凝胶过滤层析分离纯化蛋白质

合集下载

蛋白质的分离纯化

蛋白质的分离纯化

蛋白质的分离纯化蛋白质是生命体中最基本的分子之一,它在细胞内发挥着重要的功能。

由于蛋白质的复杂性和多样性,研究人员通常需要从复杂的混合物中分离和纯化蛋白质。

蛋白质的分离纯化是生物化学和生物技术领域中非常重要的一项工作,它为我们深入研究蛋白质的结构和功能提供了必要的条件。

蛋白质的分离纯化可以通过多种不同的方法实现,这些方法包括离心法、凝胶过滤法、电泳法、层析法等。

在选择合适的方法时,研究人员需要考虑到蛋白质的特性以及实验的要求。

离心法是最常用的分离方法之一,在离心过程中,通过调整离心力和离心时间,可以实现不同密度的蛋白质的分层。

这种方法适用于分离大分子量的蛋白质。

凝胶过滤法是利用孔径不同的凝胶将蛋白质分离开来。

通常使用的凝胶有琼脂糖凝胶和聚丙烯酰胺凝胶,这些凝胶具有不同的孔径,可以根据蛋白质的分子量选择合适的凝胶进行分离。

电泳法是基于蛋白质的电荷和分子量差异而进行分离的方法。

最常用的电泳方法是SDS-PAGE电泳,通过使用SDS(十二烷基硫酸钠)对蛋白质进行解性和蛋白质间的形成复合物,使得蛋白质在电泳过程中仅仅受到电场力的影响,从而实现蛋白质的分离。

层析法是一种利用物质在载体上的分配和吸附性质进行分离的方法。

常见的层析方法有凝胶层析、亲和层析、离子交换层析等。

凝胶层析是通过利用载体颗粒的孔径进行分离,亲和层析是将特定配体固定在载体上,与目标蛋白质结合,从而实现分离,而离子交换层析是利用载体表面电荷与目标蛋白质的电荷相互作用进行分离。

在进行蛋白质的分离纯化时,需要注意以下几个关键步骤。

首先是样品制备,通常样品要经过细胞破碎、蛋白质提取等步骤,使得目标蛋白质从复杂的混合物中提取出来。

其次是样品的处理,包括去除杂质、调整蛋白质的溶液环境等。

然后是选择合适的分离方法,根据蛋白质的特性和实验要求来确定最适合的方法。

最后是纯化过程中的监测和分析,通过使用各种蛋白质分析方法,如SDS-PAGE、Western blot等,来确定目标蛋白质的纯化程度和鉴定其存在。

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理(一)利用分子大小1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。

方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行涉及的问题:如何加快透析过程(1)加大浓度差,及时更换透析液(2)利用磁力搅拌器常用的半透膜:玻璃纸、火棉和其他材料合成2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。

而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。

结果:大分子先被洗脱下来,小分子后被洗脱下来(二)利用溶解度差别4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。

5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析(三)根据电荷不同6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。

电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。

所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。

7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。

氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是:碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。

凝胶过滤层析法分离纯化蛋白质

凝胶过滤层析法分离纯化蛋白质

凝胶过滤层析法分离纯化蛋白质实验六凝胶过滤层析法分离纯化蛋白质一、实验目的1. 了解凝胶层析的原理及其应用。

2. 掌握利用凝胶层析法分离纯化蛋白质的实验技能二、实验原理凝胶层析又称凝胶过滤,是一种按分子量大小分离物质的层析方法。

该方法是把样品加到充满着凝胶颗粒的层析柱中,然后用缓冲液洗脱。

大分子不能进入凝胶颗粒中的静止相中,只留在凝胶颗粒之间的流动相中,因此以较快的速度首先流出层析柱,而小分子则能自由出入凝胶颗粒中,并很快在流动相和静止相之间形成动态平衡,因此就要花费较长的时间流经柱床,从而使不同大小的分子得以分离。

凝胶过滤柱层析所用的基质是具有立体网状结构、筛孔直径一致,且呈珠状颗粒的物质。

这种物质可以完全或部分排阻某些大分子化合物于筛孔之外,而对某些小分子化合物则不能排阻,但可让其在筛孔中自由扩散、渗透。

任何一种被分离的化合物被凝胶筛孔排阻的程度可用分配系数Kav(被分离化合物在内水和外水体积中的比例关系)表示。

Kav值的大小与凝胶床的总体积(Vt)、外水体积(Vo)及分离物本身的洗脱体积(Ve)有关,即:Kav= (Ve-Vo)/(Vt-Vo) 在限定的层析条件下,Vt和Vo都是恒定值,而Ve值却是随着分离物分子量的变化而变化的。

分离物分子量大,Kav值小;反之,则Kav值增大。

Ve(洗脱体积)为某一成分从加入样品算起,到组分的最大浓度(峰)出现时所流出的体积。

Ve随溶质的相对分子质量的大小和对凝胶的吸附等因素而不同。

一般相对分子质量较小的溶质,它的Ve值比相对分子量较大的溶质要大。

通常选用蓝色葡聚糖2000作为测定外水体积的物质。

该物质分子量大(为200万),呈蓝色,它在各种型号的葡聚糖凝胶中都被完全排阻,并可借助其本身颜色,采用肉眼或分光光度仪检测(210nm或260nm或620nm)洗脱体积(即Vo)。

但是,在测定激酶等蛋白质的分子量时,不宜用蓝色葡聚糖2000测定外水体积,因为它对激酶有吸附作用,所以有时用巨球蛋白代替。

根据分子大小分离蛋白质的方法

根据分子大小分离蛋白质的方法

根据分子大小分离蛋白质的方法蛋白质是生命体中非常重要的分子,它们在细胞的结构和功能中起着关键作用。

为了研究蛋白质的特性和功能,科学家们经常需要对蛋白质进行分离和纯化。

分离蛋白质的一个重要方法是根据蛋白质的分子大小进行分离。

本文将介绍几种常用的根据分子大小分离蛋白质的方法。

一、凝胶过滤层析法凝胶过滤层析法是一种基于分子大小的常用分离技术。

其原理是利用孔径大小不同的凝胶材料,将大分子蛋白质滞留在凝胶中,而小分子溶质可以顺利通过凝胶。

常用的凝胶材料有琼脂糖和聚丙烯酰胺凝胶等。

根据需要选择不同的凝胶孔径,可以实现对不同分子大小的蛋白质进行分离。

二、聚丙烯酰胺凝胶电泳聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离技术。

它利用电场作用将蛋白质分子按照大小进行分离。

在聚丙烯酰胺凝胶中,较大的蛋白质分子迁移速度较慢,而较小的蛋白质分子迁移速度较快。

通过调整电场强度和时间,可以实现对不同分子大小的蛋白质进行分离。

三、尿素聚丙烯酰胺凝胶电泳尿素聚丙烯酰胺凝胶电泳是一种常用的变性凝胶电泳方法。

尿素是一种强变性剂,可以使蛋白质分子解离成单体,并且具有较好的可溶性。

在尿素聚丙烯酰胺凝胶电泳中,蛋白质分子的迁移速度主要取决于它们的电荷和分子大小。

通过调整电场强度和时间,可以实现对不同分子大小的蛋白质进行分离。

四、尺寸排阻色谱尺寸排阻色谱是一种利用固定相孔径大小进行分离的色谱技术。

在尺寸排阻色谱中,较大的蛋白质分子无法进入固定相孔径,因此会以较快的速度从色谱柱中洗脱,而较小的蛋白质分子则会在固定相中发生多次扩散,从而保留更长的时间。

通过调整固定相的孔径,可以实现对不同分子大小的蛋白质进行分离。

五、离心过滤法离心过滤法是一种简便快速的蛋白质分离方法。

它利用离心力将大分子蛋白质沉淀在滤膜上,而小分子蛋白质则通过滤膜被洗脱出来。

通过选择不同孔径的滤膜,可以实现对不同分子大小的蛋白质进行分离。

根据分子大小分离蛋白质的方法有凝胶过滤层析法、聚丙烯酰胺凝胶电泳、尿素聚丙烯酰胺凝胶电泳、尺寸排阻色谱和离心过滤法等。

蛋白纯化方法

蛋白纯化方法

蛋白纯化方法一、离心。

离心是一种常用的蛋白纯化方法,它利用蛋白质在不同离心速度下沉降速度的差异来分离蛋白。

通过逐步调整离心速度和时间,可以将混合物中的不同颗粒分离开来,从而得到目标蛋白的富集样品。

离心方法操作简单,适用于大多数蛋白质的初步富集。

二、凝胶过滤层析。

凝胶过滤层析是一种分子大小分离的方法,通过在凝胶柱中筛选不同大小的蛋白质分子,实现蛋白的分离和纯化。

这种方法操作简便,分离效果好,适用于大多数蛋白质的纯化。

三、离子交换层析。

离子交换层析是一种利用蛋白质表面电荷差异进行分离的方法。

在离子交换柱中,蛋白质会根据其表面电荷与离子交换树脂发生相互作用,从而实现蛋白质的分离和纯化。

这种方法操作简单,分离效果好,适用于具有不同电荷特性的蛋白质。

四、亲和层析。

亲和层析是一种利用蛋白质与亲和层析介质之间特异性结合进行分离的方法。

通过选择合适的亲和层析介质,可以实现对特定蛋白质的高效分离和纯化。

这种方法操作简单,适用于特定蛋白质的纯化。

五、逆流层析。

逆流层析是一种利用蛋白质与逆流层析介质之间的亲和性进行分离的方法。

通过逆流层析柱中的逆流洗脱,可以实现对蛋白质的高效分离和纯化。

这种方法操作简单,适用于特定蛋白质的纯化。

总结。

蛋白纯化是生物化学研究中不可或缺的重要步骤,选择合适的纯化方法对于获得高纯度的蛋白样品至关重要。

本文介绍了几种常用的蛋白纯化方法,包括离心、凝胶过滤层析、离子交换层析、亲和层析和逆流层析,希望能为您的实验提供一些参考。

在实际操作中,需要根据目标蛋白的特性和实验要求选择合适的纯化方法,并结合实际情况进行优化,以获得高质量的蛋白样品。

祝您的实验顺利,取得理想的结果!。

分离提纯蛋白质的方法

分离提纯蛋白质的方法

分离提纯蛋白质的方法
分离和提纯蛋白质的常用方法包括蛋白质沉淀、凝胶过滤、离子交换层析、亲和层析、逆向相层析、尺寸排斥层析、高效液相色谱等。

1. 蛋白质沉淀:通过加入盐、有机溶剂或酸、碱等试剂,使蛋白质沉淀,然后通过离心将沉淀与其他杂质分离。

2. 凝胶过滤:利用分子量筛选作用将蛋白质与其他小分子杂质分离。

常用的凝胶过滤介质包括聚丙烯酰胺凝胶、琼脂糖凝胶等。

3. 离子交换层析:利用蛋白质表面的带电氨基酸残基与离子交换介质上的带电基团之间的静电吸附作用进行分离。

通过改变缓冲液的pH值和离子强度,可实现蛋白质与介质之间的亲和与解离。

4. 亲和层析:通过与特定亲和配体的结合,实现目标蛋白质与其他非特异性蛋白质分离。

常见的亲和配体包括金属离子、酶底物、抗体、受体等。

5. 逆向相层析:根据蛋白质在固定相(通常是疏水性)和移动相之间的亲疏水性差异进行分离。

通过改变溶剂的成分和温度,可以调节蛋白质的相互作用和分离程度。

6. 尺寸排斥层析:利用蛋白质的分子大小与填充剂的孔径之间的差异进行分离。

较大的蛋白质能够在填充剂孔径附近停滞,而较小的分子则可被填充剂穿过。

7. 高效液相色谱:是现代蛋白质分离和分析中最常用的技术之一。

通过改变流动相、填充剂和温度等参数,实现蛋白质的分离和纯化。

注意:在进行蛋白质的分离和提纯过程中,通常需要结合多种方法和步骤,以达到更高的纯度和纯化效果。

凝胶过滤法分离蛋白质实验报告

凝胶过滤法分离蛋白质实验报告

凝胶过滤法分离蛋白质一、实验目的了解凝胶层析的基本原理,并学会用凝胶层析分离纯化蛋白质。

二、实验原理凝胶过滤其基本原理是利用被分离的分子大小不同及固定相(凝胶)具有分子筛的特点:本实验使用交联葡聚凝胶,其具有一定孔径的网络结构。

高亲水,在水溶液里吸水可膨胀。

当其填充完成后,加入混合分子大小不同的分离液。

由于大分子物质只能沿着胶粒之间的间隙向下流动,所经路短,最先流出;而涌入胶粒内部的小分子物质,受迷宫效应的影响,要经过层层扩散向下流动,所经路程长,最后流出,通透性居中的分子则后于大分子而先于小分子流出。

从而按大到小的顺序流出实现分离的目的。

三、试剂与仪器0.1mol/L磷酸缓冲液(PH7.0),0.4%K3Fe(CN)6,交联葡聚凝胶,鸡的抗凝全血1.5*20cm的层析柱,试管,量筒,大烧杯,玻璃棒四、实验步骤1.凝胶溶胀2.装柱:从层析柱加入缓冲液,打开出口,将气泡赶走,关闭下端开口,然后加入约6cm的缓冲液,灌注凝胶,打开下端开口。

使其自然沉降高度约17cm,并使其床面覆盖缓冲液,关闭出口盖上小形圆形滤纸。

待凝胶形成后,再用缓冲液洗脱2~3次。

3.样品处理4.上样和过滤:吸取约0.5ml混合液,在距离床面1mm处沿管内壁轻轻加入样品。

打开出口,让样品溶液慢慢浸入凝胶内。

凝胶柱面加上一层磷酸盐缓冲液,并用1~2倍体积的此缓冲洗脱。

5.部分收集:控制速度为0.5ml/min左右,用试管收集洗脱液。

并观察柱上的色带,待黄色的0.4%完全脱下来后,再继续收集两管透明洗脱液作对照,关闭出口。

6.凝胶回收:收集样品后,凝胶柱用3~5倍体积洗脱液继续洗脱,从回收凝胶留给下一组。

五、实验现象结果及其讨论颜色:开始时为无色透明,但时间过去,试管中收集的红褐色开始变深,到最后,试管的颜色为深褐色,接着溶液的颜色开始变浅,红褐色几乎要消失。

接着又开始出现浅黄色,再到黄色,再黄色开始慢慢变浅,最后又变成无色透明。

原因:1.开始时,由于先加进缓冲液,而加入的全血扩散没有那么快,所以白色透明液体为缓冲液。

凝胶过滤层析进行蛋白纯化的原理

凝胶过滤层析进行蛋白纯化的原理

凝胶过滤层析进行蛋白纯化的原理一、凝胶过滤层析的概念和原理凝胶过滤层析是一种常用的生物化学分离技术,主要用于蛋白质的精细纯化和分离。

其原理是利用凝胶颗粒的孔隙结构,根据蛋白质的大小和形状差异,使不同分子量和形状的蛋白质在凝胶颗粒的孔隙中发生不同程度的阻滞和流动,从而实现蛋白质的分离和纯化。

二、凝胶过滤层析的操作步骤1. 样品加载:将待纯化的蛋白样品均匀地加载到预先平衡的凝胶柱或凝胶板上。

2. 洗脱:用缓冲液通过凝胶柱,洗去未结合的蛋白和其他杂质。

3. 洗脱物收集:收集洗脱液中的目标蛋白。

4. 分析和检测:对收集的蛋白样品进行分析和检测。

三、凝胶过滤层析的优点和适用范围1. 分辨率高:凝胶过滤层析能够分离不同分子量的蛋白,分辨率较高。

2. 操作简单:操作过程不需要高昂的设备和特殊技能,相对容易进行。

3. 适用范围广:适用于各种不同分子量和性质的蛋白质的纯化和分离。

四、对凝胶过滤层析的个人理解和观点凝胶过滤层析作为一种生物化学分离技术,在蛋白质纯化领域有着广泛的应用。

它的原理简单易懂,操作相对容易,且适用范围广,因此备受科研人员的青睐。

在生物制药和基因工程等领域,凝胶过滤层析也发挥着重要的作用,为蛋白质的纯化和分离提供了有效的技术手段。

总结:凝胶过滤层析作为一种重要的蛋白质纯化技术,具有分辨率高、操作简单、适用范围广等优点。

通过对凝胶过滤层析的深入理解和掌握,能够为生物化学研究和生物制药领域的发展提供有力支持。

通过本文的深度探讨,相信您对凝胶过滤层析进行蛋白纯化的原理有了更深入的了解。

希望本文能够帮助您更全面、深刻和灵活地理解这一主题。

凝胶过滤层析属于分子量分馏技术,是一种物理性质分离方法。

它基于蛋白质在凝胶柱内孔隙中的迁移速度的差异,可以将混合物中的不同分子量的蛋白质分离开来。

对于高分子量的蛋白质来说,凝胶柱内的孔隙会成为一个障碍,从而使它们在柱内停留的时间更长,而低分子量的蛋白质会更容易通过孔隙,因此在经过相同时间的洗脱后,不同分子量的蛋白质就可以被有效地分离开来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凝胶过滤层析法分离纯化蛋白质
一、实验目的
1. 了解凝胶层析的原理及其应用。

2. 掌握利用凝胶层析法分离纯化蛋白质的实验技能
二、实验原理
凝胶层析又称凝胶过滤,是一种按分子量大小分离物质的层析方法。

该方法是把样品加到充满着凝胶颗粒的层析柱中,然后用缓冲液洗脱。

大分子不能进入凝胶颗粒中的静止相中,只留在凝胶颗粒之间的流动相中,因此以较快的速度首先流出层析柱,而小分子则能自由出入凝胶颗粒中,并很快在流动相和静止相之间形成动态平衡,因此就要花费较长的时间流经柱床,从而使不同大小的分子得以分离。

凝胶过滤柱层析所用的基质是具有立体网状结构、筛孔直径一致,且呈珠状颗粒的物质。

这种物质可以完全或部分排阻某些大分子化合物于筛孔之外,而对某些小分子化合物则不能排阻,但可让其在筛孔中自由扩散、渗透。

任何一种被分离的化合物被凝胶筛孔排阻的程度可用分配系数Kav(被分离化合物在内水和外水体积中的比例关系)表示。

Kav值的大小与凝胶床的总体积(Vt)、外水体积(Vo)及分离物本身的洗脱体积(Ve)有关,即:Kav= (Ve-Vo)/(Vt-Vo)
在限定的层析条件下,Vt和Vo都是恒定值,而Ve值却是随着分离物分子量的变化而变化的。

分离物分子量大,Kav值小;反之,则Kav值增大。

Ve(洗脱体积)为某一成分从加入样品算起,到组分的最大浓度(峰)出现时所流出的体积。

Ve随溶质的相对分子质量的大小和对凝胶的吸附等因素而不同。

一般相对分子质量较小的溶质,它的Ve值比相对分子量较大的溶质要大。

通常选用蓝色葡聚糖2000作为测定外水体积的物质。

该物质分子量大(为200万),呈蓝色,它在各种型号的葡聚糖凝胶中都被完全排阻,并可借助其本身颜色,采用肉眼或分光光度仪检测(210nm或260nm或620nm)洗脱体积(即Vo)。

但是,在测定激酶等蛋白质的分子量时,不宜用蓝色葡聚糖2000测定外水体积,因为它对激酶有吸附作用,所以有时用巨球蛋白代替。

Vo为层析柱内凝胶颗粒之间隙的总容积,称外水体积。

Vi为层析柱内凝胶内部微孔的总容积,称内水体积,Vi=Vt-Vo。

测定内水体积(Vi)的物质,可选用硫酸铵、N-乙酰酪氨酸乙酯,或者其它与凝胶无吸附力的小分子物质。

K av是判断分离效果的一个重要参数。

当某种成分的K av=0时,意味着这一成分完全被排阻于凝胶颗粒的微孔之外而最先被洗脱出来,即Ve=Vo。

当某种成分的K av=1时,意味着这一成分完全不被排阻,它可以自由地扩散进入凝胶颗粒内部的微孔中,而最后被洗脱出来,即Ve=Vt。

介于两者分子量之间的物质,其0﹤K av﹤1,在中间位置被洗脱。

可见,K av 的大小顺序决定了被分离物质流出层析柱的顺序。

本实验采用葡聚糖凝胶G-75作固相载体,可分离分子量范围在2000~70000之间的多肽与蛋白质。

上样样品为牛血清蛋白(M.W.=67000)和溶菌酶(M.W.=14300)的混合溶液。

当混合液流经层析柱时,两种物质因K av值不同而被分离。

三、仪器与试剂
1.器材:层析柱、恒流泵、自动部分收集器、紫外检测器、记录仪、量筒、烧杯、试管、吸管、玻璃棒等。

2.试剂
(1)标准蛋白
a.牛血清白蛋白:Mw=67,000(上海生化所)
b.溶菌酶:Mw =14,300
(2)洗脱液:0.9% NaCl溶液
(3)蓝色葡聚糖-2000、葡聚糖凝胶Sephadex G-75。

四、实验内容
(一)凝胶的前处理(已做好)
将Sephadex G-75置烧杯中,加入洗脱液于室温溶胀2~3天,反复倾泻去掉细颗粒,然后减压抽气去除凝胶孔隙中的空气,沸水浴中煮沸2~3小时(可去除颗粒内部的空气及灭菌)。

在凝胶溶胀时避免剧烈搅拌,以防凝胶交联结构的破坏。

(二)装柱(已做好)
取洁净的的玻璃层析柱垂直固定在铁架台上。

在柱中注入洗脱液(约1/3柱床高度),将凝胶浓浆液缓慢倾入柱中,待凝胶沉积约1~2cm 高度后打开出水口,使凝胶沉降,并不断加入凝胶浓浆。

注意装柱过程中注意凝胶不能分层。

(三)平衡
装柱完成后,接上恒流泵,以0.9%的氯化钠为流动相,以0.75ml/min(Φ1.6cm柱)或0.5ml/min(Φ1.0cm柱)的速度开始洗脱,用1~2倍床体积的洗脱液平衡,使柱床稳定。

(实验中平衡1hr)
(四)凝胶柱总体积(Vt)的测定。

平衡完毕后,测定凝胶柱床的高度,计算柱床总体积Vt(凝胶柱直径为1 cm或1.6cm)。

(五)V0的测定
打开出水口,使残余液体降至与胶面相切(但不要干胶),关闭出水口。

用细滴管吸取0.2ml (4mg/ml)蓝色葡聚糖-2000,小心地绕柱壁一圈(距胶面2mm)缓慢加入,打开出水口(开始收集!),等溶液渗入胶床后,关闭出水口,用少许洗脱液冲洗2次,待渗入胶床后,再在柱上端加满洗脱液,开始洗脱,作出洗脱曲线。

收集并量出从加样开始至洗脱液中蓝色葡聚糖浓度最高点(肉眼观察)的洗脱液体积即为V0。

蓝色葡聚糖洗下来之后,还要用洗脱液继续平衡1~2倍床体积(实验中平衡1hr),以备下步实验使用。

(六)上样、洗脱
将柱中多余的液体放出,使液面刚好盖过凝胶,关闭出口。

用移液管吸取0.5mL蛋白质混合液小心地加到凝胶床上,打开出水口,待样品完全进入凝胶后,加少量洗脱液冲洗柱内壁2次,待液体完全流进床内后,关闭出水口。

在柱上端加满洗脱液,打开恒流泵,开始洗脱收集,6min一管。

用紫外分光光度计测定各管收集液的OD280值,以洗脱体积为横坐标,OD值为纵坐标绘出洗脱曲线。

(七)凝胶柱的处理(不做)
一般凝胶柱用过后,反复用蒸馏水(2~3倍床体积)通过柱即可。

如若凝胶有颜色或比较脏,需用0.5mol/L NaOH-0.5mol/L NaCl洗涤,再用蒸馏水洗。

冬季一般放2个月无长霉情况,但在夏季如果不用,需要加0.02%的叠氮化钠防腐。

五、结果与讨论
1.绘制洗脱曲线。

以洗脱体积为横坐标、OD值为纵坐标,在坐标纸上绘出洗脱曲线。

并标出各成分的Ve值。

2.计算各成分的Kav值。

相关文档
最新文档