自动控制原理总经典总结

合集下载

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。

控制系统由传感器、控制器和执行器组成。

2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。

反馈控制系统具有稳定性好、抗干扰能力强的特点。

3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。

传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。

4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。

比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。

5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。

常用的稳定性分析方法有判据法、频域法和根轨迹法等。

6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。

常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。

7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。

根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。

8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。

灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。

9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。

鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。

10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。

自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。

自动控制原理部分章节归纳总结

自动控制原理部分章节归纳总结
f dy ky2 y F (t) dt
线性系统:用线性微分方程描述。 线性定常系统:用线性微分方程描述,微分方程的系数是常数。
f dy ky F (t) dt
线性时变系统:用线性微分方程描述,微分方程的系数是随时间而变化的。
f dy k(t) y F (t) dt
结构图的基本连接方式有三种:串联、并联、反馈 1. 串联方框的简化(等效)
n 个环节串联后的总传递函数等于各环节的传递函数的乘积
n
G(s) G1(s) G2 (s) Gn (s) Gi (s)
i 1
2).环节的并联(输入相同,输出相同)
并联连接:n 个环节的输入相同,而总输出为各环节输出的代数和。 3). 引出点和比较点的移动
2) 传递函数只取决于系统和元件的结构和参数,与输入信号无关; 3) 传递函数与微分方程有相通性,可经简单置换而转换; 4) 传递函数的拉氏反变换是系统的脉冲响应; 5) 传递函数是在零初始条件下定义的,它只反应系统的零状态特性;零初始条件含 义要明确。 传递函数的局限性 1) 原则上不反映非零初始条件时系统响应的全部信息; 2) 适合于描述单输入/单输出系统; 3) 只能用于表示线性定常系统。 4) 传递函数中的各项系数和相应微分方程中的各项系数对应相等,完全取决于系统结
2 线性定常离散控制系统(m≤n)
a0c(k n) a1c(k n 1) an1c(k 1) anc(k) b0r(k m) b1r(k m 1) bm1r(k 1) bm r(k)
r:输入采样序列。
c:输出采样序列
总结:(1)、(2)线性系统具有齐次性、叠加性。
当系统输入信号为阶跃函数时,其输出信号称为阶跃响应。 微分方程的列写步骤

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结咱们先来聊聊啥是自动控制原理哈。

这东西就像是一个神奇的魔法,能让各种机器和系统乖乖听话,按照咱们想要的方式工作。

比如说,家里的空调,它能自动调节温度,让房间始终保持舒适,这背后就是自动控制原理在起作用。

还有汽车的自动驾驶,飞机的自动导航,工厂里那些自动化的生产线,都离不开它。

那自动控制原理到底都有啥知识点呢?首先得说说控制系统的组成。

这就好比一个乐队,有指挥的(控制器),有演奏乐器的(执行器),有接收声音的(传感器),还有最终呈现音乐的(被控对象)。

传感器就像是人的眼睛和耳朵,能感知到外界的变化,然后把这些信息传给控制器。

控制器呢,就相当于大脑,它接收到信息后,经过一番思考,下达指令给执行器。

执行器就像是手脚,负责去执行这些指令,让被控对象做出相应的动作。

反馈也是个特别重要的概念。

就好比你学骑自行车,眼睛看到自己歪了,然后调整方向,这就是反馈。

在控制系统里,通过反馈能让系统更加稳定和精确。

比如说,一个温度控制系统,如果没有反馈,温度可能一会儿高一会儿低。

但有了反馈,就能根据实际温度和设定温度的偏差,不断调整加热或者制冷的力度,让温度稳稳地保持在设定值。

再说说控制系统的性能指标。

这就像是评价一个学生的成绩一样,有稳定性、准确性和快速性。

稳定性就好比你站在平衡木上不能掉下来;准确性呢,就是你考试的分数要接近满分;快速性就是你做题要又快又好。

还有系统的数学模型,这可是个关键。

就像给系统拍了个“X光片”,能让我们清楚地看到它内部的结构和工作原理。

常见的有微分方程、传递函数和状态空间表达式。

记得有一次,我去工厂参观,看到一个自动化的生产设备出了故障。

工人们急得团团转,后来技术人员来了,一番检查后,发现是控制器的参数设置出了问题。

经过重新调整,设备又欢快地运转起来了。

当时我就深刻体会到,掌握好自动控制原理是多么重要啊!控制系统的校正也是个重点。

如果系统性能不达标,就像一个偏科的学生,得给他补补课。

自动控制原理总结归纳报告

自动控制原理总结归纳报告
定性控制面临的问题:发展定性数学理论,改进定性推理方法,注重定性和定量知识的结合;研究定性建模方法,定性控制方法;加强定性控制应用领域的研究。
9.预测控制(Predictive Control)
预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制。目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。这
系统分析方法是控制系统综合设计的基础这部分的内容主要包括时域分析法、根轨迹法、频域响应法是控制理论的重点。在控制系统中稳定性、快速性和准确性是对控制系统的基本要求也是衡量系统性能的重要指标控制系统不同的分析问题方法都是紧紧围绕这三个方面展开的。只要抓住这个特点就抓住了系统分析的关键有助于加深对不同方法的理解。例如以我军某军舰上的雷达定位系统为例假设给定目标信号要求设计控制器使系统在给定输入下跟踪指定目标最小且抗干扰性最好。这些生动的工程实例大大激发了我的兴趣使我感受到了控制理论的魅力深刻理解了
既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理过于集中带来的危险,而且还有大规模数据采集、处理的功能以及较强的数据通信能力。
分布式控制系统既有计算机控制系统控制算法灵活,精度高的优点,又有仪表控制系统安全可靠,维护方便的优点。它的主要特点是:真正实现了分散控制;具有高度的灵活性和可扩展性;较强的数据通信能力;友好而丰富的人机联系以及极高的可靠性。
关键字:控制 方法 发展
正文:
一、自动控制理论的分析方法:(1)时域分析法;(2)频率法;(3)根轨迹法;(4)状态空间方法;(5)离散系统分析方法;(6)非线性分析方法

(完整版)自动控制原理知识点总结

(完整版)自动控制原理知识点总结

@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

掌握典型闭环控制系统的结构。

开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。

)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。

即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。

将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。

(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。

三种基本形式,尤其是式2-61。

主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。

(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。

以下是对自动控制原理中一些关键知识点的总结。

一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。

控制的目的是使系统的输出按照期望的方式变化。

开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。

二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。

微分方程是最直接的描述方式,但求解较为复杂。

传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。

状态空间表达式则能更全面地反映系统内部状态的变化。

三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。

重要的性能指标包括上升时间、峰值时间、调节时间和超调量。

一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。

二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。

四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。

通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。

根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。

根据根轨迹,可以确定使系统稳定的开环增益范围。

五、频域分析频域分析使用频率特性来描述系统的性能。

波特图是常用的工具,包括幅频特性和相频特性。

通过波特图,可以评估系统的稳定性、带宽和相位裕度等。

奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。

六、控制系统的校正为了改善系统的性能,需要进行校正。

校正装置可以是串联校正、反馈校正或前馈校正。

常见的校正方法有超前校正、滞后校正和滞后超前校正。

校正装置的设计需要根据系统的性能要求和原系统的特性来确定。

七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。

(完整版)《自动控制原理》全书总结

(完整版)《自动控制原理》全书总结
熟练掌握误差传递函数和稳态误差的计算。
在求解稳态误差时,需把握以下要点:
(1) 首先要将系统的开环传递函数变成尾1型。
(2) 只要将系统的结构图变换成单回路,系统的误差传
递函数总是如下形式,即
Es
1
We (s)
Xr
s
1 WK
s
则由终值定理得 :
e limet lims E s
t
s0
lim s s0 1
自动控制系统的时域分析
对控制性能的要求
稳定性
稳态特性
三性
(1)系统应是稳定的; 暂态特性
(2)系统达到稳定时,应满足给定的稳态误差
的要求;
(3)系统在暂态过程中应满足暂态品质的要求。
1、系统的响应过程及稳定性
一阶系统的单位阶跃响应
WB
(
s)
1 Ts
1
1t
单位阶越响应: xc (t) 1 e T , (t 0)
参数根轨迹的绘制
定义:以非根轨迹增益(比如比例微分环节或惯性 环节的时间常数 )为可变参数绘制的根轨迹。
Wk
(s)
10( s
s(10s
1) 1)
Wk
(s)
s(Ts
5 1)(s
1)
绘制思路:
变形
闭环传函
与常规(常义)根轨迹的 开环传函具 有相同形式
等效开环系统
例4.9 给定控制系统的开环传递函数为
1、已知传函绘制乃氏曲线,绘制伯特图。 2、已知伯特图求对应系统传函。 3、正确理解相位裕量和增益裕量的物理意义,
并会计算。 4、求相位穿越频率ωj,求穿越频率ωc. 5、最小相位系统的概念。
(8) 开环对数频率特性与系统性能之间的关系 i.低频段决定了系统的稳态误差。 ii. 中频段决定系统的暂态特性。 iii. 高频段决定系统的抗干扰能力。

(完整版)自动控制原理知识点总结

(完整版)自动控制原理知识点总结

@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

掌握典型闭环控制系统的结构。

开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。

)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。

即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。

将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。

(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。

三种基本形式,尤其是式2-61。

主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。

(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动控制原理》总复习
第一章自动控制的基本概念
一、学习要点
1.自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对
象、控制器、反馈、负反馈控制原理等。

2.控制系统的基本方式:
①开环控制系统;②闭环控制系统;③复合控制系统。

3.自动控制系统的组成:由受控对象和控制器组成。

4.自动控制系统的类型:从不同的角度可以有不同的分法,常有:
恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。

5.对自动控制系统的基本要求:稳、快、准。

6.典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。

二、基本要求
1.对反馈控制系统的基本控制和方法有一个全面的、整体的了解。

2.掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制
系统稳、准、快三方面的基本要求。

3.了解控制系统的典型输入信号。

4.掌握由系统工作原理图画方框图的方法。

三、内容结构图
四、知识结构图
第二章 控制系统的数学模型
一、学习要点
1.数学模型的数学表达式形式
(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。

2.数学模型的图形表示
(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。

二、基本要求
1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变
量、输出变量、中间变量等概念,要准确掌握。

2、了解动态微分方程建立的一般方法及小偏差线性化的方法。

3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入
响应、零状态响应等概念有清楚的理解。

4、正确理解传递函数的定义、性质和意义。

熟练掌握由传递函数派生出来的系统开环传递函
数、闭环传递函数、误差传递函数、典型环节传递函数等概念。

(#)
5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构图
及结构图的简化,并能用梅逊公式求系统传递函数。

(##)
6、传递函数的求取方法:
1)直接法:由微分方程直接得到。

2)复阻抗法:只适用于电网络。

3)结构图及其等效变换,用梅逊公式。

4)信号流图用梅逊公式。

四、知识结构图
第三章控制系统的时域分析
一、学习要点
1.基本概念:稳定性、时域响应、动态性能指标、误差与稳态误差等。

2.控制系统的稳定性
(1)劳斯稳定判据;(2)赫尔维茨稳定判据。

3.控制系统的动态性能
(1)一阶系统的暂态响应;(2)二阶系统的暂态响应。

4.控制系统的稳态性能
(1)一般概念;(2)误差系数。

二、基本要求
1.了解线性定常系统的时域响应组成,熟悉控制系统暂态响应性能指标的定义(#)。

2.掌握一阶系统的暂态响应及性能指标,并能根据给出的指标确定满足要求的系统参数T。

(#)
3.掌握二阶系统的暂态响应分析及其与极点之间的关系,重点掌握二阶系统的暂态响应性
ω,尤其是改善能指标公式及计算,并能根据给出的指标确定满足要求的系统参数ζ和
n 二阶系统动态性能的两种措施。

(#)(#)
4.一般了解高阶系统的暂态响应,掌握闭环主导极点的概念。

5.了解稳定性的概念,掌握线性定常系统稳定的充要条件(#)。

6.重点掌握判断稳定性的Routh代数判据及应用(#)(#),对Hurwitz判据有一般了解。

能根据系统要求确定满足稳定的系统参数范围(#)(#)。

7.了解稳态误差的概念、定义、产生原因、类型。

8.重点掌握给定稳态误差终值的计算,稳态误差系数的计算,扰动稳态误差终值的计算及
减小稳态误差的方法,并能根据系统对稳态误差的要求确定系统参数。

(#)(#)
三、内容结构图
第四章控制系统的根轨迹法
一、学习要点
1.基本概念
(1)根轨迹定义
(2)根轨迹绘制的基本条件:幅值方程和相角方程。

2.绘制根轨迹的基本法则
(1)常规根轨迹的绘制法则
(2)参量根轨迹绘制
(3)零度根轨迹绘制
3.增加开环零极点对根轨迹的影响
4.利用根轨迹分析系统
①稳定性;②运动形式;③主导极点;④超调量;⑤调节时间;⑥实数零、极点的影响;
⑦偶极子及其处理。

二、基本要求
1.重点掌握绘制常规负反馈系统根轨迹的基本条件和基本法则;(#)(#)
2.理解参量根轨迹和零度根轨迹的绘制;
3.了解多回路控制系统的根轨迹;
4.掌握增加开环零极点对根轨迹的影响;(#)
5.能根据根轨迹分析系统性能随参数变化的趋势。

(#)
三、内容结构图
四、知识结构图
第五章控制系统的频率特性
一、学习要点
1.频率特性的定义
2.频率特性的几何表示
(1)极坐标图或奈奎斯特图(Nyquist图)
(2)对数频率特性曲线(Bode图)
3.典型环节的频率特性及最小相位系统
(1)典型环节频率特性
(2)最小相位系统与非最小相位系统
4.稳定判据
(1)奈奎斯特稳定判据
(2)对数频率特性的稳定判据
5.开环频域指标
(1)幅值裕度
(2)相角裕度
6.闭环频域指标
(1)零频幅值M(0)
ω
(2)带宽频率
b
ω
(3)谐振峰值M r和谐振频率
r
(4)闭环系统频域指标与时域指标的关系
7.开环对数频率特性与时域性能指标:
(1)三频段的概念
(2)开环系统频域指标与时域性能指标的关系
二、基本要求
1.正确理解频率特性的概念,掌握典型环节的频率特性并运用频率特性分析系统的稳态
响应。

(#)
(#)(#)。

2.熟练掌握绘制开环系统Nyquist图和Bode图的方法,会求剪切频率
c
3.重点掌握奈奎斯特稳定判据及其在系统分析中的应用。

(#)(#)
4.重点掌握相角裕度、幅值裕度的计算。

(#)(#)
5.掌握开环对数频率特性与系统性能之间的关系,正确理解三频段的概念。

(#)
6.正确理解并掌握用实验数据确定传递函数,由最小相位系统的Bode图确定系统的传
递函数的方法,会求开环放大系数K。

(#)(#)
三、内容结构图
四、知识结构图
1.。

相关文档
最新文档