蛋白质的分离纯化方法(参考资料)

合集下载

蛋白质的纯化方法

蛋白质的纯化方法

蛋白质纯化的方法蛋白质的分离纯化方法很多,主要有:(一)根据蛋白质溶解度不同的分离方法1、蛋白质的盐析中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。

盐析时若溶液pH在蛋白质等电点则效果更好。

由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。

影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。

一般温度低蛋白质溶介度降低。

但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。

(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。

(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。

因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。

蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。

其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。

硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。

蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。

第二章 蛋白质分离纯化技术(2)

第二章 蛋白质分离纯化技术(2)
28
几种盐在不同温度下的溶解度(克/100毫升水)
温度
0℃ 20℃ 80℃ 100℃
(NH4)2SO4 70.6 75.4
95.3
103
Na2SO4 4.9 18.9
43.3
42.2
NaH2PO4 1.6
7.8 93.8
101
1)硫酸铵在0℃时的溶解度,远远高于其它盐类
29
2) 分离效果好:有的提取液加入适量硫 酸铵盐析,一步就可以除去75%的杂 蛋白,纯度提高了四倍。
3) 温度:为防止变性和降解,制备具有活性的蛋白 质和酶,提取时一般在0℃~5℃的低温操作。
4) 防止蛋白酶的降解作用:加入抑制剂或调节提 取液的pH、离子强度或极性等方法使相应的水解 酶失去活性,防止它们对欲提纯的蛋白质、酶的降 解作用。
15
5) 搅拌与氧化:搅拌能促使被提取物的溶解, 一般采用温和搅拌为宜,速度太快容易产生大 量泡沫,增大了与空气的接触面,会引起酶等 物质的变性失活。因为一般蛋白质都含有相当 数量的巯基,有些巯基常常是活性部位的必需 基团,若提取液中有氧化剂或与空气中的氧气 接触过多都会使巯基氧化为分子内或分子间的 二硫键,导致酶活性的丧失。在提取液中加入 少量巯基乙醇或二硫苏糖醇以防止巯基氧化。
1) 盐浓度(即离子强度):
离子强度对生物大分子的溶解度有极大的影响,绝大多数蛋 白质和酶,在低离子强度的溶液中都有较大的溶解度,如在 纯水中加入少量中性盐,蛋白质的溶解度比在纯水时大大增 加,称为“盐溶”现象。盐溶现象的产生主要是少量离子的 活动,减少了偶极分子之间极性基团的静电吸引力,增加了 溶质和溶剂分子间相互作用力的结果。
带正电荷蛋白质
(疏水胶体)
阴离子
不稳定蛋白颗粒

蛋白质的分离纯化

蛋白质的分离纯化

蛋白质的分离纯化蛋白质是生命体中最基本的分子之一,它在细胞内发挥着重要的功能。

由于蛋白质的复杂性和多样性,研究人员通常需要从复杂的混合物中分离和纯化蛋白质。

蛋白质的分离纯化是生物化学和生物技术领域中非常重要的一项工作,它为我们深入研究蛋白质的结构和功能提供了必要的条件。

蛋白质的分离纯化可以通过多种不同的方法实现,这些方法包括离心法、凝胶过滤法、电泳法、层析法等。

在选择合适的方法时,研究人员需要考虑到蛋白质的特性以及实验的要求。

离心法是最常用的分离方法之一,在离心过程中,通过调整离心力和离心时间,可以实现不同密度的蛋白质的分层。

这种方法适用于分离大分子量的蛋白质。

凝胶过滤法是利用孔径不同的凝胶将蛋白质分离开来。

通常使用的凝胶有琼脂糖凝胶和聚丙烯酰胺凝胶,这些凝胶具有不同的孔径,可以根据蛋白质的分子量选择合适的凝胶进行分离。

电泳法是基于蛋白质的电荷和分子量差异而进行分离的方法。

最常用的电泳方法是SDS-PAGE电泳,通过使用SDS(十二烷基硫酸钠)对蛋白质进行解性和蛋白质间的形成复合物,使得蛋白质在电泳过程中仅仅受到电场力的影响,从而实现蛋白质的分离。

层析法是一种利用物质在载体上的分配和吸附性质进行分离的方法。

常见的层析方法有凝胶层析、亲和层析、离子交换层析等。

凝胶层析是通过利用载体颗粒的孔径进行分离,亲和层析是将特定配体固定在载体上,与目标蛋白质结合,从而实现分离,而离子交换层析是利用载体表面电荷与目标蛋白质的电荷相互作用进行分离。

在进行蛋白质的分离纯化时,需要注意以下几个关键步骤。

首先是样品制备,通常样品要经过细胞破碎、蛋白质提取等步骤,使得目标蛋白质从复杂的混合物中提取出来。

其次是样品的处理,包括去除杂质、调整蛋白质的溶液环境等。

然后是选择合适的分离方法,根据蛋白质的特性和实验要求来确定最适合的方法。

最后是纯化过程中的监测和分析,通过使用各种蛋白质分析方法,如SDS-PAGE、Western blot等,来确定目标蛋白质的纯化程度和鉴定其存在。

蛋白质的分离纯化方法一

蛋白质的分离纯化方法一

楚雄师范学院化学与生命科学系
范树国
2.聚丙烯酰胺凝胶电泳(PAGE)
3.毛细管电泳
楚雄师范学院化学与生命科学系
范树国
4.等电聚焦电泳
等电聚焦电泳法测定蛋白质pI
5.SDS-PAGE
6.离子交换层析
离子交换纤维素: 离子交换交联葡聚糖:兼有分子筛效应 离子交换交联琼脂糖:
楚雄师范学院化学与生命科学系
楚雄师范学院化学与生命科学系
范树国
普通电泳、等电聚焦、 双向电泳、脉冲电泳、 毛细管电泳 从电泳结果分:自由界 面电泳、区带电泳、盘 状电泳 从装置上分: 圆盘电 泳(柱状)、水平板电 泳、垂直板电泳。 从支持物分: 自由界 面电泳、纸电泳(或薄 膜电泳)、凝胶电 泳( PAGE ,琼脂糖胶, 淀粉胶等)
沉降的速度与颗粒的重量、密度和形状有关。离心后按其沉降 的速度不同,彼此分开形成区带。再进行光学定位,针刺或冰 冻切片采样分析。
蔗糖密度梯度
聚蔗糖密度梯度
楚雄师范学院化学与生命科学系
范树国
3.凝胶过滤
交联葡聚糖(Sephadex);聚丙烯酰胺凝胶(Bio-Gel P );琼脂糖凝胶(Sepharose,Bio-Gel A)
稳定蛋白质胶体溶液的主要因素 ①蛋白质表面极性基团形成的水化膜将蛋白质颗粒彼此隔开, 不会互相碰撞凝聚而沉淀。 ②两性电解质非等电状态时,带同种电荷,互相排斥不致聚集 而沉淀。
一旦电荷被中和或水化膜被破坏,蛋白质颗粒聚集,便从溶液 中析出沉淀。
楚雄师范学院化学与生命科学系
范树国
(二)蛋白质的沉淀
①盐析法 向蛋白质溶液中加入大量的中性盐[(NH4)2SO4、 Na2SO4、NaCl],使蛋白质脱去水化层而聚集沉淀。 ②有机溶剂沉淀法 破坏水化膜,降低介电常数。 ③重金属盐沉淀 pH大于等电点时,蛋白质带负电荷,可与 重金属离子(Hg2+. Pb2+. Cu2+ 等)结成不溶性沉淀 ④生物碱试剂和某些酸类沉淀法 pH小于等电点时,蛋白质 带正电荷,易与生物碱试剂和酸类的负离子生成不溶性沉淀。 生物碱试剂:是指能引起生物碱沉淀的一类试剂,单宁酸、 苦味酸、钨酸。酸 类:三氯乙酸、磺基水杨酸。 ⑤加热变性沉淀 往往是不可逆的。

蛋白质分离纯化的方法

蛋白质分离纯化的方法

蛋白质分离纯化的方法分离纯化蛋白质的四种关键性方法分离蛋白质的方法有许多种,应根据原材料和生产条件来选择具体的分离纯化方法。

例[5][6]如:李凤英等用盐溶法提取葡萄籽的蛋白质。

李喜红等用酶法从脱脂米糠中提取蛋白质。

[7]郭荣荣等碱法与酶法与酶法提取大米蛋白工艺及功能特性比较研究得出结论是碱法提取的大米蛋白持水性、吸油性和起泡性优于酶法提取的大米蛋白,而酶法提取的大米蛋白的溶[8]解性、乳化稳定性和泡沫稳定性优于碱法提取的大米蛋白。

王桃云等就是运用这种方法配[9]合使用加热法提取葎草叶蛋白。

陈申如等用酸法提取了鲢鱼鱼肉蛋白质,提取的蛋白质无腥味,色泽洁白,蛋白质产率高,可达90%左右。

以下介绍四种分离纯化蛋白质的方法。

1区带离心法区带离心法是分离蛋白质的有效而且常用的方法。

该法的第一步是在离心管中形成一个密度梯度(常用蔗糖梯度),然后将待分离的蛋白质混合液放在密度梯度顶端。

超速离心时,蛋白质即通过密度梯度移动,并根据其沉降系数而被分开,最后各种蛋自质在离心管内被分离成各户独立的区带,可以在管底刺一小孔逐滴放出,分部收集。

2 层析法最常用的层析法是凝胶过滤和离子交换柱层析。

[10-12]2.1 凝胶过滤(GFC)凝胶过滤也叫凝胶色谱和分子筛层析,是利用凝胶的网状结构根据分子的大小和形状进行分离的方法。

凝胶过滤是一种快速而简便的分离分析技术,可用于蛋白质的脱盐、分离、提纯、分析等等。

柱中的填充料是水合程度高而不溶的碳水化合物高聚物,最常用的是葡聚糖凝胶〔其他有聚丙烯酞胺凝胶和琼脂糖凝胶等)。

仙聚糖凝胶是具有不同交联度的网状结构物,不同型号的葡聚糖凝胶其“网眼”大小不同,可以用来分离纯化不同分子大小的物质。

当蛋白质混合物通过层析柱时,比“网眼”大的蛋自质分子不能进入凝胶颗粒内部,不能沿着颗粒间隙流动,流程短,流速快,最先流出柱外;比“网眼”小的分子则进入凝胶颗粒内部,沿着孔道移动,从一个颗粒流出,又进入另一颗粒,所以下移速度慢,随后被洗脱下来。

蛋白质纯化方法总结

蛋白质纯化方法总结

分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。

1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。

为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。

然后根据不同的情况,选择适当的方法,将组织和细胞破碎。

动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。

植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。

细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。

破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。

组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。

细胞碎片等不溶物用离心或过滤的方法除去。

如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法将它们分开,收集该细胞组分作为下步纯化的材料。

如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。

2. 粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。

一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。

这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。

有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。

3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。

进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。

蛋白质的分离纯化方法

蛋白质的分离纯化方法

蛋白质的分离纯化方法根据分子大小不同进行分离纯化蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到分离。

根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。

透析和超滤是分离蛋白质时常用的方法。

透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。

超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。

这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。

它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。

由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。

所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。

当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。

例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。

使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。

常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。

可以根据所需密度和渗透压的范围选择合适的密度梯度。

密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。

蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。

凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。

凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。

列举5种分离纯化蛋白质的方法。

列举5种分离纯化蛋白质的方法。

列举5种分离纯化蛋白质的方法。

一、凝胶电泳法(Gel Electrophoresis):凝胶电泳是一种常用的蛋白质分离纯化方法。

它利用蛋白质的电荷和大小差异,在电场作用下,将蛋白质分离成不同迁移速度的带状物。

常见的凝胶电泳有聚丙烯酰胺凝胶电泳(SDS-PAGE)和聚丙烯酰胺糖凝胶电泳(PAGE)等。

凝胶电泳具有分离速度快、样品适用范围广、易于操作等特点。

二、离子交换层析法(Ion Exchange Chromatography):离子交换层析是根据蛋白质表面带电性的差异来分离纯化蛋白质的方法。

通过将样品加入装有离子交换树脂的层析柱中,通过控制洗脱缓冲液的离子浓度和pH,实现带正电荷或负电荷的蛋白质与树脂之间的相互作用,从而实现分离纯化。

三、亲和层析法(Affinity Chromatography):亲和层析是利用蛋白质与某种亲和剂之间的特异性相互作用来分离纯化蛋白质的方法。

常见的亲和层析方法包括亲和纸层析、亲和树脂层析等。

该方法具有选择性强、纯化效果好的优点,广泛应用于蛋白质纯化领域。

四、凝胶渗透层析法(Gel Filtration Chromatography):凝胶渗透层析也被称为分子筛层析,是一种以分子大小差异作为分离依据的方法。

通过在层析柱中加入一种孔隙较小的凝胶,利用蛋白质分子大小的差异,在经过柱体后,较小的蛋白质分子进入凝胶孔隙中,分离出来,而较大的蛋白质则能够直接流出。

五、逆流层析法(Reverse Phase Chromatography):逆流层析是基于蛋白质与固定相之间的亲疏水性相互作用进行纯化的方法。

固定相常为亲疏水性的碳链,样品在不同的流动相条件下,通过调节流动相的成分和性质,来实现对蛋白质的分离纯化。

此外,还有疏水相互作用色谱(Hydrophobic Interaction Chromatography)、互补杂交法(Complementary Hybridization)等方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质的分离纯化方法2.1根据分子大小不同进行分离纯化蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到分离。

根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。

透析和超滤是分离蛋白质时常用的方法。

透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。

超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。

这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。

它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。

由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。

所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。

当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。

例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。

使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。

常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。

可以根据所需密度和渗透压的范围选择合适的密度梯度。

密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。

蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。

凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。

凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。

目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。

在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。

凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。

2.2 根据溶解度不同进行分离纯化影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。

但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。

常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。

等电点沉淀和pH值调节是最常用的方法。

每种蛋白质都有自己的等电点,而且在等电点时溶解度最低;相反,有些蛋白质在一定pH值时很容易溶解。

因而可以通过调节溶液的pH 值来分离纯化蛋白质。

王洪新等[8]研究茶叶蛋白质提取过程发现,pH值为时茶叶蛋白提取效果最好,提取率达到36·8%,初步纯化得率为91·0%。

李殿宝[9]在从葵花脱脂粕中提取蛋白质时将蛋白溶液的pH值调到3~4,使目标蛋白于等电点沉淀出来。

等电点沉淀法还应用于葡萄籽中蛋白质的提取。

李凤英等[10]测得葡萄籽蛋白质的等电点为3·8。

他们利用碱溶法提取葡萄籽蛋白质,得到了最佳的提取工艺为:以1×10-5mol·L-1的NaOH溶液,按1∶5的料液比,在40℃搅拌40 min,葡萄籽蛋白质提取率达73·78%。

另外还可以利用碱法提取大米蛋白,其持水性、吸油性和起泡性等均优于酶法提取[11]。

利用酸法提取得到的鲢鱼鱼肉蛋白质无腥味、色泽洁白,蛋白质产率高达90%[12]。

蛋白质的盐溶和盐析是中性盐显著影响球状蛋白质溶解度的现象,其中,增加蛋白质溶解度的现象称盐溶,反之为盐析。

应当指出,同样浓度的二价离子中性盐,如MgCl2、(NH4)2SO4对蛋白质溶解度影响的效果,要比一价离子中性盐如NaCl、NH4Cl大得多。

在葡萄籽蛋白提取工艺中除了可以利用碱溶法还可以利用盐溶法来提取蛋白质,其最佳提取工艺是:以10%NaCl溶液,按1∶25的料液比,在30℃搅拌提取30min,蛋白质提取率为57·25%[10]。

盐析是提取血液中免疫球蛋白的常用方法,如多聚磷酸钠絮凝法、硫酸铵盐析法,其中硫酸铵盐析法广泛应用于生产。

由于硫酸铵在水中呈酸性,为防止其对蛋白质的破坏,应用氨水调pH 值至中性。

为防止不同分子之间产生共沉淀现象,蛋白质样品的含量一般控制在0·2% ~2·0%。

利用盐溶和盐析对蛋白质进行提纯后,通常要使用透析或者凝胶过滤的方法除去中性盐[13]。

有机溶剂提取法的原理是:与水互溶的有机溶剂(如甲醇、乙醇)能使一些蛋白质在水中的溶解度显著降低;而且在一定温度、pH值和离子强度下,引起蛋白质沉淀的有机溶剂的浓度不同,因此,控制有机溶剂的浓度可以分离纯化蛋白质。

例如,在冰浴中磁力搅拌下,在4℃预冷的培养液中缓慢加入乙醇(-25℃),可以使冰核蛋白析出,从而纯化冰核蛋白[14]。

由于在室温下,有机溶剂不仅能引起蛋白质的沉淀,而且伴随着变性。

因此,通常要将有机溶剂冷却,然后在不断搅拌下加入有机溶剂防止局部浓度过高,蛋白质变性问题就可以很大程度上得到解决。

对于一些和脂质结合比较牢固或分子中极性侧链较多、不溶于水的蛋白质,可以用乙醇、丙酮和丁醇等有机溶剂提取,它们有一定的亲水性和较强的亲脂性,是理想的提取液。

冷乙醇分离法提取免疫球蛋白最早由Cohn于1949年提出,用于制备丙种球蛋白。

冷乙醇法也是目前WHO规程和中国生物制品规程推荐的方法,不仅分辨率高、提纯效果好、可同时分离多种血浆成分,而且有抑菌、清除和灭病毒的作用[15]。

萃取是分离和提纯有机化合物常用的一种方法,而双水相萃取和反胶团萃取可以用来分离蛋白质。

双水相萃取技术(Aqueous two phase extraction,ATPE)是指亲水性聚合物水溶液在一定条件下形成双水相,由于被分离物在两相中分配的不同,便可实现分离,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。

此方法可以在室温环境下进行,双水相中的聚合物还可以提高蛋白质的稳定性,收率较高。

对于细胞内的蛋白质,需要先对细胞进行有效破碎。

目的蛋白常分布在上相并得到浓缩,细胞碎片等固体物分布在下相中。

采用双水相系统浓缩目的蛋白,受聚合物分子量及浓度、溶液pH值、离子强度、盐类型及浓度的影响[16]。

反胶团萃取法是利用反胶团将蛋白质包裹其中而达到提取蛋白质的目的。

反胶团是当表面活性剂在非极性有机溶剂溶解时自发聚集而形成的一种纳米尺寸的聚集体。

这种方法的优点是萃取过程中蛋白质因位于反胶团的内部而受到反胶团的保护。

程世贤等[17]就利用反胶团萃取法提取了大豆中的蛋白质。

2.3 根据电荷不同进行分离纯化根据蛋白质的电荷即酸碱性质不同分离蛋白质的方法有电泳和离子交换层析两类。

在外电场的作用下,带电颗粒(如不处于等电点状态的蛋白质分子)将向着与其电性相反的电极移动,这种现象称为电泳。

聚丙烯酰胺电泳是一种以聚丙烯酰胺为介质的区带电泳,常用于分离蛋白质。

它的优点是设备简单、操作方便、样品用量少。

等电聚焦是一种高分辨率的蛋白质分离技术,也可以用于蛋白质的等电点测定。

利用等电聚焦技术分离蛋白质混合物是在具有pH梯度的介质中进行的。

在外电场作用下各种蛋白质将移向并聚焦在等于其等电点的pH值梯度处形成一个窄条带。

孙臣忠等[18]研究了聚丙烯酰胺电泳、等电聚焦电泳和等速提纯电泳在分离纯化蛋白质中的应用。

结果发现,聚丙烯酰胺电泳的条带分辨率低,加样量不高;等电聚焦电泳分辨率最高,可以分离同种蛋白的亚成分,加样量最小;等速提纯电泳区带分辨率较高,可将样品分成单一成分,加样量最大。

离子交换层析(Ion exchange chromatography,IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时结合力大小的差别而进行分离的一种层析方法。

离子交换层析中,基质由带有电荷的树脂或纤维素组成。

带有正电荷的为阴离子交换树脂;反之为阳离子交换树脂。

离子交换层析同样可以用于蛋白质的分离纯化。

当蛋白质处于不同的pH值条件下,其带电状况也不同。

阴离子交换基质结合带有负电荷的蛋白质,被留在层析柱上,通过提高洗脱液中的盐浓度,将吸附在层析柱上的蛋白质洗脱下来,其中结合较弱的蛋白质首先被洗脱下来。

反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。

李全宏等[19]将离子交换层析应用于浓缩苹果汁中蛋白质的提纯。

另外,离子交换层析还用于抗凝血蛋白的提取[7]。

2.4 利用对配体的特异亲和力进行分离纯化亲和层析是利用蛋白质分子对其配体分子特有的识别能力(即生物学亲和力)建立起来的一种有效的纯化方法。

它通常只需一步处理即可将目的蛋白质从复杂的混合物中分离出来,并且纯度相当高。

应用亲和层析须了解纯化物质的结构和生物学特性,以便设计出最好的分离条件。

近年来,亲和层析技术被广泛应用于靶标蛋白尤其是疫苗的分离纯化,特别是在融合蛋白的分离纯化上,亲和层析更是起到了举足轻重的作用,因为融合蛋白具有特异性结合能力[20]。

亲和层析在基因工程亚单位疫苗的分离纯化中应用也相当广泛[21]。

范继业等[22]利用壳聚糖亲和层析提取的抑肽酶比活达到71 428 BAEE·mg-1,纯化回收率达到62·5%。

该方法成本较低,吸附剂价格低廉、机械强度高、抗污染能力较强、非特异性吸附较小、可反复使用、适用性广,产品质量稳定。

3 展望在实际工作中,很难用单一方法实现蛋白质的分离纯化,往往要综合几种方法才能提纯出一种蛋白质。

理想的蛋白质分离提纯方法,要求产品纯度和总回收率越高越好,但实际上两者难以兼顾,因此,考虑分离提纯的条件和方法时,不得不在两者之间作适当的选择;一般情况下,科研上更多地选择前者,工业生产上更多地选择后者。

因此,每当需要提纯某种蛋白质时,首先要明确分离纯化的目的和蛋白质的性质,以便选择最佳的分离纯化方法,从而得到理想的效果。

今后,蛋白质提纯技术的发展将不断促进对蛋白质性质的研究,同时对蛋白质性质的研究也将反过来提高蛋白质分离纯化技术,两者的互相促进终将会对生命科学的进步作出重大贡献。

相关文档
最新文档