射信号,通过频率特性数据来识别岩石的物性。

3.弹性波测井原理及方法:弹性波测井是利用地下岩石的弹性波传播特性来分析岩石的物性和构造的方法。

主要包括剪切弹性波测井和压缩弹性波测井。

剪切弹性波测井通过产生垂直于岩层总夹角的剪切波,并记录其传播速度和衰减情况来分析岩石的物理性质。

压缩弹性波测井则是通过产生与岩层夹角平行的压缩波,并记录其传播速度和衰减情况来分析岩石的物理性质。

总结:测井技术是油气勘探开采过程中必不可少的技术手段,通过测井可以获取到地下储层的物性、岩性等信息,并进行合理的评估和预测。

常用的测井方法包括电测井、声测井和弹性波测井。

每种测井方法都有其相应的原理和方法,通过测井数据可以提供宝贵的地质工程参数,对油气勘探开采具有重要的指导意义。

核磁共振测井的基本原理

核磁共振测井的基本原理

核磁共振测井的基本原理
核磁共振测井(NMR)的基本原理是利用原子核在外磁场
中的磁矩为零或自旋为零,即自转的变化率为零,在外加磁场中与外加电场发生作用,使原子核受到磁场力而发生磁化。

当原子核在外加磁场中运动时,其周围就产生一系列感应电流(自转),这些感应电流与磁场力方向相同,就会使原子核发生位移,其位移量与原子核磁矩成正比。

核磁共振测井正是根据原子核在外加磁场中的自转变化率来研究原子核的运动和核外电子运动的。

核磁共振测井仪器有两个重要部件:一个是感应线圈;另一个是接收线圈。

感应线圈的作用是把发射出去的核磁共振信号接收下来。

一般情况下,感应线圈处于待测井段井眼的周围,在井下有很多的铁屑或其他杂质和岩石颗粒存在。

这些铁屑和颗粒对核磁共振信号会产生很大的干扰。

当井眼打开后,由于井壁对核磁共振信号有屏蔽作用,使核磁共振信号在井眼周围产生一个很强的磁场。

在这个强磁场下,原子核就会发生位移,在原子核的自转轴方向上形成一个脉冲磁场(核磁共振脉冲)。

—— 1 —1 —。

测井原理与综合解释

测井原理与综合解释

测井原理与综合解释测井原理是指利用地球物理仪器和技术,对地下岩石层进行实时监测和测量的过程。

通过测井原理,可以获得有关地下岩石层中所含矿物、岩性、含水性、温度、压力等参数的信息,从而帮助地质学家和工程师进行油气勘探和开发。

测井原理主要依赖于以下几种物理现象和原理:1. 电性测井原理:利用地层中的电性差异,通过测量电阻率、电导率等指标来判断地层的性质。

例如,导电层岩石通常具有良好的含油性能。

2. 密度测井原理:根据地下岩石的密度差异,通过测量岩石的密度来判断地层的性质。

例如,含有矿物质量高的岩石通常具有较高的密度。

3. 声波测井原理:利用地层中声波的传播速度来判断地层的性质。

不同类型的岩石对声波的传播速度有不同的影响。

4. 核磁共振测井原理:利用地层中核磁共振现象,通过测量核磁共振信号来判断地层的性质。

不同类型的岩石对核磁共振信号有不同的响应。

综合解释是指通过将不同类型的测井数据进行综合分析和解释,得出地下岩石层的具体性质和分布。

综合解释的过程包括以下几个步骤:1. 数据校正和质量评估:初步检查测井数据的准确性和有效性,排除可能的误差和异常点。

2. 数据融合:将来自不同类型测井仪器的数据进行融合,形成一个统一的数据集。

3. 数据解释:根据测井原理和地质知识,对数据进行解释,得出地层的特征和性质。

可以使用图表、剖面图等方式展示解释结果。

4. 建模和预测:根据解释结果,建立地下岩石层的模型,并利用模型进行预测和评估。

这可以帮助决策者进行油气资源勘探和开发的决策。

综合解释需要综合考虑不同类型的测井数据,以及地质知识和经验。

准确地解释地下岩石层的性质和分布,对于油气勘探和开发具有重要意义。

测井原理总结

测井原理总结

绪论(2学时)一、测井学和测井技术的发展测井学是一个边缘科学,是应用地球物理的一个分支,它是用物理学的原理解决地质学的问题,并已在石油、天然气、金属矿、煤田、工程及水文地质等许多方面得到应用。

30年代首先开始电阻率测井,到50年代普通电阻率发展的比较完善,当时利用一套长短不同的电极距进行横向测井,用以较准确地确定地层电阻率。

60年代聚焦测井理论得以完善,孔隙度形成了系列测井,各类聚焦电阻率测井仪器也得到了发展,精度也相应得以提高。

测井资料的应用也有了长足的发展,随着计算机的应用,车载计算机和数字测井仪也被广泛的应用。

到现在又发展了各种成像测井技术。

二、测井技术在勘探及开发中的应用无论是金属矿床、非金属矿床、石油、天然气、煤等,在勘探过程中在地壳中只要富集,就具有一定特点的物理性质,那我们就可以用地球物理测井的方法检测出来。

特别是石油和天然气,往往埋藏很深,只要具有储集性质的岩石,就有可能储藏有流体矿物。

它不用像挖煤一样。

而是只要打一口井,确定出那段地层能出油,打开地层就可以开采。

由于用测井资料可以解决岩性,即什么矿物组成的岩石,它的孔隙度如何,渗透率怎么样,含油气饱和度大小。

沉积时是处于什么环境,是深水、浅水、还是急流河相,有无有机碳,有没有生油条件,能不能富集。

在勘探过程中,可以解决生油岩,盖层问题,也可以对储层给予评价,找到目的层,解释出油、气、水。

在油气田开发过程中,用测井可以监测生产动态,解决工程方面的问题。

井中产出的流体性质,是油还是水,出多少水,油水比例如何,用流体密度,持水率都可以说明。

注水开发过程中,分层的注入量,有没有窜流,用注入剖面测井都可以解决。

生产过程中,套管是否变形,有没有损坏、脱落或变位,管外有无窜槽,射孔有没有射开,都需要测井来解决。

对于设计开发方案,计算油层有效厚度,寻找剩余油富集区都离不开测井。

测井对石油天然气勘探开发来说,自始至终都是不可缺少的,是必要的技术。

测井知识小结

测井知识小结

测井知识小结一、测井原理1.划分地层自然电位测井(SP)目的:计算和识别泥岩适用地层:富含高矿化度地层水的砂泥岩剖面利用:电化学性质(即地层水的矿化度与泥浆滤液的矿化度之差异)测量:地层中的扩散电动势和扩散吸附电动势曲线的作用:主要用于砂泥岩坡面的岩性划分(即在砂泥岩剖面上识别砂岩和泥岩),其具体做法是——第一,确定泥岩基线(即找出泥岩的趋势值);第二,找出含水纯砂岩(在自然电位曲线先表现为最低值,且一般是厚层,也就是说偏离泥岩基岩幅度最大位置);第三,位于泥岩基岩与含水纯砂岩之间的那些曲线段则可能为砂质泥岩或泥质砂岩(这主要看是偏向泥岩基线还是偏向含水纯砂岩,一般情况下,偏向泥岩基线较多的则为砂质泥岩。

不过,岩层中含有油气也会对自然电位曲线有影响,一般表现为峰值向泥岩基线方向移动,这主要是由于油气是高阻的缘故)。

如下图所示:自然伽马测井(GR)目的:计算和识别泥岩适应情况:套管井、干井、油基泥浆、高阻地层(一般如碳酸盐岩剖面)测量:钻井剖面的天然放射性强度(假设沉积岩本身是不含放射性的,一般而言,沉积岩的放射性主要取决于岩层中泥质的含量,产生放射性的物质主要有U、Th、K)曲线的作用:主要用于划分岩层。

在自然伽马测井曲线上,泥岩和页岩显示明显的高放射性,而且可以形成一条比较稳定的泥岩线(储积岩是低放的);在砂泥岩剖面,纯砂岩GR最低,粘土最高,泥质砂岩较低,泥质粉砂岩和砂质泥岩较高,即自然伽马随泥质含量的增加而升高;在碳酸盐岩地层,纯石灰岩和纯白云岩GR最低,泥岩和页岩最高,泥灰岩较高,泥质石灰岩和泥质白云岩介于它们之间,也是随泥质含量增加而升高;在膏盐剖面中,石膏层的GR值最低,泥岩最高,砂岩在二者之间。

2.测量地层的电阻率——普通电阻率测井、侧向测井、微电阻率测井和感应测井目的:探测不同径向深度的电阻率值R,识别流体(油、气、水)测量:地层中各个带的电阻率(冲洗带电阻率、过渡带电阻率、原状地层电阻率)适应情况:一般用于侵入条件下(即泥浆滤液侵入到地层中形成冲洗带、过渡带和原状地层)曲线作用:在SP或GR粗略分层的基础上,电阻率测井可以用于精细划分储层。

测井原理与解释

测井原理与解释

测井原理与解释
测井是一种勘探地下介质的物理和化学性质的方法,主要通过测量井眼周围的压强、温度、压力、化学成分和流量等参数来确定地下介质的类型、孔隙结构、类型和含水量等信息。

测井原理主要有以下几种:
1. 地震测井:利用井壁上的地震波的传播规律和反射特性,通过地震仪记录地震波的反射和回波时间等信息来计算压强和温度。

2. 热测井:利用井底温度和地下介质的热传递特性,通过热仪记录井底和地下介质的温度,通过温度变化来计算孔隙度和含水量。

3. 声波测井:利用声波在地下介质中的传播速度和衰减特性,通过声波仪记录声波的传播时间和频率等信息来计算压强、温度和化学成分。

4. 射电测井:利用射电电场和电磁波在地下介质中的传播规律,通过射电仪记录电磁波的传播时间和衰减特性来计算压强、温度、含水量和岩石类型等。

以上这些方法都具有一定的准确度和局限性,根据不同的地质情况和目的,可以选择不同的方法进行测井。

同时,在测井过程中还需要考虑到井壁稳定、井口振动、地震波传播方向等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微电极测井
为提高纵向分辨能力而设计出的一种贴井壁测量的
特殊装置称为微电极。
在微电极主体上,装有三个弹簧片扶正器,弹簧片之间的夹角为1200,在其中一个弹簧片上有硬橡胶绝缘板把供电电极A和测量电极M1M2按直线排列,微电极曲线是由微电位和微梯度两条电阻率曲线组成的。
a.电极距小,几乎不受围岩和泥浆的影响;
c.当h<AM时,对着高电阻率地层的中点视电阻率取得极小值。在地层界面处,曲线上出现“小平台”,其中点正对着地层的界面。随层厚降低“小平台”发生倾斜,当h<AM时,“小平台”靠地层外侧一点为高值点,出现极大值。
d.电位电极系探测半径为2倍的电极距。
电位电极系视电阻率测井曲线主要用途与梯度视电阻率曲线的基本相同。在确定储层的厚度时是根据曲线幅度的半幅点间的距离来度量的。
c.快速、直观判断油、水层。将深、浅侧向视电阻率曲线重叠绘制,观察两条曲线幅度的相对关系,在渗透层井段会出现幅度差。深侧向曲线幅度大于浅侧向曲线幅度,叫正幅度差(意味着泥浆低侵),这种井段一般可认为是含油气井段,反之当深侧向曲线幅度小于浅侧向曲线幅度时,称之为负幅度差(意味着高侵),这种井段可认为是含水井段。当然最后确定油气、水层还得参考其它测井资料综合判断作出可靠结论。
电极的尺寸较小,镶嵌在绝缘极板上。由主电极A0流出的电流分为两部分:一部分流人回路电极B,称为主电流Io另一部分流入辅助电极A1,称为辅助电流Ia。由于在测井时,微球形聚焦极板紧贴在井壁上,所以测量结果受井眼影响小,是确定冲洗带电阻率Rxo较好的方法。
a.分辨率高,对于0.3m以上的层有很好的显示;
a.与普通电阻率测井曲线相比,三侧向视电阻率曲线受井眼、围岩、层厚、侵入影响小;
b.纵向分辨率高,适于划分薄层;
c.当上下围岩电阻率相等时,三侧向视电阻率曲线对称于地层中部;
d.在高阻地层中点,视电阻率出现极大值。
a.判断油、水层;
b.划分岩性剖面;
c.确定岩层的真电阻率;
d.地层对比。
双侧向测井
测井仪一次下井可测出不同深度的两条曲线即深侧向测井曲线和浅侧向测井曲线,故称为双测向测井。其曲线有很好的分层能力,能分出0.6m厚的地层。
声波测井
声波在不同介质中传播时,其速度、幅度衰减及频率变化等声学特性是不同的。声波测井就是以岩石等介质的声学特性为基础来研究钻井地质剖面、固井质量等问题的一种测井方法。
井下仪器的发射换能器晶体振动,引起周围介质的质点发生振动,产生向井内泥浆及岩层中传播的声波。声波经过折射反射后,在井中就可以用接收换能器R1、R2先后接收到经过地层的滑行波,进而测量地层的声波速度。
c.用岩性密度测井还可以区分岩性;
d.用岩性密度测井可以求取泥质含量。
补偿密度测井FDC
双源距贴井壁测量,长短源距探测
器组合补偿泥饼影响。
体积密度曲线DEN
密度校正曲线CORR和井径曲线
岩性密度测井LDT
测量地层的体积密度光电吸收截面指数。
记录DEN、CORR、Pe曲线。
Pe曲线的应用
a.识别岩性。
c.快速直观识别油水层。与深浅侧向组合,利用深侧向所测的原状地层电阻率Rt,浅侧向所测的侵入带地层电阻率Ri和微球形聚焦所测的冲洗带地层电阻率Rxo,利用这三条曲线重叠绘制可快速直观识别油水层。
感应测井
是;利用电磁感应原理研究地层电阻率的一种测井方法。测井时把电极系放入井内,通过矩形交流电,在井中形成电场,记录测量电极间的电位差来反映地层视电阻率的变化。
d.识别性岩:泥岩处自然电位曲线平直,砂岩处自然电位曲线异常幅度最大,含泥砂岩次之,砂岩含泥量越大,自然电位曲线异常幅度越小。
e.确定地层水电阻率,估算泥质含量。
梯度电极系
是指不成对电极系到靠近它的那个成对电极系之间的距离大于成对电极间距离的电极系。而根据成对电极系与不成对电极系的相对位置不同可把电极系分成两类:一种是底部梯度电极系,另一种是顶部梯度电极系。
b.受泥饼影响小,可很好地反 映冲洗带电阻率。
a.划分薄层:由于I0是以很细的电流束穿过泥饼进入地层,受泥饼影响小,对地层的电阻率变化十分敏感,在岩性不同的界面处有明显的变化,纵向分辨能力强。利用RMSFL曲线划分薄层及渗透层中的夹层都比微侧向等资料略胜一筹。
b.确定Rxo:当hmc在3.81~19.1mm的范围内,且RMSFL/Rmc小于等于20时,图版纵坐标校正系数近似等于1。在此条件下可直接用RMSFL=Rxo。
a.划分渗透性地层:当泥浆滤液电阻率小于地层水电阻率时,一般情况下在渗透性地层处自然电位曲线产生负异常;反之,产生正异常。
b.识别油、水层:当其它条件相同时,水层的自然电位大于油层的自然电位。
c.判断水淹层:对于注淡水开发的油藏,油层水淹后,相当于地层水矿化度降低,地层水电阻率增大,造成自然电位减小。
以上测井方法只能在导电泥浆井中使用,在油基泥浆井和空气钻进井中均无法应用。
微球形聚焦测井(MSFL)
是通过电极的排列,电位的调整,使主电极流出的电流向各个方向均匀发射,形成球形,故称为球形聚焦测井。其探测深度与微测向测井相近,但受泥饼的影响小于微测向测井,所测得的视电阻率经泥饼厚度校正后,更能反映冲洗带真实的电阻率。
声波测井主要分为声速测井和声幅测井两大类。
声速测井(也称声波时差测井),是测量地层声波速度的测井方法。声波在岩石中传播速度与岩石的性质、孔隙度以及孔隙中所充填的流体性质等有关,因此,研究声波在岩石中的传播速度或时间,就可以确定岩石的孔隙度,判断岩性和孔隙流体性质。
声波时差测井资料应用
(1)确定岩石孔隙度
c.确定含油砂岩的有效厚度:利用微电极曲线纵向分辨率高的特点,可以较准确地划分含油砂岩的有效厚度。
三测向测井
三电极侧向测井简称为三侧向测井。
其电极系由三个柱状金属电极构成,主电极位于中间,比较短,屏蔽电极并列的排在两端,它们互相短路,电极之间用绝缘材料隔开,在电极系上方较远处设有对比电极和回路电极。
双侧向与三侧向的特点类似,但双侧向测井探测深度比三侧向更深,仪器的稳定性更好。深、浅侧向的纵向分辨率能力一致,便于对比。
a.确定地层真电阻率。深、浅侧向视电阻率经过井眼围岩侵入三种因素校正后,可以确定岩层的真电阻率。
b.划分岩性剖面。由于井眼的分流小,对于电阻率不同的岩层都有明显的曲线变化,厚度在0.6m以上的地层都可以分辨。如果与临层电阻率差异较大,其厚度在0.4m时也有异常变化。
自然伽马测井曲线GR
自然伽马能谱测井曲线—铀U、钍Th、钾K的含量
去铀自然伽马CGR
总自然伽马GR
a.识别高放射性储集层,寻找泥岩裂缝储集层。
b.确定粘土含量、粘土类型及其分布形式。
c.用Th/U、Th/K比研究沉积环境、沉积能量。
e.有机碳分析及生油岩评价。
f.变质岩、火成岩等复杂岩性解释。
密度测井
成对电极在不成对电极下方的称为正装梯度电极系,也叫底部梯度电极系;成对电极在不成对电极上方的称为倒装梯度电极系,也叫顶部梯度电极系。
a.梯度电极系视电阻率曲线对地层中点不对称。对高电阻率地层,底部梯度电极系视电阻率曲线在地层底界面出现极大值,顶界面出现极小值。
b.地层厚度很大时,对着地层中点附近,有一段视电阻率曲线和深度轴平行的直线。
电位电极系
不成对电极到靠近它的那个成对电极之间的距离小于成对电极间距离的电极系,称为电位电极系。
大庆油田测井应用的电位电极系主要有:0.5 m、1.0m两种电位电极系。
a.当上、下围岩电阻率相等时,曲线关于地层中点对称,
且在地层中点取得极值。
b.当层厚h>AM时,在地层中点取得极大值,且此视电阻
率极大值随地层厚度的增加而增加,接近岩层的真电阻率。
由于不同的地层具有不同的声波时差,所以根据声波时差曲线可以划分不同的岩性地层。如识别钙质层、泥岩层等等。
.自然伽马测井(GR)
自然伽马测井是在井内测量岩层中自然存在放射性射线的强度,来研究地质问题的一种方法。
岩石的自然放射性是由岩石中的放射性同位素的种类和含量决定的。岩石中的自然放射性核素主要是铀、钍、钾及其衰败物和钾的放射性同位素,这些核素的原子核在衰变过程中能放出大量的放射性射线,所以岩石具有自然放射性。
b.寻找重矿物。
c.在重晶石泥浆条件下,识别裂缝带。
中子测井
利用测井仪器的中子源向地层发射快中子,快中子与地层相互作用后衰减成超热中子、热中子等,在离源一定距离的观察点上记录这些中子的测井方法统称中子测井。
中子测井分为:
超热中子测井;
热中子测井;
中子伽马测井。
a.确定地层孔隙度;
b.与密度测井曲线配合识别气层;
b.探测深度浅,纵向分辨率高;
c.在渗透层处一般有“幅度差”。
a.划分渗透性地层:在钻井过程中,由于泥浆柱压力大于地层压力,往往在渗透性地层产生泥饼。一般泥饼的电阻率小于冲洗带电阻率,所以探测较深的微电位视电阻率大于微梯度视电阻率,通常称之为幅度差。
b.识别岩性:对于泥岩,微电极曲线平直,无幅度差;对于砂岩,微电极曲线有幅度差,砂岩越纯、物性越好,幅度差就越大;对于致密层,微电极曲线有幅度差,但视电阻率值明显比砂岩的大。
沉积岩的自然放射性一般有以下变化规律:
随泥质含量的增加而增加
随有机物含量的增加而增加
随钾盐和某些放射性矿物的增加而增加
a.划分岩性
b.地层对比。只与岩性有关,容易找到标志层。
c.计算泥质含量。
.自然伽马能谱测井(NGS)
自然伽马能谱测井,它可以测量地层中铀、钍、钾每一种放射性信息,因此,它比自然伽马测井有更丰富的信息和广泛的应用。
指利用密度测井仪测量由伽马源放出并经过岩层散射和吸收而回到探测器的伽马射线强度的一种放射性测井方法。利用密度测井曲线可研究地层性质,求得地层的孔隙度。
伽马源射线地层介质康普顿效应射线强度衰减
相关文档
最新文档