蛋白质 分离纯化主要方法

合集下载

蛋白质分离纯化的方法

蛋白质分离纯化的方法

蛋白质分离纯化的方法分离纯化蛋白质的四种关键性方法分离蛋白质的方法有许多种,应根据原材料和生产条件来选择具体的分离纯化方法。

例[5][6]如:李凤英等用盐溶法提取葡萄籽的蛋白质。

李喜红等用酶法从脱脂米糠中提取蛋白质。

[7]郭荣荣等碱法与酶法与酶法提取大米蛋白工艺及功能特性比较研究得出结论是碱法提取的大米蛋白持水性、吸油性和起泡性优于酶法提取的大米蛋白,而酶法提取的大米蛋白的溶[8]解性、乳化稳定性和泡沫稳定性优于碱法提取的大米蛋白。

王桃云等就是运用这种方法配[9]合使用加热法提取葎草叶蛋白。

陈申如等用酸法提取了鲢鱼鱼肉蛋白质,提取的蛋白质无腥味,色泽洁白,蛋白质产率高,可达90%左右。

以下介绍四种分离纯化蛋白质的方法。

1区带离心法区带离心法是分离蛋白质的有效而且常用的方法。

该法的第一步是在离心管中形成一个密度梯度(常用蔗糖梯度),然后将待分离的蛋白质混合液放在密度梯度顶端。

超速离心时,蛋白质即通过密度梯度移动,并根据其沉降系数而被分开,最后各种蛋自质在离心管内被分离成各户独立的区带,可以在管底刺一小孔逐滴放出,分部收集。

2 层析法最常用的层析法是凝胶过滤和离子交换柱层析。

[10-12]2.1 凝胶过滤(GFC)凝胶过滤也叫凝胶色谱和分子筛层析,是利用凝胶的网状结构根据分子的大小和形状进行分离的方法。

凝胶过滤是一种快速而简便的分离分析技术,可用于蛋白质的脱盐、分离、提纯、分析等等。

柱中的填充料是水合程度高而不溶的碳水化合物高聚物,最常用的是葡聚糖凝胶〔其他有聚丙烯酞胺凝胶和琼脂糖凝胶等)。

仙聚糖凝胶是具有不同交联度的网状结构物,不同型号的葡聚糖凝胶其“网眼”大小不同,可以用来分离纯化不同分子大小的物质。

当蛋白质混合物通过层析柱时,比“网眼”大的蛋自质分子不能进入凝胶颗粒内部,不能沿着颗粒间隙流动,流程短,流速快,最先流出柱外;比“网眼”小的分子则进入凝胶颗粒内部,沿着孔道移动,从一个颗粒流出,又进入另一颗粒,所以下移速度慢,随后被洗脱下来。

蛋白质的分离与纯化

蛋白质的分离与纯化

(1)凝胶的选择:

(2)方法: 配置凝胶悬浮液:计算并称取一定量的凝胶浸泡于 中充分溶胀
后,配成

(3)凝胶色谱柱的装填方法
① 固定:将色谱柱处置固定在支架上
② 装填:将
一次性的缓慢倒入 内,装填时轻轻敲动色谱柱,
使凝胶填装均匀。
③ 洗涤平衡: 装填完毕后,立即用缓冲液洗脱瓶,在 高的操作压下,用
3、具体过程:
相对分子质量 较小的蛋白质
(1)
(2) (3) (4)
(5)
相对分子质量 较大的蛋白质
A B
A
的蛋白质由于
作用进入凝胶颗粒内部而被滞
留;
的蛋白质被排阻在凝胶颗粒外面,在了里之间
迅速通过。
B(1)
混合物上柱;
(2)洗脱开始,
的蛋白质扩散进入凝胶颗粒内;
的蛋白质被排阻于凝胶颗粒之外;
(3)

以及分子本身 、
的不同使带电分子产
生不同的
,从而实现样品中各种分子的分离。
3、分类: 琼脂糖凝胶电泳 聚丙稀酰胺凝胶电泳。
测定( 蛋白质相对分子质量 )通常用十二烷基硫酸钠(SDS)—聚丙稀酰胺凝胶
电泳。蛋白质在聚丙烯酰胺凝胶中的迁移率取决于它所带静电荷的多少以及分子的
大小等因素。为了消除静电荷对迁移率的影响可以在凝胶中加入
(4) 透析
2. 凝胶色谱制作
1)凝胶色谱柱的制作
① 取长40厘米,内径1.6厘米的玻璃管,两端需用砂纸磨平。
② 底塞的制作:打孔 挖出凹穴
安装移液管头部 覆
盖尼龙网,再用100目尼龙纱包好。
a、选择合适的的橡皮塞,中间打孔;
b、在橡皮塞顶部切出锅底状的 ,在0.5ml的 头部切

三种常见大豆蛋白质分离纯化提取方法是什么

三种常见大豆蛋白质分离纯化提取方法是什么

三种常见大豆蛋白质分离纯化提取方法是什么大豆蛋白质分离纯化提取方法介绍
1、起泡法
起泡特种浓缩分离处理工艺是一项新的提纯技术,主要依据表面活性的差异,来分离和纯化物质的技术,大豆蛋白质的分离在一连续操作的泡沫精馏塔中完成,氮气由塔底通入池液,原料液由泡沫界面入进入塔内,泡沫由塔顶导出并被破碎成泡沫液,泡沫液即为分离出的大豆蛋白质。

该技术也被广泛应用于环境保护、生物工程、冶金工业及医药工业等许多途径,该技术也是分离和浓缩蛋白质及酶的一条有效途径。

2、双极膜电解法
这种方法是在电渗析的基础上发展而来,阴离子交换膜和阳离子交换膜以及阴阳离子交换膜中间的亲水层,达到大豆蛋白质的等电点而使蛋白质沉淀。

特种浓缩分离设备过程过程中不需要加入酸或碱调整蛋白质溶
液的pH值,避免分离得到的大豆蛋白质中混入盐离子,并且可保护大豆蛋白质的功能性。

3、膜分离技术
蛋白质分离纯化设备选用膜分离提取技术可大大提高蛋白质的提取率,一般都可高达90%以上。

将浸提液进行循环超滤分离,截留液的浓度可达15%左右。

与传统蛋白质提取工艺比较,具有能源消耗小、产品品质好、提取物的产量高、废水回收利用率可高达90%以上,而且处理后的废水可达到国家排放标准,不仅解决了环境污染等问题还提高了水资源的利用率。

标注:发布时请加上“文章来源:莱特莱德”,否则视为侵权。

谢谢!。

蛋白质分离纯化

蛋白质分离纯化
• 支持介质:纸、纤维素粉末、淀粉、聚丙烯酰胺。
2. 3 等电聚焦
依据:在pH梯度中的平衡位置。
用两性电解质,多乙烯多胺与丙烯酸的同系多异构体 混合物。在电场作用下,形成连续平滑的pH梯度, 而酶样品在其中也形成相同的等电点pH梯度。 分辩率高,pI相差0.01 pH的酶与蛋白质可分离 。
注意:在pI附近蛋白质容易沉淀,影响分离的数量和 质量。
1 蛋白质的分离方法
(1)以大小或质量为依据: 离心(300000g)、凝胶过滤(Sephadex交联葡聚糖、
Bio-Gel交联聚丙烯酰胺)、透析、超过滤
(2)以电荷为依据: 离子交换色谱(低离子强度、适当pH) DEAE-
Sephadex、 CM- Sephadex、 DEAE-纤维素、CM-纤维 素;电泳(电荷、分子大小、分子形状)、纤维素粉末、 淀粉、聚丙烯酰胺;等电聚焦(pH梯度中的平衡位置)
(3)以溶解度变化为依据
3.1 盐析--改变pH(等电点沉淀法) 3.2 盐析--改变离子强度 3.3 PEG沉淀法
3.1 改变pH (等电点沉淀法)
调整pH至酶的等电点。
原理: 溶解度随分子引力加大而减小,其他条
件相同,当pH在等电点附近时,分子引力最大, 蛋白质就沉淀。
一般不单独使用,配合其他方法使用。
3.2 改变离子强度
• 盐溶现象:加入离子有助于分散大分子上 所带的电荷而使溶解度提高。
• 盐析:离子强度提高到超过某一数值,带 电分子将会沉淀下来。
1. 在蛋白质溶液中加入大量中性盐,以破坏蛋白质 的胶体性质,使蛋白质从溶液中沉淀析出,称为盐 析。 2. 常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。 3. 盐析时,溶液的pH在蛋白质的等电点处效果最好。 4. 盐析沉淀蛋白质时,通常不会引起蛋白质的变性。

蛋白质的分离纯化方法

蛋白质的分离纯化方法

蛋白质的分离纯化方法根据分子大小不同进行分离纯化蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到分离。

根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。

透析和超滤是分离蛋白质时常用的方法。

透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。

超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。

这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。

它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。

由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。

所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。

当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。

例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。

使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。

常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。

可以根据所需密度和渗透压的范围选择合适的密度梯度。

密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。

蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。

凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。

凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。

生物化学实验-蛋白质分离纯化

生物化学实验-蛋白质分离纯化

蛋白质分离纯化
离子交换层析
蛋白质分离纯化
离子交换层析
蛋白质分离纯化
离子交换层析
蛋白质分离纯化



粗分级一般采用盐析、等电点沉淀、有机溶剂分级 等方法;

细分级一般采用层析法,包括凝胶层析、离子交换 层析、吸附层析、亲和层析等方法。必要时,还可 采用电泳法,包括等电聚焦等作为蛋白质的提纯步 骤。
型号:G200、 G150、 G100、 G75、 G50、 G25、 G15 分离大蛋白质、小蛋白质,除盐
琼脂糖凝胶(瑞典Sepharose、美国Bio-GelA)
孔径大,用于分离大分子物质
聚丙烯酰胺凝胶( Bio-GelP)
蛋白质分离纯化
凝胶层析

原理:
1、分子量大的物质不能进入凝胶粒子内部,随洗 脱液从凝胶粒子之间的空隙挤落下来,所以大分子 物质迁移速度快;

注意事项:1、时间相对长对分离有利; 2、也可用来测定蛋白质的等电点。
蛋白质分离纯化
等电聚焦( Isoelectric focusing)
蛋白质分离纯化
蛋白质分离纯化
等电聚焦( Isoelectric focusing)
蛋白质分离纯化
离子交换层析

可分为阳离子交换---与阴离子交换---。 1、树脂类:分离氨基酸,孔径小;
蛋白质分子量的测定

最小分子量测定法 如Mb含Fe为0.335%,则
M=55.8/0.335%=16700。这就是最小分子量。
其实,真实分子量是最小分子量的n倍,n指Fe 的数目,Mb的n=1,所以M=16700;而Hb用其他方法 测得分子量为68000,则说Hb含4个Fe原子。

对蛋白质分离纯化的方法

对蛋白质分离纯化的方法

对蛋白质分离纯化的方法
1. 离心法: 根据蛋白质在离心过程中的分子大小和密度差异来分离纯化。

2. 比重梯度离心法: 根据蛋白质在不同比重梯度溶液中的沉降速度差异来分离纯化。

3. 柱层析法: 根据不同蛋白质在柱层析时对填充物的亲和性来分离纯化。

4. 电泳法: 根据蛋白质在电场中的电荷、竞争离子浓度和分子大小等因素来分离纯化。

5. 凝胶过滤法: 根据蛋白质分子大小来分离纯化。

6. 亲和层析法: 根据蛋白质与特定配体之间的亲和性来分离纯化。

7. 免疫沉淀法: 根据蛋白质与抗体之间的特异性作用来分离纯化。

8. 磷酸盐析法: 根据蛋白质在不同磷酸盐浓度下的溶解度差异来分离纯化。

蛋白质分离纯化

蛋白质分离纯化

蛋白质分离纯化蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。

是当代生物产业当中的核心技术。

该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。

常用技术有:1、沉淀,2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。

根据支撑物不同,有薄膜电泳、凝胶电泳等。

3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。

4、层析:a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。

如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。

b.分子筛,又称凝胶过滤。

小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。

5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。

不同蛋白质其密度与形态各不相同而分开。

编辑本段蛋白质分离纯化技术蛋白质的分离纯化一、沉淀法沉淀法也称溶解度法。

其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。

1、盐析法盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。

2、有机溶剂沉淀法有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。

3、蛋白质沉淀剂蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。

4、聚乙二醇沉淀作用聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。

5、选择性沉淀法根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、4. 解吸附阶段:用梯度缓 冲溶液洗脱,先洗下弱吸附 物质,后洗下强吸附物质
原始缓 冲溶液 的反离 子
5.再生阶段: 用原始平衡液进行充分洗涤,既可重复使用
30.06.2020
样品溶液
梯度浓度
27
30.06.2020
28
应用
制备、纯化生物物质 定量、定性测定混合物中各组分
30.06.2020
32
基质 纤维素、聚丙烯酰胺凝胶、
sepharose、sephadex
应用 分离纯化酶、 抗原、抗体
分离纯化核酸 研究酶的结构与功能
30.06.2020
33
聚焦层析(Chromatofocusing) 原理
该法是在等电点聚焦方法基础上发展起来的,其 分离纯化蛋白质的依据是等电点的差异和离子交换行 为。蛋白质按其等电点在pH梯度环境中进行排列的过 程叫做聚焦效应。
30.06.2020
42
(三)按支持介质形状不同 1.薄层电泳 ; 2.板电泳 ; 3.柱电泳。 (四)按用途不同可分为: 1.分析电泳; 2.制备电泳; 3.定量免疫电泳;
30.06.2020
43
(五)按所用电压不同可分为: 1.低压电泳:100V~500V,电泳时间较长,适
于分离蛋白质等生物大分子。 2.高压电泳:1000V~5000V,电泳时间短,有
电泳区带相随,分成清晰的界面,并以等速向前运动。
4.等电聚焦电泳:由两性电解质在电场中自动形成pH梯
度,当被分离的生物大分子移动到各自等电点的pH处聚集
成很窄的区带。
30.06.2020
41
(二)按支持介质的不同可分为: 1.纸电泳 2.醋酸纤维薄膜电泳 3.琼脂凝胶电泳 4.聚丙烯酰胺凝胶电泳 5.SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)。
30.06.2020
16
30.06.2020
17
分配层析(p148)
原理:
分配层析是利用混合物(样品)在二种或二种 以上的不同溶剂中的分配系数不同而使物质分离 的方法
分配层析实际上是一种连续抽提方式。如纸 层析中滤纸的结合水为固定相,以水饱和的有机 溶剂为流动相(展开剂)。
30.06.2020
18
样品在层析时的移动速度可用迁移率Rf值表示:
样品原点到斑点中心的距离
Rf= ——————————————
样品原点到溶剂前沿的距离
30.06.2020
9
(二) 层析相关概念
1.固定相:
固定相是层析的一个基质。它可以是固体物
质(如吸附剂,凝胶,离子交换剂等),也可
以是液体物质(如固定在硅胶或纤维素上的溶
29
亲和层析(affiuity chromatography)
原理
欲分离的大分产物质S和相对应的专一物质L(配体) 以次级键结合,能生成一种可解离的络合物L—S。其 中的L又能与活化的基质M以共价键首先结合,而形 成M—L—S复合物。根据L—S之间能可逆地结合与解 离的原理发展起来的层桥方法称为亲和层析法。
SDS- PAGE电泳法:测定亚基数 超速离心:成分均一 其它:如, 结晶法……
30.06.2020
4
一透 析
定义:利用半透膜把大小分子分开的方法。
操作
蛋白质溶液置半透膜袋中,置流动溶剂 (如蒸馏水)中,使小分子杂质(如无机盐、 单糖、双糖、AA、小肽等透出)蛋白质留于 袋中而得到分离。
30.06.2020
30.06.2020
23
分类: 根据交换剂上吸附的离子交换基团不同,
阳离子交换剂; 阴离子交换剂; 按其解离度的大小, 分为强、中强、弱三种:
30.06.2020
24

离 子 交 换
离 子 交 换 剂
强酸型 中等酸型 弱酸型
结合磺酸基团( SO3H) 磷酸基团( PO3H2)和亚磷酸基团( PO2H) 结合酚羟基( OH )或羧基( COOH)
30.06.2020
39
电泳的一般原理
电泳是带电颗粒在电场作用下向着与其电荷相反的电 极移动的现象 。许多生物分子都带有电荷,其电荷的多少 取决于分子组成、性质及其所在介质的pH。如果混合物中各 组分的结构组成不同,在某一pH溶液中,各组分所带电荷性 质、电荷数量不同,加之其分子量不同,在同一电场的作用 下,各组分泳动的方向和速度也各异,而达到分离鉴定各组 分的目的。
30.06.2020
35
1、pH梯度的形成 2、蛋白质行为 3、聚焦效应
30.06.2020
36
流速
移动速率
蛋白质1(pI=7)
蛋白质2(pI=8)
pH梯度溶液的形成示意图
30.06.2020
层析时的聚焦效应示意图
37
几种主要层析方法比较
30.06.2020
38
二 、 电泳技术
电泳的一般原理 电泳技术的分类 电泳的影响因素 常用电泳技术
30.06.2020
20
原理p303
凝胶层析是依据分子大小这一物理性质
进行分离纯化的。凝胶层析的固定相是惰性
的珠状凝胶颗粒,凝胶颗粒的内部具有立体
网状结构,形成很多孔穴。当含有不同分子
大小的组分的样品进入凝胶层析柱后,各个
组分就向固定相的孔穴内扩散,组分的扩散
程度取决于孔穴的大小和组分分子大小。
30.06.2020
3、琼脂糖电泳
4、毛细管电泳
30.06.2020
48
聚丙烯酰胺凝胶电泳(PAGE)
凝胶聚合反应及催化系统 不连续PAGE 可产生的三种效应:
电荷效应、聚丙烯酰胺凝胶电泳(Polyacrylamide gel electrophoresis PAGE ),是以聚丙烯酰胺凝 胶作为支持介质。聚丙烯酰胺凝胶是由单体的丙 烯酰胺(CH2=CHCONH2 Acrylamide)和甲叉 双丙烯酰胺(CH2(NHCOHC=CH2) 2 N,N’methylenebisacrylamide)聚合而成,这一聚 合过程需要有自由基催化完成。
各类层析的原理和载体
类别
分离原理
吸附层析
化学、物理吸附
分配层析
两溶剂相中的溶解效应
凝胶层析
分子筛效应的排阻效应
离子交换层析 离子基团的交换反应
亲和层析 聚焦层析
分离物与配体之间有 特殊亲和力 等电点和离子交换作用
30.06.2020
基质或载体
硅胶、氧化铝 、羟基磷酸
纤维素、硅藻土 、硅胶
sepharose 、sephadex
物质在纸上移动的速度可以用Rf表示: 色斑中心至原点中心的距离
Rf = ────────────── 溶剂前缘至原点中心的距离
载体 : 纤维素 硅藻土 硅胶
应用:各种生化物质的分离鉴定
30.06.2020
19
凝胶层析(gel filtration)
又称为凝胶排阻层析(gel exclusion chromatography)、分子筛层析(molecular sieve chromatography)、 凝胶过滤(gel filtration)、凝胶渗透层析(gel permeation chromatography)等。
5
透析工作图
30.06.2020
半透膜原理
6
30.06.2020
7
二 层析技术(chromatography) p148
一、层析技术一般原理
二、层析技术分类及应用
30.06.2020
8
(一)、层析技术原理
层析技术是一种物理的分离方法。无论何种层析,其系统通 常由互不相溶的两个相组成:一是固定相(固体或吸附在固体 上的液体),一是流动相(液体或气体)。层析时,利用混合 物中各组分理化性质(如吸附力、分子形状和大小、分子极性 、分子亲和力、溶解度等)的差异,使各组分不同程度地分布 在两相中,随着流动相从固定相上流过,不同组分以不同速度 移动而最终被分离。
30.06.2020
2
沉淀法
盐析法、有机溶剂沉淀法、重金属盐
沉淀法、生物碱或酸类沉淀法、加热 变性沉淀法

离子交换层析 吸附层析

层析法
凝胶过滤(分子筛)

亲和层析

等电聚集层析

电学法
电泳法

等电聚焦
离心法
透析
膜分离技术 超滤
30.06.2020
3
纯度鉴定 分子量测定
层析法:凝胶过滤; 高效液相色谱法(HPLC) 电泳法:PAGE、梯度凝胶电泳、等电聚焦电泳等 免疫化学法:专一的沉淀线
30.06.2020
40
电泳分类
• (一)按原理分四种
• 1.区带电泳:是当前应用最为广泛的电泳技术。
2.自由界面电泳: 这是瑞典Uppsala大学的著名科学家
Tiselius最早建立的电泳技术,是在U形管中进行电泳,无
支持介质,因而分离效果差,现已被其他电泳技术所取代。
3.等速电泳:需使用专用电泳仪,当电泳达到平衡后,各
层 阴 强碱型
季胺基团( N(CH3)3),
析 分
离 子
中等碱型叔胺(
N(CH3)2)、仲胺(
NHCH3)、伯胺(-N
类 交 弱碱型
二乙基氨基乙基(DEAE)


30.06.2020
25
30.06.2020
26
交换过程
1
2
3
4
5
1.平衡阶段:离子交换剂与反离子结合
2.吸附阶段:样品与反离子进行交换
液),这些基质能与待分离的化合物进行可逆
的吸附,溶解,交换等作用。它对层析的效果
起着关键的作用。
30.06.2020
相关文档
最新文档