2019年海淀区初三数学期末试卷及答案新人教版
2019-201X北京海淀初三期末数学试题(真题)-实用word文档 (1页)

2019-201X北京海淀初三期末数学试题(真题)-实用word文档
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! == 201X北京海淀初三期末数学试题(真题)
又到了一年一度的期末考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇201X北京海淀初三期末数学试题,希望可以帮助到大家!
这篇201X北京海淀初三期末数学试题就为大家分享到这里了。
更多相关内容请点击查看九年级数学期末试卷,同时,更多的初三各科的期末试卷尽在九年级期末试卷,预祝大家都能顺利通过考试!。
2019-2020学年北京市海淀区九年级(上)期末数学试卷

6.如图, 交 于点 , 切 于点 ,点 在 上.若 = ,则 为()
A. B. C. D.
7.在同一平面直角坐标系 中,函数 = 与 的图象可能是()
A. B.
C. D.
8.在平面直角坐标系 中,将横纵坐标之积为 的点称为“好点”,则函数 = 的图象上的“好点”共有()
A. 个B. 个C. 个D. 个
①若点 在直线 上,则点 的 倍相关圆的半径为________.
②点 在直线 上,点 的 倍相关圆的半径为 ,若点 在运动过程中,以点 为圆心, 为半径的圆与反比例函数 的图象最多有两个公共点,直接写出 的最大值.
参考答案与试题解析
2019-2020学年北京市海淀区九年级(上)期末数学试卷
如图,在 与 中, ,且 = .求证: .
某司机驾驶汽车从甲地去乙地,他以 的平均速度用 到达目的地.
(1)当他按原路匀速返回时,汽车的速度 与时间 有怎样的函数关系?
(2)如果该司机返回到甲地的时间不超过 ,那么返程时的平均速度不能小于多少?
如图,在 中, , 于点 , 于点 .
(1)求证: = ;
(1)在点 , 中,存在 倍相关圆的点是________,该点的 倍相关圆半径为________.
(2)如图 ,若 是 轴正半轴上的动点,点 在第一象限内,且满足 = ,判断直线 与点 的 倍相关圆的位置关系,并证明.
(3)如图 ,已知点 的 , ,反比例函数 的图象经过点 ,直线 与直线 关于 轴对称.
二、填空题(本题共16分,每小题2分)
反比例函数 的图象经过 , 两点,则 .(填“ ”,“=”或“ ”)
如果关于 的一元二次方程 = 的一个解是 = ,则 =________.
2019年海淀初三二模数学试卷【含答案】

B海淀区九年级第二学期期末练习数 学2019.06一、选择题(本题共16分,每小题2分) 1.27-的立方根是( )A .3-B .3C .3±D2.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD =80°, 则∠BOM 等于( ) A .140°B .120°C .100°D .80°3.科学家在海底下约4.8公里深处的沙岩中,发现了一种世界上最小的神 秘生物,它们的最小身长只有0.000 000 02米,甚至比已知的最小细菌 还要小.将0.000 000 02用科学记数法表示为( ) A .-7210⨯B .-8210⨯C .-9210⨯D .-10210⨯4.实数a ,b 在数轴上的对应点的位置如图所示,若a c b -<<,则实数c 的值可能是( )A .12-B .0C .1D .725.图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒu gǒng ).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的三视图,则这个部件是( )A .B .C .D .6.已知a b >,则下列不等式一定成立的是( )A .55a b ->-B .55ac bc >C .55a b -<+D .55a b+>-图1 图27.下面的统计图反映了2013-2018年中国城镇居民人均可支配收入与人均消费支出的情况.(数据来源:国家统计局)根据统计图提供的信息,下列推断不合理...的是( ) A .2013-2018年,我国城镇居民人均可支配收入和人均消费支出均逐年增加 B .2013-2018年,我国城镇居民人均可支配收入平均每年增长超过2400元 C .从2015年起,我国城镇居民人均消费支出超过20000元D .2018年我国城镇居民人均消费支出占人均可支配收入的百分比超过70%8.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b ,若他希望租住的小区到主干道a 和主干道b 的直线距离之和最小,则下图中符合他要求的小区是( ) A .甲 B .乙 C .丙 D .丁二、 填空题(本题共16分,每小题2分) 9.当_______x =时,代数式2x x-的值为0. 10.如图,在△ABC 中,∠BAC =90°,D 为BC 中点,若AD =52,AC =3,则AB 的长为 .DCBA11.如图,在⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若∠A =60°,∠ABC =20°,则∠C 的度数为 .12.如果4m n =+,那么代数式2+m n mnn m m n ⎛⎫-⋅⎪⎝⎭的值是___________.13.如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若1APQ S =△,则PBCQ S 四边形=______.(第11题图)(第13题)14.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.下面有三个推断:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确;②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的. 其中正确的是___________.15.按《航空障碍灯(MH/T6012-1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(Aviation Obstruction light).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达___________秒.Q P CBA/秒16.右图是在浦东陆家嘴明代陆深古墓中发掘出来的宝玉——明白玉幻方.其背面有方框四行十六格,为四阶幻方(从1到16,一共十六个数目,它们的纵列、横行与两条对角线上4个数相加之和均为34).小明探究后发现,这个四阶幻方中的数满足下面规律:在四阶幻方中,当数a,b,c,d有如图1的位置关系时,均有a+b=c+d=17.如图2,已知此幻方中的一些数,则x的值为___________.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:4cos45(1)2︒+-.18.解不等式组:()48211032x xxx-<-⎧⎪⎨+>⎪⎩,.图1 图219.下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.已知:在△ABC 中,∠C =90°.求作:△ABC 的中位线DE ,使点D 在AB 上,点E 在AC 上. 作法:如图,① 分别以A ,C 为圆心,大于12AC 长为半径画弧,两弧交于P ,Q ② 作直线PQ ,与AB 交于点D ,与AC 交于点E . 所以线段DE 就是所求作的中位线. 根据小宇设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接P A ,PC ,QA ,QC , DC ,∵ P A =PC ,QA =_________,∴ PQ 是AC 的垂直平分线(________)(填推理的依据). ∴ E 为AC 中点,AD =DC . ∴ ∠DAC =∠DCA ,又在Rt △ABC 中,有∠BAC +∠ABC =90°,∠DCA +∠DCB =90°. ∴ ∠ABC =∠DCB (________)(填推理的依据). ∴ DB =DC . ∴ AD =BD =DC . ∴ D 为AB 中点.∴ DE 是△ABC 的中位线.20.关于x 的一元二次方程22(21)10x k x k --+-=,其中0k <. (1)求证:方程有两个不相等的实数根; (2)当1k =-时,求该方程的根.21.如图,在□ABCD 中,∠BAD 的角平分线交BC 于点E ,交DC 的延长线于点F ,连接DE . (1)求证:DA =DF ;(2)若∠ADE =∠CDE =30°,DE = 求□ABCD 的面积.22.如图,AB 是⊙O 的直径,P A ,PC 与⊙O 分别相切于点A ,C ,连接AC ,BC ,OP ,AC 与OP相交于点D .(1)求证:90B CPO ∠+∠=︒; (2)连结BP ,若AC =125,sin ∠CPO =35,求BP 的长.23.如图,在平面直角坐标系xOy 中,直线y x b =+与x 轴、y 轴分别交于点A ,B ,与双曲线2y x=的交点为M ,N .(1)当点M 的横坐标为1时,求b 的值;(2)若3MN AB ≤,结合函数图象,直接写出b 的取值范围.24.有这样一个问题:探究函数2118y x x=-的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数2118y x x=-的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数2118y x x=-的自变量x 的取值范围是 ;(2)如图,在平面直角坐标系xOy 中,完成以下作图步骤:①画出函数214y x =和2y x=-的图象;②在x 轴上取一点P ,过点P 作x 轴的垂线l ,分别交函数214y x =和2y x=-的图象于点M ,N ,记线段MN 的中点为G ;③在x 轴正半轴上多次改变点P 的位置,用②的方法得到相应的点G ,把这些点用平滑的曲线连接起来,得到函数2118y x x=-在y 轴右侧的图象.继续在x 轴负半轴上多次改变点P 的位置,重复上述操作得到该函数在y 轴左侧的图象.(3)结合函数2118y x x=-的图象, 发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为 (保留小数点后一位); ②该函数还具有的性质为:_________________(一条即可).25.某学校共有六个年级,每个年级10个班,每个班约40名同学.该校食堂共有10个窗口,中午所有同学都在食堂用餐.经了解,该校同学年龄分布在12岁(含12岁)到18岁(含18岁)之间,平均年龄约为15岁.小天、小东和小云三位同学,为了解全校同学对食堂各窗口餐食的喜爱情况,各自进行了抽样调查,并记录了相应同学的年龄,每人调查了60名同学,将收集到的数据进行了整理. 小天从初一年级每个班随机抽取6名同学进行调查,绘制统计图表如下:小东从全校每个班随机抽取1名同学进行调查,绘制统计图表如下:小云在食堂门口,对用餐后的同学采取每隔10人抽取1人进行调查,绘制统计图表如下:根据以上材料回答问题:(1)写出图2中m 的值,并补全图2;(2)小天、小东和小云三人中,哪个同学抽样调查的数据能较好地反映出该校同学对各窗口餐食的喜爱情况,并简要说明其余同学调查的不足之处;(3)为使每个同学在中午尽量吃到自己喜爱的餐食,学校餐食管理部门应为______窗口尽量多的分配工作人员,理由为_________________________________ __.26.在平面直角坐标系xOy 中,抛物线C :223y ax ax =-+与直线l :y kx b =+交于A ,B 两点,且点A 在y 轴上,点B 在x 轴的正半轴上. (1)求点A 的坐标;(2)若1a =-,求直线l 的解析式; (3)若31k -<<-,求a 的取值范围.27.已知C 为线段AB 中点,ACM α∠=.Q 为线段BC 上一动点(不与点B 重合),点P 在射线CM 上,连接P A ,PQ ,记BQ kCP =. (1)若60α=︒,1k =,①如图1,当Q 为BC 中点时, 求PAC ∠的度数; ②直接写出P A 、PQ 的数量关系;(2)如图2,当45α=︒时.探究是否存在常数k ,使得②中的结论仍成立?若存在,写出k 的值并证明;若不存在,请说明理由.图1 图228.对于平面直角坐标系xOy 中的两个图形M 和N ,给出如下定义:若在图形M 上存在一点A ,图形N 上存在两点B ,C ,使得△ABC 是以BC 为斜边且BC =2的等腰直角三角形,则称图形M 与图形N 具有关系()M N ,φ. (1)若图形X 为一个点,图形Y 为直线y x =,图形X 与图形Y 具有关系()X Y ,φ,则点1(0P ,2(11)P ,,3(22)P -,中可以是图形X 的是_____; (2)已知点()20P ,,点()02Q ,,记线段PQ 为图形X . ①当图形Y 为直线y x =时,判断图形X 与图形Y 是否既具有关系()X Y ,φ又具有关系()Y X ,φ,如果是,请分别求出图形X 与图形Y 中所有点A 的坐标;如果不是,请说明理由;②当图形Y 为以(0)T t ,为半径的⊙T 时,若图形X 与图形X 具有关系()X Y ,φ,求t 的取值范围.海淀区九年级第二学期期末练习参考答案数 学 2019.06一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.210.411.40 12.8 13.3 14.②③15.7 16.1三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17.(本小题满分5分)解:原式=412?-( =3-18.(本小题满分5分)解:原不等式组为482(1)1032x x x x ì-<-ïí+>ïî,.①②解不等式①,得3x <. 解不等式②,得2x <. ∴原不等式组的解集为2x <.19.(本小题满分5分)(1)补全的图形如图所示:(作等弧交于两点P ,Q 点1分,直线PQ 1分)(2)QC到线段两端点距离相等的点在线段的垂直平分线上 等角的余角相等20.(本小题满分5分)解:(1)依题意可知,22(21)4(1)54k k k ∆=---=-, ∵0k <,∴0D>.∴方程有两个不相等的实数根.(2)当1k =-时,方程为230x x +=. 解得123,0x x =-=. 21.(本小题满分5分)(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB ∥CD . ∴ ∠BAF =∠F . ∵AF 平分∠BAD , ∴ ∠BAF =∠DAF . ∴ ∠F =∠DAF . ∴ AD =FD .(2)解: ∵∠ADE =∠CDE =30°,AD =FD ,∴ DE ⊥AF .∵tan ∠ADE =AE DE =DE = ∴2AE =.∴ 2ABCDADESSAE DE ==⋅=22.(本小题满分5分) (1)证明:连接OC ,如图.∵ P A ,PC 与⊙O 分别相切于点A ,C ,∴ OC ⊥PC ,OA ⊥P A ,∠APC =2∠CPO . ∴ ∠OCP =∠OAP =90°.∵ ∠AOC +∠APC +∠OCP +∠OAP =360°, ∴ ∠AOC +∠APC =180°. ∵ ∠AOC =2∠B , ∴ 90B CPO ∠+∠=︒.(2)解: 连接BP ,如图.∵ AB 是⊙O 的直径, ∴∠ACB =90°.∴∠ABC+∠BAC =90°.∵90ABC CPO ∠+∠=︒, ∴ ∠BAC =∠CPO =∠APO .∵AC =125,sin ∠BAC =35,∴ 3AB =,32OA =. ∵32OA =,sin ∠APO =35,∴ 2AP =.∴PB =23.(本小题满分6分) 解:(1)∵点M 是双曲线2y x=上的点,且点M 的横坐标为1, ∴点M 的坐标为(1,2).∵点M 是直线y x b =+上的点,∴1b =.(2)当1b =?时,满足3MN AB =,结合函数图像可得,b 的取值范围是1b ≤-或1b ≥.24.(本小题满分6分) (1)0x ≠; (2)(3)① 1.6-;(在 1.9 1.3至--之间即可)②该函数的其它性质:当0x >时,y 随x 的增大而增大.(写出一条即可)25.(本小题满分6分)解:(1)15.0(2)小东.理由:小天调查的不足之处:仅对初一年级抽样,不能代表该学校学生总体的情况; 小云调查的不足之处:抽样学生的平均年龄为16岁,远高于全校学生的平均年龄,不能代表该学校学生总体情况.(3)6号和8号(或者只有8;或者5,6,8).理由:从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.注意:(2)(3)的答案不唯一 26.(本小题满分6分)(1)∵ 抛物线C :223y ax ax =-+与y 轴交于点A ,∴ 点A 的坐标为(0,3). (2)当1a =-时,抛物线C 为223y x x =-++.∵ 抛物线C 与x 轴交于点B ,且点B 在x 轴的正半轴上,∴ 点B 的坐标为(3,0). ∵ 直线l :y kx b =+过A ,B 两点,∴ 330.b k b =⎧⎨+=⎩, 解得1,3.k b =-⎧⎨=⎩∴ 直线l 的解析式为3y x =-+. (3)如图,当0a >时,当3a =时,抛物线C 过点B (1,0),此时3k =-. 结合函数图象可得3a >. 当0a <时,当1a =-时,抛物线C 过点B (3,0),此时1k =-. 结合函数图象可得1a <-.综上所述,a 的取值范围是1a <-或3a >.27.(本小题满分7分)(1)①解:在CM 上取点D ,使得CD =CA ,连接AD .∵ 60ACM ∠=︒, ∴△ADC 为等边三角形.M∴60DAC ∠=︒.∵C 为AB 的中点,Q 为BC 的中点, ∴AC =BC=2BQ . ∵BQ =CP ,∴AC =BC=CD =2CP . ∴AP 平分∠DAC . ∴∠P AC =∠P AD =30°. ② P A =PQ .(2)存在k =.证明:过点P 作PC 的垂线交AC 于点D . ∵45ACM ∠=︒,∴ ∠PDC =∠PCD =45°.∴PC =PD ,∠PDA =∠PCQ =135°.∵CD =,BQ =,∴CD = BQ . ∵AC =BC ,∴AD = CQ .∴△P AD ≌△PQC. ∴P A =PQ .28.(本小题满分7分) (1)1P ; (2)① 是,图1 图2如图1,在直线y x =上取点B ,C ,且BC =2,则满足△ABC 是以BC 为斜边的等腰直角三角形的点A ,在到直线y x =距离为1的两条平行直线上. 这两条平行直线与PQ 分别交于1A ,2A 两点. 故图形X 与图形Y 满足(),X Y ϕ.直线y x =与线段PQ 交于点M (1,1),过点M 作MH ⊥y 轴于H ,与1A B 交于点N ,则11MA =,2MN =,可得1A (12-,12+). 同理可求得2A (12+,12-). 如图2,在线段PQ 上取点B ,C ,且BC =2,则满足△ABC 是以BC 为斜边的等腰直角三角形的点A 在图中的两条线段上,这两条线段与直线y x =交于3A ,4A 两点. 故图形X 与图形Y 满足(),Y X ϕ.同上可求得3A (1,1),4A (1+,1+).② 1t ≤≤-或25t ≤≤.。
.1海淀区初三期末考试数学试卷及答案(图片版)

2019.1海淀区初三期末考试数学试卷及答案(图
片版)
2019.1海淀区初三期末考试语文试卷及答案
2019.1海淀区初三期末考试数学试卷及答案
2019.1海淀区初三期末考试英语试卷及答案
2019.1海淀区初三期末考试物理试卷及答案
2019.1海淀区初三期末考试化学试卷及答案
小编推荐:
2019年1月海淀初三期末试题:
2019.1海淀初三期末语文试卷及答案(图片版)
2019.1海淀初三期末数学试卷及答案(图片版)
2019.1海淀初三期末英语试卷及答案(图片版)
2019.1海淀初三期末物理试卷及答案(word版)
2019.1海淀初三期末化学试卷及答案(图片版)
2019年1月海淀初三期末试题:
2019海淀区初三期末考试语文试卷及答案
2019海淀区初三期末考试数学试卷及答案
2019海淀区初三期末考试英语试卷及答案
2019海淀区初三期末考试物理试卷及答案
2019海淀区初三期末考试化学试卷及答案
2019年1月海淀初三期末试题:
2019-2019北京市海淀区初三第一学期物理期末试卷与答案
2019-2019北京市海淀区初三第一学期数学期末试卷与答案2019-2019北京市海淀区初三第一学期化学期末试卷与答案
2019-2019北京市海淀区初三第一学期语文期末试卷与答案
2019-2019北京市海淀区初三第一学期英语期末试卷与答案。
海淀区初三上册数学期末考试卷(附答案)

2019年海淀区初三上册数学期末考试卷(附答案)以下是查字典数学网为您推荐的2019年海淀区初三上册数学期末考试卷(附答案),希望本篇文章对您学习有所帮助。
2019年海淀区初三上册数学期末考试卷(附答案)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.若代数式有意义,则x的取值范围是A. B. D. -2.将抛物线平移得到抛物线,下列叙述正确的是A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位3.如图,与相交于点,∥ .若,则为A. B. C. D.4.下列一元二次方程中,有两个相等的实数根的是A. B.C. D.5.如图,⊙O是△ABC的外接圆,A =40,则OCB等于A.60B.50C.40D.306.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为A. B.C. D.7.已知,那么可化简为A. B. C. D.8. 如图,以为圆心,半径为2的圆与轴交于、两点,与轴交于、两点,点为⊙上一动点,于.当点从点出发顺时针运动到点时,点所经过的路径长为A. B. C. D.二、填空题(本题共16分,每小题4分)9.计算= .10. 若二次函数的图象上有两个点、,则(填或=或).11.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为_________cm.12.小聪用描点法画出了函数的图象F,如图所示.结合旋转的知识,他尝试着将图象F绕原点逆时针旋转得到图象,再将图象绕原点逆时针旋转得到图象,如此继续下去,得到图象.在尝试的过程中,他发现点P 在图象上(写出一个正确的即可);若点P(a,b)在图象上,则= (用含的代数式表示) .三、解答题(本题共30分,每小题5分)13. 计算:.14. 解方程:.15.已知,求代数式的值.16.如图,正方形网格中,△ABC的顶点及点O在格点上.(1)画出与△ABC关于点O对称的△ ;(2)画出一个以点O为位似中心的△,使得△与△的相似比为2.17.如图,在△与△中,,, =6,求的长.18.如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,顶点为D, 求△BCD的面积.四、解答题(本题共20分,每小题5分)19.已知关于的方程有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最大整数,求此时方程的根.20. 已知:二次函数中的和满足下表:0 1 2 3 4 53 08(1) 可求得的值为;(2) 求出这个二次函数的解析式;(3) 当时,则y的取值范围为.21.图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?22.如图,AB为⊙O的直径,BC切⊙O于点B,AC交⊙O于点D,E为BC中点.求证:(1)DE为⊙O的切线;(2)延长ED交BA的延长线于F,若DF=4,AF=2,求BC的长.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;点M为线段AB的二等分点.图1解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;图2(2)点P是AOB内部一点,过点P作PMOA于M,PNOB于N,请找出一个满足下列条件的点P. (可以利用图1中的等距平行线)①在图3中作出点P,使得; ②在图4中作出点P,使得.图3 图424.抛物线与x轴交于A、B两点,且点A在点B的左侧,与y轴交于点C,OB=OC.(1)求这条抛物线的解析式;(2)若点P 与点Q 在(1)中的抛物线上,且,PQ=n.①求的值;②将抛物线在PQ下方的部分沿PQ翻折,抛物线的其它部分保持不变,得到一个新图象.当这个新图象与x轴恰好只有两个公共点时,b 的取值范围是25.如图1,两个等腰直角三角板和有一条边在同一条直线上,,.将直线绕点逆时针旋转,交直线于点.将图1中的三角板沿直线向右平移,设、两点间的距离为.图1 图2 图3解答问题:(1)①当点与点重合时,如图2所示,可得的值为;②在平移过程中,的值为(用含的代数式表示);(2)将图2中的三角板绕点逆时针旋转,原题中的其他条件保持不变.当点落在线段上时,如图3所示,请补全图形,计算的值;家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
20191月海淀初三期末数学答案

6
7
x
说明:允许(1)的数值误差范围 0.05 ; (3)的数值误差范围 0.2 25. (本小题满分 6 分) (1)证明:如图,连接 OC . ∵ OE⊥AB , ∴ EGF 90 °. ∵ PC 与⊙ O 相切于点 C , ∴ OCP =90 °. ……………… 1 分 ∴ E EFG OCF PCF 90 °. ∵ OE OC , ∴ E OCF . ∴ EFG PCF . 又∵ EFG PFC , ∴ PCF PFC . ∴ PC PF . (2)方法一: 解:如图,过点 B 作 BH⊥PC 于点 H . ∵ OB∥PC , OCP 90 ,
A
–1
y
3 2 1
O
–1 –2 –3 –4
1
2
3
x
数学试卷答案及评分参考
第 5 页(共 7 页)
②当 n 0 时,抛物线 G 与线段 AN 有一个交点. 当 n 2 时,抛物线 G 与线段 AN 有两个交点. 结合图象可得 0 n 2 . (2) n 3 或 n 1 . 27. (本小题满分 7 分) (1)①证明:连接 AD ,如图 1. ∵点 C 与点 D 关于直线 l 对称, ∴ AC AD . ∵ AB AC , ∴ AB AC AD . ∴点 B,C,D 在以 A 为圆心, AB 为半径的圆上. ② . (2)证法一: 证明:连接 CE ,如图 2. ∵ =60 °, ∴ BDC 30 °. ∵ DE⊥BD , ∴ CDE 90 ° BDC 60 °. ∵点 C 与点 D 关于直线 l 对称, ∴ EC ED . ∴ △CDE 是等边三角形. ∴ CD CE , DCE 60 °. ∵ AB AC , BAC 60 °, ∴ △ABC 是等边三角形. ∴ CA CB , ACB 60 °. ∵ ACE DCE ACD , BCD ACB ACD , ∴ ACE BCD . ∴ △ACE≌△BCD . ∴ AE BD . 证法二: 证明:连接 AD,CE ,如图 2. ∵点 C 与点 D 关于直线 l 对称, ∴ AD AC,AE⊥CD .
2019年北京市海淀区初三数学二模试题及详细解析
MODCBA北京市海淀区初三第二学期数学期末练习数学(含详细解析)2019.06一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个...1.27-的立方根是A.3-B.3C.3±D.33-2.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠BOM等于A.140°B.120°C.100° D.80°3.科学家在海底下约4.8公里深处的沙岩中,发现了一种世界上最小的神秘生物,它们的最小身长只有0.000 000 02米,甚至比已知的最小细菌还要小.将0.000 000 02用科学记数法表示为A.-7210⨯B.-8210⨯C.-9210⨯D.-10210⨯4.实数a,b在数轴上的对应点的位置如图所示,若a c b-<<,则实数c的值可能是A.12-B.0 C.1 D.725.图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒu gǒng).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的三视图,则这个部件是A.B.C.D.6.已知a b>,则下列不等式一定成立的是A.55a b->-B.55ac bc>C.55a b-<+D.55a b+>-7.下面的统计图反映了2013-2018年中国城镇居民人均可支配收入与人均消费支出的情况.图1 图2(数据来源:国家统计局)根据统计图提供的信息,下列推断不合理...的是 A .2013-2018年,我国城镇居民人均可支配收入和人均消费支出均逐年增加 B .2013-2018年,我国城镇居民人均可支配收入平均每年增长超过2400元 C .从2015年起,我国城镇居民人均消费支出超过20000元D .2018年我国城镇居民人均消费支出占人均可支配收入的百分比超过70%8.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b ,若他希望租住的小区到主干道a 和主干道b 的直线距离之和最小,则下图中符合他要求的小区是 A .甲 B .乙 C .丙 D .丁二、 填空题(本题共16分,每小题2分) 9.当_______x 时,代数式2x x的值为0. 10.如图,在△ABC 中,∠BAC =90°,D 为BC 中点,若AD =52,AC =3, 则AB 的长为 .11.如图,在⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若∠A =60°,∠ABC =20°,则∠C 的度数为 .D CB A12.如果4m n =+,那么代数式2+m n mnn m m n⎛⎫-⋅⎪⎝⎭的值是___________. 13.如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若1APQ S =△,则PBCQ S 四边形=______.(第11题图)(第13题)14.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.抛掷次数 50 100 200 500 1000 2000 3000 4000 5000 “正面向上”的次数 19 38 68 168 349 707 1069 1400 1747 “正面向上”的频率0.38000.38000.34000.33600.34900.35350.35630.35000.3494下面有三个推断:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确; ②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的. 其中正确的是___________.15.按《航空障碍灯(MH/T6012-1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(Aviation Obstruction light).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达___________秒.16.右图是在浦东陆家嘴明代陆深古墓中发掘出来的宝玉——明白玉幻方.其背面有方框四行十六格,为四阶幻方(从1到16,一共十六个数目,它们的纵列、横行与两条对角线上4个数相加之和均为34).小明探究后发现,这个四阶幻方中的数满足下面规律:在四阶幻方中,当数a ,b ,c ,d 有如图1的位置关系时,均有a +b =c +d =17.如图2,已知此幻方中的一些数,则x 的值为___________.DCABO Q P CBA状态时间/秒暗亮654321图1 图2三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:4cos45(1)2︒+--.18.解不等式组:()48211032x x x x -<-⎧⎪⎨+>⎪⎩,.19.下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.已知:在△ABC 中,∠C =90°.求作:△ABC 的中位线DE ,使点D 在AB 上,点E 在AC 上. 作法:如图,① 分别以A ,C 为圆心,大于12AC 长为半径画弧,两弧交于P ,Q ② 作直线PQ ,与AB 交于点D ,与AC 交于点E . 所以线段DE 就是所求作的中位线. 根据小宇设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接P A ,PC ,QA ,QC , DC ,∵ P A =PC ,QA =_________,∴ PQ 是AC 的垂直平分线(________)(填推理的依据). ∴ E 为AC 中点,AD =DC . ∴ ∠DAC =∠DCA ,又在Rt △ABC 中,有∠BAC +∠ABC =90°,∠DCA +∠DCB =90°. ∴ ∠ABC =∠DCB (________)(填推理的依据). ∴ DB =DC . ∴ AD =BD =DC . ∴ D 为AB 中点.∴ DE 是△ABC 的中位线.20.关于x 的一元二次方程22(21)10x k x k --+-=,其中0k <. (1)求证:方程有两个不相等的实数根; (2)当1k =-时,求该方程的根.21.如图,在□ABCD 中,∠BAD 的角平分线交BC 于点E ,交DC 的延长线于点F ,连接DE . (1)求证:DA =DF ;(2)若∠ADE =∠CDE =30°,DE = 求□ABCD 的面积.22.如图,AB 是⊙O 的直径,P A ,PC 与⊙O 分别相切于点A ,C ,连接AC ,BC ,OP ,AC 与OP 相交于点D .(1)求证:90B CPO ∠+∠=︒; (2)连结BP ,若AC =125,sin ∠CPO =35,求BP 的长.23.如图,在平面直角坐标系xOy 中,直线y x b =+与x 轴、y 轴分别交于点A ,B ,与双曲线2y x=的交点为M ,N .(1)当点M 的横坐标为1时,求b 的值;(2)若3MN AB ≤,结合函数图象,直接写出b 的取值范围.24.有这样一个问题:探究函数2118y x x=-的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数2118y x x=-的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数2118y x x=-的自变量x 的取值范围是 ;(2)如图,在平面直角坐标系xOy 中,完成以下作图步骤:①画出函数214yx 和2y x的图象; ②在x 轴上取一点P ,过点P 作x 轴的垂线l ,分别交函数214y x 和2y x的图象于点M ,N ,记线段MN 的中点为G ;③在x 轴正半轴上多次改变点P 的位置,用②的方法得到相应的点G ,把这些点用平滑的曲线连接起来,得到函数2118y x x=-在y 轴右侧的图象.继续在x 轴负半轴上多次改变点P 的位置,重复上述操作得到该函数在y 轴左侧的图象.(3)结合函数2118y x x=-的图象, 发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为 (保留小数点后一位); ②该函数还具有的性质为:_________________(一条即可).25.某学校共有六个年级,每个年级10个班,每个班约40名同学.该校食堂共有10个窗口,中午所有同学都在食堂用餐.经了解,该校同学年龄分布在12岁(含12岁)到18岁(含18岁)之间,平均年龄约为15岁.小天、小东和小云三位同学,为了解全校同学对食堂各窗口餐食的喜爱情况,各自进行了抽样调查,并记录了相应同学的年龄,每人调查了60名同学,将收集到的数据进行了整理.小天从初一年级每个班随机抽取6名同学进行调查,绘制统计图表如下:小东从全校每个班随机抽取1名同学进行调查,绘制统计图表如下:小云在食堂门口,对用餐后的同学采取每隔10人抽取1人进行调查,绘制统计图表如下:根据以上材料回答问题:(1)写出图2中m的值,并补全图2;(2)小天、小东和小云三人中,哪个同学抽样调查的数据能较好地反映出该校同学对各窗口餐食的喜爱情况,并简要说明其余同学调查的不足之处;(3)为使每个同学在中午尽量吃到自己喜爱的餐食,学校餐食管理部门应为______窗口尽量多的分配工作人员,理由为_________________________________ __.26.在平面直角坐标系xOy 中,抛物线C :223y ax ax =-+与直线l :y kx b =+交于A ,B 两点,且点A 在y 轴上,点B 在x 轴的正半轴上. (1)求点A 的坐标;(2)若1a =-,求直线l 的解析式; (3)若31k -<<-,求a 的取值范围.27.已知C 为线段AB 中点,ACM α∠=.Q 为线段BC 上一动点(不与点B 重合),点P 在射线CM 上,连接P A ,PQ ,记BQ kCP =. (1)若60α=︒,1k =,①如图1,当Q 为BC 中点时, 求PAC ∠的度数; ②直接写出P A 、PQ 的数量关系;(2)如图2,当45α=︒时.探究是否存在常数k ,使得②中的结论仍成立?若存在,写出k 的值并证明;若不存在,请说明理由.图1 图228.对于平面直角坐标系xOy 中的两个图形M 和N ,给出如下定义:若在图形M 上存在一点A ,图形N上存在两点B ,C ,使得△ABC 是以BC 为斜边且BC =2的等腰直角三角形,则称图形M 与图形N 具有关系()M N ,φ.(1)若图形X 为一个点,图形Y 为直线y x ,图形X 与图形Y 具有关系()X Y ,φ,则点1(0P ,2(11)P ,,3(22)P -,中可以是图形X 的是_____;(2)已知点()20P ,,点()02Q ,,记线段PQ 为图形X . ①当图形Y 为直线y x 时,判断图形X 与图形Y 是否既具有关系()X Y ,φ又具有关系()Y X ,φ,如果是,请分别求出图形X 与图形Y 中所有点A 的坐标;如果不是,请说明理由;②当图形Y 为以(0)T t ,T 时,若图形X 与图形X 具有关系()X Y ,φ,求t 的取值范围.北京市海淀区初三第二学期期末数学练习参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.2 10. 4 11.40 12.8 13.3 14.②③ 15.7 16.1三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17.(本小题满分5分) 解:原式=24122222(-)=32. 18.(本小题满分5分)解:原不等式组为482(1)1032x x x x ,.①②解不等式①,得3x . 解不等式②,得2x . ∴原不等式组的解集为2x .19.(本小题满分5分)(1)补全的图形如图所示:(作等弧交于两点P ,Q 点1分,直线PQ 1分)(2)QC到线段两端点距离相等的点在线段的垂直平分线上 等角的余角相等20.(本小题满分5分)解:(1)依题意可知,22(21)4(1)54k k k ∆=---=-,∵0k , ∴0.∴方程有两个不相等的实数根. (2)当1k 时,方程为230x x .解得123,0x x .21.(本小题满分5分)(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB ∥CD . ∴ ∠BAF =∠F . ∵AF 平分∠BAD , ∴ ∠BAF =∠DAF . ∴ ∠F =∠DAF . ∴ AD =FD .(2)解: ∵∠ADE =∠CDE =30°,AD =FD ,∴ DE ⊥AF .∵tan ∠ADE=AE DE =,DE = ∴2AE =.∴2ABCDADESSAE DE ==⋅=.22.(本小题满分5分) (1)证明:连接OC ,如图.∵ P A ,PC 与⊙O 分别相切于点A ,C ,∴ OC ⊥PC ,OA ⊥P A ,∠APC =2∠CPO . ∴ ∠OCP =∠OAP =90°.∵ ∠AOC +∠APC +∠OCP +∠OAP =360°, ∴ ∠AOC +∠APC =180°. ∵ ∠AOC =2∠B , ∴ 90B CPO ∠+∠=︒.(2)解: 连接BP ,如图. ∵ AB 是⊙O 的直径, ∴∠ACB =90°.∴∠ABC+∠BAC =90°. ∵90ABC CPO ∠+∠=︒,∴ ∠BAC =∠CPO =∠APO .∵AC =125,sin ∠BAC =35,∴ 3AB =,32OA =. ∵32OA =,sin ∠APO =35,∴ 2AP =.∴PB =解:(1)∵点M 是双曲线2y x=上的点,且点M 的横坐标为1, ∴点M 的坐标为(1,2).∵点M 是直线y x b =+上的点,∴1b =. (2)当1b 时,满足3MN AB ,结合函数图像可得,b 的取值范围是1b ≤-或1b ≥.24.(本小题满分6分) (1)0x ≠; (2)(3)① 1.6-;(在 1.9 1.3至--之间即可)②该函数的其它性质:当0x >时,y 随x 的增大而增大.(写出一条即可)解:(1)15.0(2)小东.理由:小天调查的不足之处:仅对初一年级抽样,不能代表该学校学生总体的情况; 小云调查的不足之处:抽样学生的平均年龄为16岁,远高于全校学生的平均年龄,不能代表该学校学生总体情况.(3)6号和8号(或者只有8;或者5,6,8).理由:从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.注意:(2)(3)的答案不唯一 26.(本小题满分6分)(1)∵ 抛物线C :223y ax ax =-+与y 轴交于点A ,∴ 点A 的坐标为(0,3). (2)当1a =-时,抛物线C 为223y x x =-++.∵ 抛物线C 与x 轴交于点B ,且点B 在x 轴的正半轴上,∴ 点B 的坐标为(3,0). ∵ 直线l :y kx b =+过A ,B 两点,∴ 330.b k b =⎧⎨+=⎩,解得1,3.k b =-⎧⎨=⎩ ∴ 直线l 的解析式为3y x =-+. (3)如图,当0a >时,当3a =时,抛物线C 过点B (1,0),此时3k =-. 结合函数图象可得3a >. 当0a <时,当1a =-时,抛物线C 过点B (3,0),此时1k =-. 结合函数图象可得1a <-.综上所述,a 的取值范围是1a <-或3a >.27.(本小题满分7分)(1)①解:在CM 上取点D ,使得CD =CA ,连接AD .∵ 60ACM ∠=︒, ∴△ADC 为等边三角形. ∴60DAC ∠=︒.∵C 为AB 的中点,Q 为BC 的中点, ∴AC =BC=2BQ . ∵BQ =CP ,∴AC =BC=CD =2CP . ∴AP 平分∠DAC . ∴∠P AC =∠P AD =30°. ② P A =PQ .(2)存在k =. 证明:过点P 作PC 的垂线交AC 于点D . ∵45ACM ∠=︒,∴ ∠PDC =∠PCD =45°.∴PC =PD ,∠PDA =∠PCQ =135°.∵CD =,BQ =,∴CD = BQ . ∵AC =BC ,∴AD = CQ . ∴△P AD ≌△PQC. ∴P A =PQ .M28.(本小题满分7分) (1)1P ; (2)① 是, 图1如图1,在直线y x =上取点B ,C ,且BC =2,则满足△ABC 是以BC 为斜边的等腰直角三角形的点A ,在到直线y x =距离为1的两条平行直线上. 这两条平行直线与PQ 分别交于1A ,2A 两点. 故图形X 与图形Y 满足(),X Y ϕ.直线y x=与线段PQ 交于点M (1,1),过点M作MH ⊥y 轴于H ,与1A B交于点N ,则11MA =,2MN =1A (12-,12+). 同理可求得 2A (12+,12-). 如图2,在线段PQ 上取点B ,C ,且BC =2,则满足△ABC 是以BC为斜边的等腰直角三角形的点A 在图中的两条线段上,这两条线段与直线y x =交于3A,4A 两点. 故图形X 与图形Y 满足(),Y X ϕ.同上可求得3A(1,1-),4A (1,1).② 1t ≤≤-或25t ≤≤.。
2019年北京市海淀区初三上册数学期末试题有答案
北京市海淀区初三第一学期期末学业水平调研数 学本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个... 1.抛物线()212y x =-+的对称轴是A .1x =-B .1x =C .2x =-D .2x =2.在△ABC 中,∠C 90°.若AB 3,BC 1,则sin A 的值为A .13B. C.3D .33.如图,线段BD ,CE 相交于点A ,DE ∥BC .若AB 4,AD 2,DE 1.5, 则BC 的长为 A .1 B .2 C .3D .44.如图,将△ABC 绕点A 逆时针旋转100°,得到△ADE .若点D 在线段 BC 的延长线上,则B ∠的大小为 A .30° B .40° C .50°D .60°5.如图,△OAB ∽△OCD ,OAOC 32,∠Aα,∠Cβ,△OAB 与△OCD 的面积分别是1S 和2S ,△OAB 与△OCD 的周长分别是1C 和2C ,则下列等式一定成立的是 A .32OB CD=B .32αβ= C .1232S S =D .1232C C =6.如图,在平面直角坐标系Oy 中,点A 从(3,4)出发,绕点O 顺时针旋转一周,则点A 不.经过 A .点MB .点NC .点PD .点QEB C DADECBAD OA BC7.如图,反比例函数k y x=的图象经过点A (4,1),当1y <时,的取值范围是A .0x <或4x >B .04x <<C .4x <D .4x >8.两个少年在绿茵场上游戏.小红从点A 出发沿线段AB 运动到点B ,小兰从点C 出发,以相同的速度沿⊙O 逆时针运动一周回到点C ,两人的运动路线如图1所示,其中ACDB .两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C 的距离y 与时间(单位:秒)的对应关系如图2所示.则下列说法正确的是图1 图2A .小红的运动路程比小兰的长B .两人分别在1.09秒和7.49秒的时刻相遇C .当小红运动到点D 的时候,小兰已经经过了点D D .在4.84秒时,两人的距离正好等于⊙O 的半径二、填空题(本题共16分,每小题2分) 9.方程220x x -=的根为 . 10.已知∠A 为锐角,且tan A =A 的大小是 °.11.若一个反比例函数图象的每一支上,y 随的增大而减小,则此反比例函数表达式可以是 .(写出一个即可)12.如图,抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为.CD A O B13.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为 .14.如图,AB 是⊙O 的直径,P A ,PC 分别与⊙O 相切于点A ,点C ,若∠P 60°,P,则AB 的长为 .15.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离.如图,在一个路口,一辆长为10m 的大巴车遇红灯后停在距交通信号灯20m 的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾 m ,若大巴车车顶高于小张的水平视线0.8m ,红灯下沿高于小张的水平视线3.2m ,若小张能看到整个红灯,则的最小值为 .停止线信号灯16.下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是 . 三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:2sin 30°2cos 45-°18.已知1x =是关于的方程2220x mx m --=的一个根,求(2)1m m +的值.19.如图,在△ABC 中,∠B 为锐角,AB AC 5,sin 35C =,求BC 的长. CB A20.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,记平均卸货速度为v (单位:吨/天),卸货天数为t .(1)直接写出v 关于t 的函数表达式:v = ;(不需写自变量的取值范围) (2)如果船上的货物5天卸载完毕,那么平均每天要卸载多少吨?21.如图,在△ABC 中,∠B90°,AB4,BC2,以AC 为边作△ACE ,∠ACE90°,AC=CE ,延长BC 至点D ,使CD5,连接DE .求证:△ABC ∽△CED .22.古代阿拉伯数学家泰比特·伊本·奎拉对勾股定理进行了推广研究:如图(图1中BAC ∠为锐角,图2中BAC ∠为直角,图3中BAC ∠为钝角).AB B' C' CAB B'(C')C B C' B' C A在△ABC 的边BC 上取B ',C '两点,使AB B AC C BAC ''∠∠∠==,则ABC △∽B BA '△∽C AC '△,()AB B BAB'=,()AC C CAC'=,进而可得22AB AC + ;(用BB CC BC '',,表示)若AB =4,AC =3,BC =6,则B C '' .图1 图2 图3EA23.如图,函数ky x=(0x <)与y ax b =+的图象交于点A (-1,n )和点B (-2,1). (1)求,a ,b 的值; (2)直线x m =与ky x=(0x <)的图象交于点P ,与1y x =-+的图象交于点Q ,当90PAQ ∠>︒时,直接写出m 的取值范围.24.如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D延长线上取一点F ,使得EFDE . (1)求证:DF 是⊙O 的切线;(2)连接AF 交DE 于点M ,若 AD 4,DE 5,求DM 的长.25.如图,在△ABC 中,90ABC ∠=︒,40C ∠=°,点D 是线段BC 上的动点,将线段AD 绕点A 顺时针旋转50°至AD ',连接BD '.已知AB 2cm ,设BD 为 cm ,B D '为y cm .小明根据学习函数的经验,对函数y 随自变量的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数) (1)通过取点、画图、测量,得到了与y 的几组值,如下表:D'B DC A(2(3)结合画出的函数图象,解决问题: 线段BD '的长度的最小值约为__________;若BD '≥BD ,则BD 的长度的取值范围是_____________. 26.已知二次函数243y ax ax a =-+. (1)该二次函数图象的对称轴是 ;(2)若该二次函数的图象开口向下,当14x ≤≤时,y 的最大值是2,求当14x ≤≤时,y 的最小值; (3)若对于该抛物线上的两点11() P x y , ,22() Q x y ,,当1+1t x t ≤≤,25x ≥时,均满足12y y ≥,请结合图象,直接写出t 的最大值.27.对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q(点Q 可以与点P 重合),且12PAQA≤≤,则点P 称为点A 关于⊙C 的“生长点”. 已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在轴上,请写出一个符合条件的点P 的坐标________; (2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan 2BAO ∠=,求点B 的纵坐标t 的取值范围;(3)直线y b =+与轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是_____________________________.28.在△ABC 中,∠A90°,ABAC .(1)如图1,△ABC 的角平分线BD ,CE 交于点Q,请判断“QB”是否正确:________(填“是”或“否”);(2)点P 是△ABC 所在平面内的一点,连接PA ,PB ,且PA .①如图2,点P 在△ABC 内,∠ABP30°,求∠PAB 的大小;②如图3,点P 在△ABC 外,连接PC ,设∠APC α,∠BPC β,用等式表示α,β之间的数量关系,并证明你的结论.PPEDQB CAB CAB CA图1 图2 图3北京市海淀区初三第一学期期末学业水平调研数学参考答案及评分标准一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.0或2 10.60 11.1y x=(答案不唯一) 12.(2-,0) 13.614.2 15.1016.三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,一条弧所对的圆周角是它所对圆心角的一半;或:直径所对的圆周角为直角,三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,直角三角形两个锐角互余; 或:直径所对的圆周角为直角,1sin 2A =,A ∠为锐角,30A ∠=︒.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)17.解:原式 = 12222⨯-⨯+ (3)分 = 1= 1+ ………………5分 18.解:∵ 1x =是关于的方程2220x mx m --=的一个根, ∴ 2120m m --=.∴ 221m m +=. ………………3分 ∴ 2(2)211m m m m =++=.………………5分 19.解:作AD ⊥BC 于点D , ∴ ∠ADB =∠ADC =90°. ∵ AC =5,3sin 5C =, B∴ sin 3AD AC C =⋅=. ………………2分 ∴ 在Rt △ACD中,4CD ==. ………………3分∵AB∴ 在Rt △ABD中,3BD ==. ………………4分∴ 7BC BD CD =+=. ………………5分 20.解:(1)240t. ………………3分 (2)由题意,当5t =时,24048v t==. ………………5分 答:平均每天要卸载48吨. 21.证明:∵ ∠B =90°,AB =4,BC =2,∴AC =.∵ CE =AC , ∴CE = ∵ CD =5, ∴AB ACCE CD=. ………………3分 ∵ ∠B =90°,∠ACE =90°,∴ ∠BAC +∠BCA =90°,∠BCA +∠DCE =90°.∴ ∠BAC =∠DCE .∴ △ABC ∽△CED . ………………5分 22.BC ,BC ,()BC BB CC ''+ ………………3分116………………5分 23.解:(1)∵ 函数ky x=(0x <)的图象经过点B (-2, 1), ∴12k=-,得2k =-. ………………1分 ∵ 函数ky x=(0x <)的图象还经过点A (-1,n ), ∴ 221n -==-,点A 的坐标为(-1,2). ………………2分 EB C DA∵ 函数y ax b =+的图象经过点A 和点B , ∴ 2,2 1.a b a b -+=⎧⎨-+=⎩解得1,3.a b =⎧⎨=⎩ ………………4分(2)20m -<<且1m ≠-. ………………6分 24.(1)证明:∵ BD 平分∠ABC , ∴ ∠ABD =∠CBD . ∵ DE ∥AB , ∴ ∠ABD =∠BDE .∴ ∠CBD =∠BDE . ………………1分 ∵ ED =EF ,∴ ∠EDF =∠EFD . ∵∠EDF +∠EFD +∠EDB +∠EBD =180°, ∴ ∠BDF =∠BDE +∠EDF =90°.∴ OD ⊥DF . ………………2分 ∵OD 是半径,∴ DF 是⊙O 的切线. ………………3分(2)解: 连接DC ,∵ BD 是⊙O 的直径, ∴ ∠BAD =∠BCD =90°. ∵ ∠ABD =∠CBD ,BD =BD , ∴ △ABD ≌△CBD . ∴ CD =AD =4,AB =BC. ∵ DE =5,∴3CE =,EF =DE =5. ∵ ∠CBD =∠BDE , ∴ BE =DE =5.∴ 10BF BE EF =+=,8BC BE EC =+=.∴ AB =8. ………………5分 ∵ DE ∥AB , ∴ △ABF ∽△MEF . ∴AB BFME EF=. ∴ ME =4.∴ 1DM DE EM =-=. ………………6分25.(1)0.9. ………………1分 (2)如右图所示. ………………3分 (3)0.7, ………………4分 00.9x ≤≤. ………………6分 26.解:(1)2. ………………1分 (2)∵ 该二次函数的图象开口向下,且对称轴为直线2x =, ∴ 当2x =时,y 取到在14x ≤≤上的最大值为2. ∴ 4832a a a -+=.∴ 2a =-,2286y x x =-+-. ………………3分 ∵ 当12x ≤≤时,y 随的增大而增大, ∴ 当1x =时,y 取到在12x ≤≤上的最小值0. ∵ 当24x ≤≤时,y 随的增大而减小,∴ 当4x =时,y 取到在24x ≤≤上的最小值6-.∴ 当14x ≤≤时,y 的最小值为6-. ………………4分 (3)4. ………………6分 27.解:(1)(2,0)(答案不唯一). ………………1分 (2)如图,在轴上方作射线AM ,与⊙O 交于M ,且使得1tan 2OAM ∠=,并在AM 上取点N ,使AM =MN ,并由对称性,将MN 关于轴对称,得M N '',则由题意,线段MN 和M N ''上的点是满足条件的点B .作MH ⊥轴于H ,连接MC ,∴ ∠MHA =90°,即∠OAM +∠AMH =90°. ∵ AC 是⊙O 的直径,∴ ∠AMC =90°,即∠AMH +∠HMC =90°. ∴ ∠OAM =∠HMC .∴ 1tan tan 2HMC OAM ∠=∠=. ∴12MH HC HA MH ==. 112O设MH y =,则2AH y =,12CH y =, ∴ 522AC AH CH y =+==,解得45y =,即点M 的纵坐标为45.又由2AN AM =,A 为(-1,0),可得点N 的纵坐标为85, 故在线段MN 上,点B 的纵坐标t 满足:4855t ≤≤. ……………3分 由对称性,在线段M N ''上,点B 的纵坐标t 满足:8455t -≤≤-.……………4分 ∴ 点B 的纵坐标t 的取值范围是8455t -≤≤-或4855t ≤≤. (3)41b -≤≤-或14b ≤≤ ………………7分 28.解:(1)否. ………………1分 (2)① 作PD ⊥AB 于D ,则∠PDB =∠PDA =90°, ∵ ∠ABP =30°, ∴ 12PD BP =. ………………2分 ∵PB =, ∴2PD PA =. ∴sin PD PAB PA ∠==. 由∠P AB 是锐角,得∠P AB =45°. ………………3分 另证:作点P 关于直线AB 的对称点'P ,连接',',B P P A P P ,则',',','P B A P B A P A B P A B B P B P A P A P∠=∠∠=∠==. ∵∠ABP =30°, ∴'60P BP ∠=︒. ∴△'P BP 是等边三角形. ∴'P P BP =.∵PB =,∴'P P =. ………………2分BBC∴222''P P PA P A =+. ∴'90PAP ∠=︒.∴45PAB ∠=︒. ………………3分② 45αβ+=︒,证明如下: ………………4分 作AD ⊥AP ,并取AD =AP ,连接DC ,DP . ∴ ∠DAP =90°. ∵ ∠BAC =90°,∴ ∠BAC +∠CAP =∠DAP +∠CAP , 即 ∠BAP =∠CAD . ∵ AB =AC ,AD =AP , ∴ △BAP ≌△CAD .∴ ∠1=∠2,PB =CD . ………………5分 ∵ ∠DAP =90°,AD =AP ,∴PD =,∠ADP =∠APD =45°. ∵PB =, ∴ PD =PB =CD . ∴ ∠DCP =∠DPC . ∵ ∠APCα,∠BPCβ,∴ 45DPC α∠=+︒,12αβ∠=∠=-. ∴ 31802902DPC α∠=︒-∠=︒-. ∴ 139045ADP αβ∠=∠+∠=︒--=︒.∴ 45αβ+=︒. ………………7分B。
2019年北京市海淀区初三上册数学期末试卷(有答案)
初三第一学期期末学业水平调研数学学校___________________ 姓名________________ 准考证号__________________1.抛物线()213y x =-+的顶点坐标为A .()1,3B . ()1,3-C .()1,3--D .()3,12.如图,在平面直角坐标系xOy 中,点()43P ,,OP 与轴正半轴的夹角为,则tan 的值为A .35 B .45C .34D .433.方程230x x -+=的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根 4.如图,一块含30°角的直角三角板ABC 绕点C 顺时针旋转到△A B C ⅱ,当B ,C ,A ¢在一条直线上时,三角板ABC 的旋转角度为A .150°B .120°C .60°D .30°5.如图,在平面直角坐标系xOy 中,B 是反比例函数2(0)y x x=>的图象上的一点,则矩形OABC 的面积为 A .1 B .2C .3D .46.如图,在ABC △中,DEBC ∥,且DE 分别交AB ,AC 于点D ,E , 若:=2:3AD AB ,则△ADE 和△ABC 的面积..之比等于 A .2:3B .4:9C .4:5D7.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端B'A'CBAE DCB A点A 与B 之间的距离为10cm ,双翼的边缘==AC BD 54cm ,且与闸机侧立面夹角PCA BDQ ∠=∠=30°.当双翼收起时,可以通过闸机的物体的最大宽度为图1 图2 A.cmB.cmC .64cmD . 54cm8.在平面直角坐标系xOy 中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是 A .1y B.2y C .3y D.4y二、填空题(本题共16分,每小题2分) 9.方程230x x -=的根为.10.半径为2且圆心角为90°的扇形面积为.11.已知抛物线的对称轴是,若该抛物线与轴交于10(,),30(,)两点,则的值为.12.在同一平面直角坐标系xOy 中,若函数y x =与ky x=()0k ≠的图象有两个交点,则k 的取值范围是. 13.如图,在平面直角坐标系xOy 中,有两点()24A ,,()40B ,,以原点O为位似中心,把△OAB 缩小得到△OA B ⅱ.若B '的坐标为()20,,则点A '的坐标为.14.已知1(1)y ,-,2(2)y ,是反比例函数图象上两个点的坐标,且12y y >,请写出一个符合条件的反比例函数的解析式.15.如图,在平面直角坐标系xOy 中,点()30A ,M N P Q ,,,四点中,满足到点O 和点A 的距离都小于的点是.16.如图,在平面直角坐标系xOy 中,P 是直线2y =上的一个动点,⊙P 的半径为1,直线OQ 切⊙P 于点Q ,则线段OQ 的最小值为.三、解答题(本题共68分,第17~22题,每小题5分;第23~26题,每小题6分;第27~28题,每小题7分)17.计算:()cos452sin302-+-o o .18.如图,AD 与BC 交于O 点,A C ??,4AO =,2CO =,3CD =,求AB 的长.19.已知是关于的一元二次方程2450mx x --=的一个根,若246mn n m -+=,求的值.20.近视镜镜片的焦距y (单位:米)是镜片的度数(单位:度)的函数,下表记录了一组数据:(1OCBAA .1100y x =B .100y x=C .13+2002y x =-D .21319400008008x y x =-+(2)利用(1)中的结论计算:当镜片的度数为200度时,镜片的焦距约为________米. 21.下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.已知:如图,⊙O 及⊙O 上一点P .求作:过点P 的⊙O 的切线. 作法:如图,① 作射线OP ;②在直线OP 外任取一点A ,以点A 为圆心,AP 为半径作⊙A ,与射线OP 交于另一点B ;③连接并延长BA 与⊙A 交于点C ; ④作直线PC ; 则直线PC 即为所求. 根据小元设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:∵ BC 是⊙A 的直径,∴∠BPC =90°(____________)(填推理的依据). ∴OP ⊥PC .又∵OP 是⊙O 的半径,∴PC 是⊙O 的切线(____________)(填推理的依据).22.2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,衔接桥梁和海底隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得,PA PB 与观光船航向PD 的夹角∠DP A =18°,∠DPB =53°,求此时观光船到大桥AC 段的距离PD 的长. 参考数据:sin18°0.31≈,cos18°0.95≈,tan18°0.33≈,sin53°0.80≈,cos53°0.60≈,tan53° 1.33≈.23.在平面直角坐标系xOy 中,已知直线12y x =与双曲线ky x=的一个交点是(2,)A a . (1)求k 的值;(2)设点()P m n ,是双曲线ky x=上不同于A 的一点,直线PA 与轴交于点(,0)B b . ①若1m =,求b 的值;②若=2PB AB ,结合图象,直接写出b 的值.24.如图,A ,B ,C 为⊙O 上的定点.连接AB ,AC ,M 为AB 上的一个动点,连接CM ,将射线MC 绕点M 顺时针旋转90,交⊙O 于点D ,连接BD .若AB =6cm ,AC =2cm ,记A ,M 两点间距离为cm ,B D ,两点间的距离为y cm .小东根据学习函数的经验,对函数y 随自变量的变化而变化的规律进行了探究. 下面是小东探究的过程,请补充完整:(1)通过取点..、画图..、测量..,得到了与y 的几组值,如下表:(3)结合画出的函数图象,解决问题:当BD =AC 时,AM 的长度约为cm .25.如图,AB 是⊙O 的弦,半径OE AB ^,P 为AB 的延长线上一点,PC 与⊙O 相切于点C ,CE 与AB 交于点F . (1)求证:PC =PF ;(2)连接OB ,BC ,若//OB PC ,BC =3tan 4P =,求FB 的长.BA26.在平面直角坐标系xOy 中,已知抛物线G :224844y x ax a =-+-,(1,0),(,0)A N n -. (1)当1a =时,①求抛物线G 与轴的交点坐标;②若抛物线G 与线段AN 只有一个交点,求的取值范围;(2)若存在实数a ,使得抛物线G 与线段AN 有两个交点,结合图象,直接写出的取值范围.27.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD . (1)如图1,①求证:点,,B C D 在以点A 为圆心,AB 为半径的圆上. ②直接写出∠BDC 的度数(用含α的式子表示)为___________.(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转,当线段BF 的长取得最大值时,直接写出tan FBC ∠的值.图1图2图328.在平面直角坐标系xOy 中,已知点(0,)A a 和点(0)B b ,,给出如下定义:以AB 为边,按照逆时针方向排列A ,B ,C ,D 四个顶点,作正方形ABCD ,则称正方形ABCD 为点A ,B 的逆序正方形.例如,当4a =-,3b =时,点A ,B 的逆序正方形如图1所示.B图1 图2(1)图1中点C 的坐标为;(2)改变图1中的点A 的位置,其余条件不变,则点C 的坐标不变(填“横”或“纵”),它的值为; (3)已知正方形ABCD 为点A ,B 的逆序正方形.①判断:结论“点C 落在轴上,则点D 落在第一象限内.”______(填“正确”或“错误”),若结论正确,请说明理由;若结论错误,请在图2中画出一个反例;②⊙T 的圆心为(,0)T t ,半径为1.若4a =,0b ,且点C 恰好落在⊙T 上,直接写出t 的取值范围.备用图ABCD初三第一学期期末学业水平调研 数学试卷答案及评分参考一、选择题(本题共16分,每小题2分)第812=34,,可知a 1最小。
北京市海淀区2019届九年级上期末考试数学试题含答案解析
北京市海淀区2019届九年级上期末考试数学试题含答案解析数 学 试 卷(分数:120分 时间:120分钟) .1学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.A .53B .54C .34D .43【考点】解直角三角形 【试题解析】sinA=.故选A .【答案】A2.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80° 【考点】圆周角定理及推论 【试题解析】,.故选B .【答案】B3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),【考点】二次函数的图像及其性质 【试题解析】根据抛物线顶点式可得顶点为(2,1).故选D . 【答案】D【考点】反比例函数的图像及其性质 【试题解析】根据题意得ab-4=3-4.故选C . 【答案】C 5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△D CF 的面积比为A .49 B .19 C .14D .12【考点】相似三角形判定及性质 【试题解析】根据题意得BE :CD=1:2,所以△BEF 与△DCF 的面积比是1:4.故选C . 【答案】C6.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++ B .()2213y x =+- C .()2213y x =-- D .()2213y x =-+ 【考点】二次函数图像的平移 【试题解析】根据题意得先向左平移1个单位为,在向下平移 3 个单位得.故选B .【答案】B7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、 3y 的大小关系是BA .321y y y <<B .231y y y <<C .213y y y <<D .132y y y <<【考点】反比例函数的图像及其性质 【试题解析】根据题意得双曲线在一、三象限,由于,所以()在第三象限,,()、()在第一象限,,由于双曲线图像随x 的增大而减小,所以.故选B .【答案】B8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =, 则AB 的长为A.163CD .12【考点】锐角三角函数圆周角定理及推论【试题解析】 连接AC,,根据题意得.故选D .【答案】D9.在平面直角坐标系xOy 中,A 为双曲线6y x=-上一点,点B 的坐标为(4,0).若 △AOB 的面积为6,则点A 的坐标为 A .(4-,32) B .(4,32-) C .(2-,3)或(2,3-) D .(3-,2)或(3,2-)【考点】反比例函数的实际应用根据题意得.∴点A 的坐标为(,3)或(2,)故选C . 【答案】C10.如图,在平面直角坐标系xOy 中,抛物线2y x b x c=++ 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、 B 两点.若AB =3,则点M 到直线l 的距离为A .52 B .94 C .2 D .74【考点】二次函数的图像及其性质 【试题解析】由题意可得,又因为抛物线与平行于x 轴的直线l 有两个点,设l 的解析式为y=m,则有两个交点,所以方程有两个实数根,,又因为AB=3,所以,=3,=9,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三第一学期期末学业水平调研数学.学校 姓名 准考证号一、选择题(本题共分,每小题分) .抛物线的顶点坐标为.....如图,在平面直角坐标系中,点,与轴正半轴的夹角为,则的值为 . ....方程的根的情况是.有两个不相等的实数根.有两个相等的实数根.无实数根.只有一个实数根 .如图,一块含°角的直角三角板绕点顺时针旋转到△,当,,在一条直线上时,三角板的旋转角度为 .° .° .°.°.如图,在平面直角坐标系中,是反比例函数的图象上的一点,则矩形的面积为.....如图,在中,,且分别交,于点,,若,则△和△的面积..之比等于.....图是一个地铁站入口的双翼闸机.如图,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角°.当双翼收起时,可以通过闸机的物体的最大宽度为图图.....在平面直角坐标系中,四条抛物线如图所示,其解析式中的二次项系数一定小于的是....二、填空题(本题共分,每小题分).方程的根为..半径为且圆心角为°的扇形面积为..已知抛物线的对称轴是,若该抛物线与轴交于,两点,则的值为..在同一平面直角坐标系中,若函数与的图象有两个交点,则的取值范围是..如图,在平面直角坐标系中,有两点,,以原点为位似中心,把△缩小得到△.若的坐标为,则点的坐标为. .已知,是反比例函数图象上两个点的坐标,且,请写出一个符合条件的反比例函数的解析式..如图,在平面直角坐标系中,点,判断在四点中,满足到点和点的距离都小于的点是..如图,在平面直角坐标系中,是直线上的一个动点,⊙的半径为,直线切⊙于点,则线段的最小值为.三、解答题(本题共分,第题,每小题分;第题,每小题分;第题,每小题分) .计算:..如图,与交于点,,,,,求的长..已知是关于的一元二次方程的一个根,若,求的值..近视镜镜片的焦距(单位:米)是镜片的度数(单位:度)的函数,下表记录了一组数据:(单位:度)(单位:米)()在下列函数中,符合上述表格中所给数据的是;....()利用()中的结论计算:当镜片的度数为度时,镜片的焦距约为米..下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.已知:如图,⊙及⊙上一点.求作:过点的⊙的切线.作法:如图,①作射线;②在直线外任取一点,以点为圆心,为半径作⊙,与射线交于另一点;③连接并延长与⊙交于点;④作直线;则直线即为所求.根据小元设计的尺规作图过程,()使用直尺和圆规,补全图形;(保留作图痕迹)()完成下面的证明:证明:∵是⊙的直径,∴∠°()(填推理的依据).∴⊥.又∵是⊙的半径,∴是⊙的切线()(填推理的依据)..年月日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的点和东人工岛上的点间的距离约为千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得与观光船航向的夹角∠°,∠°,求此时观光船到大桥段的距离的长. 参考数据:°,°,°,°,°,°..在平面直角坐标系中,已知直线与双曲线的一个交点是.()求的值; ()设点是双曲线上不同于的一点,直线与轴交于点.①若,求的值;②若,结合图象,直接写出的值..如图,,,为⊙上的定点.连接,,为上的一个动点,连接,将射线绕点顺时针旋转,交⊙于点,连接.若,,记,两点间距离为,两点间的距离为.BA小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究. 下面是小东探究的过程,请补充完整: ()通过取点..、画图..、测量..,得到了与的几组值,如下表:图象;()结合画出的函数图象,解决问题:当时,的长度约为..如图,是⊙的弦,半径,为的延长线上一点,与⊙相切于点, 与交于点.()求证:; ()连接,,若,,,求的长..在平面直角坐标系中,已知抛物线:,.()当时,①求抛物线与轴的交点坐标; ②若抛物线与线段只有一个交点,求的取值范围;()若存在实数,使得抛物线与线段有两个交点,结合图象,直接写出的取值范围..已知在△中,,∠α,直线经过点(不经过点或点),点关于直线的对称点为点,连接,.()如图,①求证:点在以点为圆心,为半径的圆上.②直接写出∠的度数(用含α的式子表示)为. ()如图,当α°时,过点作的垂线与直线交于点,求证:; ()如图,当α°时,记直线与的交点为,连接.将直线绕点旋转,当线段的长取得最大值时,直接写出的值.图图图.在平面直角坐标系中,已知点和点,给出如下定义:以为边,按照逆时针方向排列,,,四个顶点,作正方形,则称正方形为点,的逆序正方形.例如,当,时,点,的逆序正方形如图所示.B图 图()图中点的坐标为;()改变图中的点的位置,其余条件不变,则点的坐标不变(填“横”或“纵”),它的值为;()已知正方形为点,的逆序正方形.①判断:结论“点落在轴上,则点落在第一象限内.”(填“正确”或“错误”),若结论正确,请说明理由;若结论错误,请在图中画出一个反例;②⊙的圆心为,半径为.若,,且点恰好落在⊙上,直接写出的取值范围.备用图初三第一学期期末学业水平调研–4–534–3–4–53数学试卷答案及评分参考.一、选择题(本题共分,每小题分)第题:二次函数的绝对值的大小决定图像开口的大小,︱︳越大,开口越小,显然<<,,可知最小。
二、填空题(本题共分,每小题分).,.....答案不唯一,如:..第题:最小时,最小,,∴三、解答题(本题共分,第题,每小题分;第题,每小题分;第题,每小题分)解答应写出文字说明、验算步骤或证明过程..(本小题满分分)解:原式………………………………………………………………分.…………………………………………………………………………分.(本小题满分分)证明:∵,,∴.…………………………………………………………分∴.∵,∴.………………………………………………………………………分.(本小题满分分)解:依题意,得.……………………………………………………分∴.∵,∴.∴.………………………………………分.(本小题满分分)解:().………………………………………………………………………………分().…………………………………………………………………………分.(本小题满分分)()补全的图形如图所示:………………………………………分()直径所对的圆周角是直角;……………………………………………………… 分 经过半径的外端并且垂直于这条半径的直线是圆的切线.…………………… 分.(本小题满分分)解:在中, ∵,∴.…………………………………………………………分在中, ∵,∴.……………………………………………………….. 分∴.∵,°,°,∴.………………………………………………………………………分答:此时观光船到大桥段的距离的长为千米..(本小题满分分) 解:()∵直线经过点,∴.……………………………………………………………………… 分∴又∵双曲线经过点,∴.……………………………………………………………………… 分()①当时,点的坐标为.∴直线的解析式为.………………..………………………. 分 ∵直线与轴交于点,∴.……………………………………………………分②或.………………………………………………………………… 分P.(本小题满分分) 解:本题答案不唯一,如:()…………………………………………………………………………………………… 分 ()…………………………………………………………………………………………… 分()或.……………………………………………………………... 分说明:允许()的数值误差范围;()的数值误差范围.(本小题满分分) ()证明:如图,连接. ∵,∴°. ∵与⊙相切于点, ∴°.……………… 分∴°.∵, ∴.………………………………………………………… 分 ∴.又∵,∴. ∴.……………………………………………………………… 分()方法一:解:如图,过点作于点.∵,,∴.∵,∴°.∴°. 在中,, 可得°,°.…………...… 分在中,,可得.…………………………………………………….. 分 ∴. ∴.∴.∴.…………………………………………分方法二:解:如图,过点作于点.∵,,∴°. ∵, ∴°.在中,,可得°.……………………………………………… 分∴. ∵,,∴.在中,,.∴,.…………………………………………………… 分 ∴. 在中,,.设,则,.∵, ∴.∵,, ∴∽P∴. ∴.∴.…………………………………………………… 分方法三:解:如图,过点作于点,连接.∵,,∴.∴°.…………………………… 分在中,,设,则,. 在中,°,,∴,.∴.………………………………………………… 分∵,,∴. ∴. ∵,∴,,.∵, ∴.∴.…………………………………………………… 分方法四:解:如图,延长交于点.∵,,∴.在中,,,可得.…………………………分∵,,∴.在中,,可得,. ………………………………………分∴. 在中,,可得,. ∴,.∴.…………………………………………………… 分.(本小题满分分) 解:()①当时,.…………………… 分 当时,,解得,.∴抛物线与轴的交点坐标为,.…………………………………………………………………分 ②当时,抛物线与线段有一个交点. 当时,抛物线与线段有两个交点.结合图象可得.……………………… 分()或.……………………………………………………………… 分()解析: ,(), ∴顶点(),,若抛物线与轴交于、两点,则 ∣ ∣ ∣ ∣∣∣≥时,线段与抛物线有两个交点,即≤或 ≥。
.(本小题满分分) ()①证明:连接,如图.∵点与点关于直线对称, ∴. ……………………… 分 ∵,∴.∴点在以为圆心,为半径的圆上.………………… 分②. ……………………………………………………………………………分图证明:连接,如图.∵°,∴°.∵, ∴°°.∵点与点关于直线对称, ∴.∴是等边三角形.…………………………………………………………………………………………… 分∴,°. ∵,°,∴是等边三角形. ∴,°. ∵,,∴. ∴.∴.……………………………………………………………… 分证法二:证明:连接,如图.∵点与点关于直线对称,∴. ∴. ∵, ∴.∵,,∴°.∴.∵°,∴是等边三角形.∴.∴≌………………………………………………………分∴.……………………………………………………………… 分().………………………………………………………………………………… 分图方法一:是中点,≥,设,√√,即√√, 此时∠。