最新人教版初中八年级上册数学第12章《全等三角形》单元测试

合集下载

八年级数学上册《第十二章 三角形全等的判定》单元测试题及答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》单元测试题及答案(人教版)

八年级数学上册《第十二章三角形全等的判定》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点回顾1.三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、选择题1.如图,已知AB=AD,∠BAD=∠CAE,则添加下列条件之一,仍不一定能判定△ABC≌△ADE的是()A.AC=AE B.∠C=∠E C.BC=DE D.∠B=∠D 2.用三角尺可按下面方法画角的平分线.如图,在∠AOB两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,可得△POM≌△PON则判定三角形全等的依据是()A.SSS B.SAS C.ASA D.HL3.下列命题中,真命题的是()A.有一直角边和一锐角对应相等的两个直角三角形全等B.周长相等的两个三角形全等C.两边及其中一边的对角分别相等的两个三角形全等D.全等三角形的面积相等,面积相等的两个三角形全等4.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OP、PC不一定相等C.∠CPO=∠DPO D.OC=OD5.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=5,BD=1,则CF的长度为()A.2 B.2.5 C.4 D.56.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的度数和为()A.60°B.75°C.90°D.120°7.如图所示,AB∥CD,AD∥BC,BE=DF,则图中全等三角形共有( )对.A.2 B.3 C.4 D.18.如图,在△ABC中∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE的度数为()A.75°B.70°C.65°D.60°二、填空题9.如图,已知BF=CE,AC=DF请添加一个条件,使得△ABC≌△DEF则添加的条件可以是:.(不添加其他字母及辅助线)10.已知,如图AD=AE,BD=CE那么图中△ADC≌.11.如图,在△ABC中AD⊥BC,CE⊥AB垂足分别是D,E.AD,CE交点H,已知EH=EB=3,AE=5则CH的长是.12.如图,△ABC的面积为6cm2,AP垂直∠ABC的平分线BP于点P,则△PBC的面积是cm2.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.三、解答题14.如图,已知点C,F在直线AD上,且有BC= EF,AB=DE,CD=AF。

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列可以判定两个直角三角形全等的条件是( )A .斜边相等B .面积相等C .两对锐角对应相等D .两对直角边对应相等2.到三角形三边的距离相等的点是( )A .三角形三内角平分线的交点;B .三角形三边中线的交点;C .三角形三边高的交点;D .三角形三边中垂线的交点。

3.如图,ABC ≌△DEC ,B 、C 、D 在同一直线上,且CE=5,AC=7,则BD 长( )A .12B .7C .2D .144.如图,在ABC 中,AD 平分BAC ∠,DE AB ⊥于点E ,再添加一个条件仍然不能证明△ADC ≌△ADE 的是( )A .90ACB ∠=︒ B .∠ADC =∠ADE C .AC AE =D .DC DE =5.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF ,则四边形AEDF 的面积为( )A .6B .7C .D .96.如图,在ABC 中90A ∠=︒,AB =2,BC =5,BD 是ABC ∠的平分线,设ABD 和BDC 的面积分别是1S 和2S ,则S 1:S 2的值为( )A .5:2B .2:5C .12:D .1:5 7.如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=38°,则∠BDE 的度数为( )A .71°B .76°C .78°D .80°8.如图所示,点 ,A B 分别是 ,NOF MOF ∠∠ 平分线上的点, AB OF ⊥ 于点 E , BC ⊥MN 于点 C , AD ⊥MN 于点 D ,下列结论错误的是( )A .90AOB ∠= B .AD +BC =ABC .点 O 是 CD 的中点 D .图中与 ∠CBO 互余的角有两个二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,在△ABC 和△DEF 中,已知CB =DF ,∠C =∠D ,要使△ABC ≌△EFD ,还需添加一个条件,那么这个条件可以是 .10.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm.11.如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠BAE =80°,则∠EAC 的度数为 .12.如图,有一个直角三角形ABC ∠C =90° , AC=10 , BC=5 ,一条线段PQ=AB ,P 、Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AX 上运动,动点P 从C 点以2个单位秒的速度出发,问P 点运动 秒时(不包括点C ),才能使△ABC ≌△QPA .13.如图,已知ABC ∆的周长是 21 ,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且OD =4,ABC ∆ 面积是 .三、解答题:(本题共5题,共45分)14.如图,△ABO ≌△CDO ,点B 在CD 上,AO ∥CD ,∠BOD=30°,求∠A 的度数.15.如图,在ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD CE ⊥于D ,AD =2.5cm ,DE =1.7cm ,求BE 的长.16.如图,DE AC ⊥于点E ,BFAC ⊥于点F .AB =CD ,AE =CF ,BD 交AC 于点M ,求证:MB =MD .17.如图所示,已知 AD//BC , 点 E 为 CD 上一点,AE 、BE 分别平分∠DAB 、∠CBA ,BE 交 AD 的延长线于点 F.求证:(1)△ABE ≌△AEF ;(2) AD+BC=AB18.如图,在△ABC 中,∠B =60°,AD 平分∠BAC ,CE 平分∠BCA ,AD 、CE 交于点F ,CD =CG ,连结FG.(1)求证:FD =FG ;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若∠B ≠60°,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由参考答案:1.D 2.A 3.A 4.D 5.D 6.B 7.A 8.D9.AC =ED 或∠A =∠FED 或∠ABC =∠F .10.311.50°12.2.513.4214.解:∵△ABO ≌△CDO∴OB=OD ,∠ABO=∠D∴∠OBD=∠D=12(180°﹣∠BOD )=12×(180°﹣30)=75° ∴∠ABC=180°﹣75°×2=30°∴∠A=∠ABC=30°.15.解:∵90ACB ∠=︒∴90BCE ACD ∠+∠=︒∵AD CE BE CE ⊥⊥,∴9090ADC CEB CAD ACD ∠=∠=︒∠+∠=︒, ∴CAD BCE ∠∠=在ACD 与CBE 中{∠ADC =∠CEB∠BCE =∠CAD AC =BC∴()AAS ACD CBE ≌∴BE CD CE AD ==,∴ 2.5 1.70.8cm BE CD CE DE AD DE ==-=-=-=. 答:BE 的长为0.8cm .16.证明:∵AE =CF∴AE +EF =CF +EF ,即AF =CE∵DE ⊥AC 于点E ,BF AC ⊥于点F∴ABF 和CDE 是直角三角形在Rt ABF 和Rt CDE 中{AB =CD AF =CE∴Rt △ABF ≌Rt △CDE(HL),∴BF =DE ;在DEM 和△BFM 中{∠DEM =∠BFM =90°∠DME =∠BMF DE =BF∴△DEM ≌△BFM(AAS),∴MB =MD .17.(1)证明:如图,∵AE 、BE 分别平分∠DAB 、∠CBA∴∠1=∠2,∠3=∠4∵AD∥BC∴∠2=∠F,∠1=∠F在△ABE和△AFE中∴△ABE≌△AFE(AAS)(2)证明:∵△ABE≌△AFE∴BE=EF在△BCE和△FDE中∴△BCE≌△FDE(ASA)∴BC=DF∴AD+BC=AD+DF=AF=AB即AD+BC=AB.18.(1)证明:∵EC平分∠ACB ∴∠FCD=∠FCG∵CG=CD,CF=CF∴△CFD≌△CFG(SAS)∴FD=FG.(2)解:结论:FG=FE.理由:∵∠B=60°∴∠BAC+∠BCA=120°∵AD平分∠BAC,CE平分∠BCA∴∠ACF+∠FAC=12(∠BCA+∠BAC)=60°∴∠AFC=120°,∠CFD=∠AFE=60°∵△CFD≌△CFG∴∠CFD=∠CFG=60°∴∠AFG=∠AFE=60°∵AF=AF,∠FAG=∠FAE∴△AFG≌△AFE(ASA)∴FG=FE.(3)解:结论:(1)中结论成立.(2)中结论不成立. 理由:①同法可证△CFD≌△CFG(SAS)∴FD=FG.②∵∠B≠60°∴无法证明∠AFG=∠AFE∴不能判断△AFG≌△AFE∴(2)中结论不成立。

人教版八年级上册数学 第十二章 全等三角形 单元测试卷(含答案)

人教版八年级上册数学 第十二章 全等三角形 单元测试卷(含答案)

人教版八年级上册数学第十二章全等三角形单元测试卷一、选择题(30分)1.下列说法正确的是()A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等2.现已知线段a,b(a<b),∠MON=90°,求作Rt∠ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下.小惠:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点A为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,∠ABO即为所求.小雷:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点O为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,∠ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误3.下列说法中,正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.两边及其中一边上的高分别相等的两个三角形全等C.有一直角边和一锐角分别相等的两个直角三角形全等D.面积相等的两个三角形全等4.在两个三角形中给出条件:①两角一边对应相等;②两边一角对应相等;③两角夹边对应相等;④两边夹角对应相等;⑤三边对应相等;⑥三角形对应相等.其中能判断出三角形全等的是( )A.①②③⑤B.①③④⑤C.①④⑤⑥D.②③④⑤5.有下列说法:①形状相同的图形是全等形;②全等形的大小相同,形状也相同;③全等三角形的面积相等;④面积相等的两个三角形全等;⑤若∠ABC∠∠A1B1C1,∠A1B1C1∠∠A2B2C2,则∠ABC∠∠A2B2C2.其中正确的说法有()A.2个B.3个C.4个D.5个6.下列结论错误的是()A.全等三角形对应边上的高相等B.全等三角形对应边上的中线相等C.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等D.两个直角三角形中,两个锐角相等,则这两个三角形全等7.下列说法中,正确的个数是( )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.48.在下列条件中,不能判定两直角三角形全等的是()A.斜边和一锐角对应相等B.斜边上的中线和一直角边对应相等C.两边分别相等D.直角的平分线和一直角边对应相等9.边长都为整数的△ABC△△DEF△AB与DE是对应边△AB△2△BC△4.若△DEF的周长为偶数△则DF的长为( )A.3B.4C.5D.3或4或510.已知△ABC∠∠DEF,∠A=35°,那么∠D的度数是()A.65°B.55°C.35D.45°二、填空题(15分)11.若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是_______________.12.用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是_____________(填序号)13.若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点坐标为_________. 14.在△ABC中,∠C=90°△BC=4cm△∠BAC的平分线交BC于D,且BD∶DC=5∶3,则D到AB的距离为__________△15.已知一个多边形的内角和与它的一个外角的和是797,则这个多边形的这个外角的度数是________.三、解答题(75分)16.(1)如图(1),已知:在∠ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD∠直线m, CE∠直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在∠ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且∠ABF和∠ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断∠DEF 的形状.。

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案学校:___________姓名:___________班级:___________题 号 一 二 三 总分 得 分评卷人 得分一 单选题(共36分) 1.(本题3分)如图,在Rt ABC 中90C ∠=︒.按以下步骤作图:①以点A 为圆心 适当长为半径画弧 分别交边,AB AC 于点,M N ①分别以点M 和点N 为圆心 以大于12MN 的长为半径画弧,两弧在ABC 内交于点P ①作射线AP 交边BC 于点Q .若5,20CQ AB ==,则ABQ 的面积是( )A .100B .50C .25D .202.(本题3分)如图,ABC DEF ≌△△ 2BE = 3CE = 则EF 的长是( )A .5B .4C .3D .23.(本题3分)如图,用尺规按如下步骤作图:①以点O 为圆心 线段m 的长为半径画弧 交OA 于点M 交OB 于点N①分别以点M N 为圆心 线段n 的长为半径画弧 两弧在AOB ∠的内部相交于点C ①画射线OC 连接MC NC 。

下列结论不一定成立的是( )A .OM ON =B .CM CN =C .OM CN =D .MCO NCO ∠=∠4.(本题3分)如图,AB AC = AD AE = BAC DAE ∠=∠ 30BAD ∠=︒ 25ACE ∠=︒ 则ADE ∠的度数为( )A .50︒B .55︒C .60︒D .65︒5.(本题3分)小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程 并作了如下的思考:请你说明小华得到两个三角形全等的根据是( ) A .SSSB .SASC .ASAD .AAS6.(本题3分)如图,在ABC 中,AD 为角平分线 12AB = 8AC = DE AC ⊥于E 4CD = 则BD 等于( )A .5B .6C .7D .87.(本题3分)如图,90A D ∠=∠=︒ 添加下列条件中的一个后 能判定ABC 与DCB △全等的有( ) ①ABC DCB ∠=∠ ①ACB DBC ∠=∠ ①AB DC = ①AC DB =。

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。

八年级数学人教版(上册)单元测试(二)全等三角形

八年级数学人教版(上册)单元测试(二)全等三角形
第十二章 全等三角形
单元测试(二) 全等三角形
一、选择题(每小题 5 分,共 25 分)
1.如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则 AD 的
长是( B )
A.5
B.6
C.7 D.不能确定
第 1 题图
2.如图,已知 AB=AC,点 D,E 分别在线段 AB,AC 上,BE 与 CD 相交于点 O,添加以下哪个条件仍不能判定△ABE≌△ACD( D )
A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD
第 2 题图
3.如图,AB∥CD,以点 A 为圆心,小于 AC 的长为半径画弧, 分别交 AB,AC 于 E,F 两点;再分别以点 E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点 P,作射线 AP,交 CD 于点 M.若 ∠CMA=25°,则∠C 的度数为( D )
∵ED⊥FD,∴∠EDF=∠EDG=90°. ∴△EDF≌△EDG(SAS).∴EF=EG. ∵在△BEG 中,BE+BG>EG, ∴BE+CF>EF.
(1)求证:△ABC≌△CDE. 证明:∵∠ACB+∠ACE+∠ECD=180°,∠B+∠A+∠ACB
=180°, ∠ACE=∠B, ∴∠A=∠ECD. ∴△ABC≌△CDE(AAS).
(2)若 BC=2,AB=3,则 BD= 5 .
13.(15 分)如图,在△ABC 中,D 是 BC 的中点,DE⊥AB,DF ⊥AC,垂足分别是 E,F.
(2)问题解决: 如图 2,在△ABC 中,D 是 BC 边的中点,DE⊥DF 于点 D, DE 交 AB 于点 E,DF 交 AC 于点 F,连接 EF.求证:BE+CF>EF. 证明:延长 FD 至点 G,使 DG=DF,连接 BG,EG. ∵点 D 是 BC 的中点,∴DB=DC. 又∵∠BDG=∠CDF,∴△BDG≌△CDF(SAS). ∴BG=CF.

人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案

人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案时间:100分钟 总分:120分一、选择题(每题3分 共24分)1.图中是全等的三角形是 ( )A .甲和乙B .乙和丁C .甲和丙D .甲和丁【解析】解:比较三角形的三边长度 发现乙和丁的长度完全一样 即为全等三角形故选:B .【点睛】本题考查全等三角形的判定SSS 三边对应相等 两三角形全等.2.如图 在△ABC 和△DEF 中 AB =DE ∠A =∠D 添加一个条件不能判定这两个三角形全等的是 ( )A .AC =DFB .∠B =∠EC .BC =EFD .∠C =∠F【解析】根据全等三角形的判定定理 结合各选项的条件进行判断即可.解:A 、添加AC =DF 满足SAS 可以判定两三角形全等;B 、添加∠B =∠E 满足ASA 可以判定两三角形全等;C 、添加BC =EF 不能判定这两个三角形全等;D 、添加∠C =∠F 满足AAS 可以判定两三角形全等;故选:C .【点睛】本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.3.BD 、CE 分别是△ABC 中∠ABC 、∠ACB 的平分线 且交于点O 若O 到AB 的距离为1 BC =3 则OCB S △= ( )A .12B .1C .32 D .3【解析】解:∵点O 是△ABC 中∠ABC 、∠ACB 的平分线的交点∴O 到AB 的距离与O 到BC 的距离相等∴O 到BC 的距离为1∴OCB S △ =12×3×1= 32.故选:C .【点睛】本题考查了角平分线的性质 角平分线上的点到角的两边的距离相等 熟练掌握角平分线的性质是解题的关键.4.如图 已知ABN ACM △≌△ 则下列结论不正确...的是 ( )A .BC ∠=∠ B .BAM CAN =∠∠ C .AMN ANM ∠=∠D .AMC BAN ∠=∠【解析】解:∵ABN ACM △≌△∴B C ∠=∠ A 选项正确;BAN CAM ∠=∠ AN AM = AMC ANB ∠=∠∵BAM MAN CAN MAN ∠+∠=∠+∠∴BAM CAN =∠∠ B 选项正确;∵AN AM =∴AMN ANM ∠=∠ C 选项正确;∵AMC ANB ∠=∠∴AMC BAN ∠=∠ 不一定成立 D 选项不正确.故选:D.【点睛】本题考查全等三角形的性质 解答本题的关键是找准对应边和对应角以及熟悉等腰三角形的性质.5.如图 △ABC ≌△A ′B ′C ′ 边 B ′C ′过点 A 且平分∠BAC 交 BC 于点 D ∠B =27° ∠CDB ′=98° 则∠C ′的度数为 ( )A.60°B.45°C.43°D.34°【解析】解∶∵△ABC≌△A′B′C′∴∠C′=∠C∵∠CDB′=98°∴∠ADB=98°∵∠B=27°∴∠BAD=55°∵B′C′过点A 且平分∠BAC 交BC 于点D∴∠BAC=2∠BAD=110°∴∠C=180°-∠BAD-∠B=43°即∠C′=43°.故选:C【点睛】本题主要考查了全等三角形的性质三角形的内角和定理熟练掌握全等三角形的性质三角形的内角和定理是解题的关键.6.如图为了估算河的宽度我们可以在河的对岸选定一个目标点A再在河的这一边选定点B和F使AB⊥BF并在垂线BF上取两点C、D使BC=CD再作出BF的垂线DE使点A、C、E在同一条直线上因此证得△ABC≌△EDC进而可得AB=DE即测得DE的长就是AB的长则△ABC≌△EDC的理论依据是()A.SAS B.HL C.ASA D.AAA【解析】解:∵证明在△ABC≌△EDC用到的条件是:CD=BC∠ABC=∠EDC=90°∠ACB=∠ECD∴用到的是两角及这两角的夹边对应相等即ASA这一方法故C正确.故选:C.【点睛】本题考查了全等三角形的应用判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL 做题时注意选择.注意:AAA、SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.7.如图33 的正方形网格中 ABC 的顶点都在小正方形的格点上 这样的三角形称为格点三角形 则在此网格中与ABC 全等的格点三角形(不含ABC )共有 ( )A .5个B .6个C .7个D .8个【解析】解:如图所示:与ABC 全等的三角形有DEF 、HIJ 、GMN 、IEM △、HAF △、BDG 、CJN △ 共7个故选:C .【点睛】本题考查了全等三角形的判定定理 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 两直角三角形全等还有HL 等.8.如图 BC ⊥CE BC =CE AC ⊥CD AC =CD DE 交AC 的延长线于点M M 是DE 的中点 若AB =8 则CM 的长为 ( )A .3.2B .3.6C .4D .4.8【解析】解:如图 过点E 作EF ⊥AC 交AC 的延长线于点F∵ CD ⊥AC EF ⊥AC∴∠DCM =∠EFM =90°∵M 是DE 的中点∴DM =EM∵∠DMC =∠EMF∴△DCM ≌△EFM (AAS )∴CM =FM CD =FE∵BC ⊥CE EF ⊥AC∴∠BCE =90° ∠CFE =90°∴∠ACB +∠ECF =90° ∠ECF +∠FEC =90°∴∠ACB =∠FEC∵AC =CD∴AC =FE∵BC =CE∴△ABC ≌△FCE (SAS )∴FC =AB =8∵CM =FM∴M 是FC 的中点∴CM =12FC =4故选:C【点睛】本题考查了全等三角形的判定与性质 熟练掌握三角形的判定方法是基础添加辅助线构造全等三角形是关键.二、填空题(每题3分 共24分)9.如图 90B D ∠=∠=︒ AB AD = 130BAD ∠=︒ 则DCA ∠=______°.【解析】解:∵90B D ∠=∠=︒∴△ABC 和△ADC 是直角三角形∵AC =AC AB AD =∴Rt △ABC ≌Rt △ADC (HL )∴∠DAC =∠BAC∵130BAD ∠=︒∴∠DAC =12∠BAD =65°∴DCA ∠=90°-∠DAC =25°.故答案为:25.【点睛】此题考查了全等三角形的判定和性质 熟练掌握直角三角形的判定定理是解题的关键.10.如图 ,AC AD BC BD == 连结CD 交AB 于点E F 是AB 上一点 连结FC FD 则图中的全等三角形共有_________对.【解析】解:解:在△ACB 和ADB 中AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩∴△ACB ≌ADB∴∠CAB =∠DAB ∠CBA =∠DBA∵AC =AD ∠CAB =∠DAB AF =AF∴△CAF ≌△DAF CF =DF∵AC =AD ∠CAB =∠DAB AE =AE∴△ACE ≌△ADE CE =DE∵BC =BD ∠CBA =∠DBA BE =BE∴△CBE ≌△DBE∵BC =BD ∠CBA =∠DBA BF =BF∴△FCB ≌△FDB∵CF =DF CE =DE EF =EF∴△CEF ≌△DEF∴图中全等的三角形有6对图中全等三角形有△ACB ≌△ADB △ACF ≌△ADF △ACE ≌△ADE △BCE ≌△BDE△BCF ≌△BDF △FCE ≌△FDE 共6对故答案为:6 .【点睛】本题考查了对全等三角形的判定定理的应用 注意:全等三角形的判定定理有SAS ASA AAS SSS .11.如图 在△ABC 中 ∠B =∠C =65° BD =CE BE =CF 则∠DEF 的度数是_____.【解析】解:在△DBE 和△ECF 中=C BD CE B BE CF =⎧⎪∠∠⎨⎪=⎩∴△DBE ≌△ECF (SAS )∴∠BDE =∠FEC∵∠DEF +∠FEC =∠B +∠BDE∴∠DEF =∠B =65°故答案为:65°.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质等知识 证明△DBE ≌△ECF 是解题的关键 属于中考常考题型.12.如图 E ABC AD ≅∆∆ BC 的延长线经过点E 交AD 于F 105AED ∠=︒ 10CAD ∠=︒ 50B ∠=︒ 则EAB ∠=__︒.【解析】解:ABC ADE ∆≅∆ 50B ∠=︒ 50D B EAD CAB ∠=∠105AED ∠=︒18025EAD D AED ∴∠=︒-∠-∠=︒25CAB ∴∠=︒10CAD25102560EAB EAD DAC CAB ∴∠=∠+∠+∠=︒+︒+︒=︒.故答案为:60.【点睛】本题考查了全等三角形的性质和三角形内角和定理 能熟记全等三角形的性质的内容是解此题的关键 注意:全等三角形的对应边相等 对角角相等.13.如图 在ABC 中 AD 是它的角平分线 8cm AB = 6cm AC = 则:ABD ACD S S =△△______.【解析】解:如图 过D 作DH AB ⊥于,H 作DG AC ⊥于,G∵AD 是它的角平分线,DH DG 而8cm AB = 6cm AC =1842.1632ABDACD AB DH SAB S AC AC DG 故答案为:4∶3【点睛】本题考查的是角平分线的性质 三角形的面积的计算 证明DH DG =是解本题的关键.14.如图 ∠ACB =90° AC =BC BE ⊥CE AD ⊥CE垂足分别为E D AD =25 DE =17 则BE =_____.【解析】解:∵∠ACB =90°∴∠BCE +∠ACD =90°又∵BE ⊥CE AD ⊥CE∴∠E =∠ADC =90°∴∠BCE +∠CBE =90°∴∠CBE =∠ACD在△CBE 和△ACD 中E ADC CBE ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△ACD (AAS )∴BE =CD CE =AD =25∵DE =17∴CD =CE ﹣DE =AD ﹣DE =25﹣17=8∴BE =CD =8;故答案为:8.【点睛】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键.15.如图 在平面直角坐标系中 点A 的坐标是(4 0) 点P 的坐标是(0 3) 把线段AP 绕点P 逆时针旋转90°后得到线段PQ 则点Q 的坐标是__________.【解析】解:过Q 作QE ⊥y 轴于E 点 如下图所示:∵旋转90°∴∠1+∠2=90°∵EQ ⊥y 轴∴∠3+∠2=90°∴∠1=∠3且∠QEP =∠POA =90° PQ=PA∴△QEP ≌△POA (AAS )∴EQ=PO =3 EP=OA =4∴EO=EP+PO =4+3=7∴点Q 的坐标是(3 7)故答案为:(3 7).【点睛】本题考查三角形全等的判定和性质 坐标与图形 本题的关键过Q 作QE ⊥y 轴于E 点 证明△QEP ≌△POA .16.如图 ∠ABC =∠ACD =90° BC =2 AC =CD 则△BCD 的面积为_________.【解析】解:如图 作DE 垂直于BC 的延长线 垂足为E∵90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒∴BAC DCE ∠=∠在ABC 和CED 中∵90BAC DCEABC CED AC CD∠=∠⎧⎪∠==︒⎨⎪=⎩∴()ABC CED AAS ≌∴2BC DE == ∴122BCD S BC DE =⨯⨯=故答案为:2.【点睛】本题考查了三角形全等的判定与性质.解题的关键在于证明三角形全等.三、解答题(每题8分 共72分)17.如图 在四边形ABCD 中 点E 为对角线BD 上一点 A BEC ∠=∠ ABD BCE ∠=∠ 且AD BE = 证明:AD BC ∥.【解析】证明:在ABD ∆与ECB ∆中A BEC ABD BCE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD ECB AAS ∴∆≅∆;ADB EBC ∴∠=∠AD BC ∴;【点睛】本题主要考查了平行线的判定及全等三角形的判定及性质 熟练运用全等三角形的判定及性质是解题的关键.18.如图 点A 、D 、C 、F 在同一条直线上 ,,AD CF AB DE BC EF ===.若55A ∠=︒ 求EDF ∠的度数.【解析】∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中AB DE BC EF AC DF ⎧⎪⎨⎪⎩=== ∴△ABC ≌△DEF (SSS )∴∠A =∠EDF =55︒.【点睛】本题考查全等三角形的判定与性质 解答本题的关键是明确题意 利用数形结合的思想解答.19.已知:如图 AB ⊥BD ED ⊥BD C 是BD 上的一点 AC ⊥CE AB =CD 求证:BC =DE .【解析】证明:∵AB ⊥BD ED ⊥BD AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.20.如图 在ABC 中 240AB AC B ==∠=︒, 点D 在线段BC 上运动(D 不与B 、C 重合) 连接AD 作40ADE ∠=︒ DE 交线段AC 于E .(1)点D 从B 向C 运动时 BDA ∠逐渐变__________(填“大”或“小”) 但BDA ∠与EDC ∠的度数和始终是__________度.(2)当DC 的长度是多少时 ABD DCE △△≌ 并说明理由.【解析】(1)在△ABD 中 ∠B +∠BAD +∠ADB =180°设∠BAD =x ° ∠BDA =y °∴40°+x +y =180°∴y =140-x (0<x <100)当点D 从点B 向C 运动时 x 增大∴y 减小BDA ∠+EDC ∠=180°-140ADE ∠=︒故答案为:小 140;(2)当DC =2时 △ABD ≌△DCE理由:∵∠C =40°∴∠DEC +∠EDC =140°又∵∠ADE =40°∴∠ADB +∠EDC =140°∴∠ADB =∠DEC又∵AB =DC =2在△ABD 和△DCE 中===ADB DEC B CAB DC ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△DCE (AAS );【点睛】此题主要考查学生对等腰三角形的判定与性质 全等三角形的判定与性质 三角形外角的性质等知识点的理解和掌握 三角形的内角和公式 解本题的关键是分类讨论.21.如图 已知ABC 中 ,90AC BC ACB =∠=︒ 点D 与点E 都在射线AP 上 且CD CE = 90DCE ∠=︒.(1)说明AD BE =的理由;(2)说明BE AE ⊥的理由.【解析】(1)解:90ACB DCE ∠=∠=︒ACD DCB BCE DCB ∴∠+∠=∠+∠ACD BCE ∠∠∴=在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴∆≅∆AD BE ∴=;(2)解:如图 设AE 和BC 交于点F∆≅∆ACD BCE∴∠=∠CAD CBEEFB FAB FBA FAB∠=∠+∠=∠+︒45EFB FBE FAB FBE∴∠+∠=∠+︒+∠45=∠+︒+∠FAB CAD45=∠+︒CAB45=︒+︒=︒454590∴∠BEF=90°BE AE∴⊥.【点睛】本题考查了全等三角形的性质和判定、外角的性质解题的关键是能证明出E∆.≅∆ACD BC 22.已知:如图在△ABC△ADE中∠BAC=∠DAE=90°AB=AC AD=AE点C D E 三点在同一直线上连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD CE有何特殊位置关系并证明.【解析】(1)证明:∠BAC=∠DAE=90°∴∠+∠=∠+∠,BAC CAD CAD DAEBAD CAE∴∠=∠,AB=AC AD=AE≌BAD CAE.BD CE BD CE理由如下:(2)解:,,BAD CAE≌,ABD ACE∴∠=∠,∠=︒90,BACABC ACB90,ABD DBC ACB90,ACE DBC ACB DBC BCD90,BDC BD CE90,.【点睛】本题考查的是三角形的内角和定理的应用全等三角形的判定与性质掌握“利用SAS证明两个三角形全等及应用全等三角形的性质”是解本题的关键.23.图已知AE⊥AB AF⊥AC.AE=AB AF=AC BF与CE相交于点M.(1)EC=BF;(2)EC⊥BF;(3)连接AM求证:AM平分∠EMF.【解析】(1)证明:∵AE⊥AB AF⊥AC∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC即∠EAC=∠BAF在△ABF和△AEC中∵AE ABEAC BAF AF AC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△AEC(SAS)∴EC=BF;(2)根据(1)∵△ABF≌△AEC∴∠AEC=∠ABF∵AE⊥AB∴∠BAE=90°∴∠AEC+∠ADE=90°∵∠ADE=∠BDM(对顶角相等)∴∠ABF+∠BDM=90°在△BDM中∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°所以EC⊥BF.(3)作AP⊥CE于P AQ⊥BF于Q.如图:∵△EAC ≌△BAF∴AP =AQ (全等三角形对应边上的高相等).∵AP ⊥CE 于P AQ ⊥BF 于Q∴AM 平分∠EMF .【点睛】本题考查了全等三角形的判定与性质 根据条件找出两组对应边的夹角∠EAC =∠BAF 是证明的关键 也是解答本题的难点.24.在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC = ,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和.【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90°∴∠BAD +∠EAC =∠BAD +∠DBA =90°∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC∴∠CAE =∠ABD在△ABD 和△CAE 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS )∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质 三角形的面积 解题的关键是熟练掌握全等三角形的判定与性质.25.如图 ∠MAN 是一个钝角 AB 平分∠MAN 点C 在射线AN 上 且AB =BC BD ⊥AC 垂足为D .(1)求证:BAM BCA ∠=∠;(2)动点P Q 同时从A 点出发 其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5 设动点P Q 的运动时间为t 秒. ①如图② 当点P 在射线AM 上运动时 若点Q 在线段AC 上 且52ABP BQC S S =△△ 求此时t 的值;②如图③ 当点P 在直线AM 上运动时 点Q 在射线AN 上运动的过程中 是否存在某个时刻 使得APB 与BQC 全等?若存在 请求出t 的值;若不存在 请说出理由.【解析】(1)证明:∵BD ⊥AC∴90BDA BDC ∠=∠=︒在Rt △BDA 和Rt △BDC 中BD BD AB CB =⎧⎨=⎩, ∴Rt△BDA ≌Rt△BDC (HL )∴∠BAC =∠BCA .∵AB 平分∠MAN∴∠BAM =∠BAC∴∠BAM =∠BCA .(2)解:①如下图所示 作BH ⊥AM 垂足为M .∵BH ⊥AM BD ⊥AC∴∠AHB =∠ADB =90°在△AHB 和△ADB 中AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS )∴BH =BD∵S △ABP =52S △BQC ∴151222AP BH CQ BD =⨯∴52AP CQ =∴5(53)2t t =-∴2517t =.②存在 理由如下:当点P 沿射线AM 方向运动 点Q 在线段AC 上时 如下图所示∵AB =BC又由(1)得∠BAM =∠BCA∴当AP =CQ 时 △APB ≌△CQB∴53t t =-∴54t =;当点P沿射线AM 反向延长线方向运动 点Q 在线段AC 延长线上时 如下图所示由(1)得∠BAM=∠BCA∴∠BAP=∠BCQ又∵AB=BC∴当AP=CQ时△APB≌△CQB ∴35t t=-∴52t=.综上所述当54t=或52t=时△APB和△CQB全等.【点睛】本题考查角平分线的定义全等三角形的判定与性质熟练掌握全等三角形的判定方法并注意分类讨论是解题的关键.第21页共21页。

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案一.选择题(共8小题,满分24分)1.根据下列条件,能画出唯一确定的三角形的是()A.AB=2,BC=5,AC=2B.AB=6,∠B=30°,AC=4C.AB=4,∠B=60°,∠C=75°D.BC=8,∠C=90°2.下列各组图形、是全等图形的是()A.B.C.D.3.在△ABC中,∠A=50°,∠B=60°,若△ABC≌△DEF,则∠E与∠F的关系为()A.∠E<∠F B.∠E=∠F C.∠E>∠F D.无法确定4.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1B.2C.3D.45.如图,已知点A、D、C、F在同一条直线上,∠B=90°,AB=DE,AD=CF,BC=EF,则∠E=()A.90°B.45°C.50°D.40°6.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM 是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.HL7.下列作图属于尺规作图的是()A.用量角器画出∠AOB,使∠AOB=60°B.借助没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠αC.用三角尺画MN=1.5cmD.用三角尺过点P作AB的垂线8.两把相同的长方形直尺按如图所示方式摆放,记两把直尺的接触点为P,其中一把直尺边缘和射线OA 重合,另把直尺的下边缘与射线OB重合,连,接OP并延长.若∠BOP=25°,则∠AOP的度数为()A.12.5°B.25°C.37.5°D.50°二.填空题(共8小题,满分24分)9.长方体的直观图有很多种画法,通常我们采用画法.10.如图,AB=AC,点D,E分别在AB与AC上,CD与BE相交于点F.只填一个条件使得△ABE≌△ACD,添加的条件是:.11.如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=9,DE=4,则S=.△ACD12.某中学计划在一块长16m,宽6m的矩形空地上修建三块全等的矩形草坪,如图所示,余下空地修建成同样宽为a的小路.(1)若a=1.5m,则草坪总面积为平方米.(2)若草坪总面积恰好等于小路总面积,那么,此时的路宽a是米.13.如图所示,点A、B、C、D均在正方形网格格点上,则∠ABC+∠ADC=.14.如图,小红要测量池塘A、B两端的距离,他设计了一个测量方案,先在平地上取可以直接到达A点和B点的C,D两点,AC与BD相交于点O,且测得AC=BD=55m,OA=OD=17m,△COD的周长为103m,则A,B两端的距离为m.15.如图,点E,C在BF上,BE=CF,∠A=∠D=90°,请添加一个条件,使Rt△ABC≌Rt△DFE.16.我们把一条对角线是另一条对角线2倍的四边形叫“奇异四边形”.现有两个全等的直角三角形,一条直角边长是1,如果它们可以拼成对角线互相垂直的“奇异四边形”,那么直角三角形另一条直角边长是.三.解答题(共6小题,满分52分)17.如图,AD与BC相交于点O,连接AC、BD,AC=BD,∠C=∠D,求证:△OAC≌△OBD.18.如图,在△ABC中,点E是BC边上的一点.连接AE,BD垂直平分AE,垂足为F,交AC于点D.连接DE.(1)若△ABC的周长为19,AB为6,求△DEC的周长;(2)若∠ABC=35°,∠C=50°,求∠CDE的度数.19.在下列3个6×6的网格中,画有正方形ABCD,沿网格线把正方形分ABCD分割成两个全等图形,请用三种不同的方法分割,画出分割线.20.如图,△ABC≌△DEF,点B,F,C,E在同一条直线上,BC=5,FC=4.(1)猜想AB与DE之间的位置关系,并说明理由.(2)求BE的长.21.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点.(1)连接BO,求证:BO平分∠ABC;(不能利用“三角形三条角平分线相交于一点”直接来证明)(2)若BC=4cm,AC=5cm,求点O到边AB的距离.22.如图,若两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.试说明两个滑梯的倾斜角∠ABC和∠DFE互余.参考答案与解析一.选择题(共8小题,满分24分)1.【答案】C【解答】解:A、∵2+2<5,即AB+AC<BC∴此时三条线段不能构成三角形,不符合题意;B、AB=6,∠B=30°,AC=4,根据边边角不能确定唯一三角形,不符合题意;C、AB=4,∠B=60°,∠C=75°,根据角角边可以确定唯一三角形,符合题意;D、BC=8,∠C=90°,只有一角和一边,不能确定唯一三角形,不符合题意;故选:C.2.【答案】D【解答】解:A、两个图形不能完全重合,不是全等图形,不符合题意;B、两个图形不能完全重合,不是全等图形,不符合题意;C、两个图形不能完全重合,不是全等图形,不符合题意;D、两个图形能够完全重合,是全等图形,符合题意;故选:D.3.【答案】A【解答】解:∵在△ABC中,∠A=50°,∠B=60°∴∠C=180°﹣∠A﹣∠B=70°∵△ABC≌△DEF∴∠A=∠D=50°,∠B=∠E=60°,∠C=∠F=70°∴∠E<∠F故选:A.4.【答案】C【解答】解:∵CD⊥AB,BE⊥AC∴∠ADC=∠AEB=90°在△ADC和△AEB中∴△ADC≌△AEB(AAS);∴AD=AE,∠C=∠B∵AB=AC∴BD=CE在△BOD和△COE中∴△BOD≌△COE(AAS);∴OB=OC,OD=OE在Rt△ADO和Rt△AEO中∴Rt△ADO≌Rt△AEO(HL);∴共有3对全等直角三角形故选:C.5.【答案】A【解答】证明:∵AD=CF∴AD+DC=CF+DC即AC=DF在△ABC和△DEF中∴△ABC≌△DEF(SSS)∴∠E=∠B=90°故选:A.6.【答案】C【解答】解:∵AB=AC,点D,E分别是AB,AC的中点∴AD=AE在△ADM和△AEM中.∴△ADM≌△AEM(SSS)故选:C.7.【答案】B【解答】解:尺规作图是指:只利用没有刻度的直尺和圆规进行作图故选:B.8.【答案】B【解答】解:∵两把相同的长方形直尺的宽度一致∴点P到射线OA,OB的距离相等∴OP是∠AOB的角平分线∵∠BOP=25°∴∠AOP=∠BOP=25°故选:B.二.填空题(共8小题,满分24分)9.【答案】斜二侧.【解答】解:长方体的直观图有很多种画法,通常我们采用斜二侧画法.故答案为:斜二侧.10.【答案】∠B=∠C(答案不唯一).【解答】解:∵∠B=∠C,AB=AC,∠A=∠A∴△ABE≌△ACD(ASA)故答案为:∠B=∠C(答案不唯一).11.【答案】18.【解答】解:过点D作DF⊥AC,交AC于点F∵AD平分∠ABC,DE⊥AB,DF⊥AC∴DF=DE=4∵AC=9=AC•DF=×94=18∴S△ACD故答案为:18.12.【答案】(1)30;(2)1.【解答】解:(1)由图可得草坪的总面积是(16﹣4a)(6﹣2a)=8a2﹣56a+96当a=1.5时8a2﹣56a+96=8×1.52﹣56×1.5+96=8×2.25﹣56×1.5+96=18﹣84+96=30即a=1.5m时,草坪总面积为30平方米故答案为:30;(2)由图可得草坪的总面积是(16﹣4a)(6﹣2a)=8a2﹣56a+96 路的总面积是16×6﹣(8a2﹣56a+96)=56a﹣8a2 ∵草坪总面积恰好等于小路总面积∴8a2﹣56a+96=56a﹣8a2解得a1=1,a2=6(舍去)即此时的路宽a为1米故答案为:1.13.【答案】45°.【解答】解:如图所示在△ACB和△AED中∴△ACB≌△AED(SAS)∴∠ABC=∠ADE∴∠ABC+∠ADC=∠ADE+∠ADC=∠CDE=45°.故答案为:45°.14.【答案】48.【解答】解:∵AC=BD,OA=OD∴AC﹣OA=BD﹣OD即OC=OB在△COD和△BOA中∴△COD≌△BOA(SAS)∴CD=AB∵△COD的周长为103m∴OC+OD+CD=OC+OA+CD=103m即AC+CD=103m.∵AC=55m.∴CD=48m.∴AB=48m.故答案为:48.15.【答案】DE=AC(答案不唯一).【解答】解:添加DE=AC∵BE=CF∴BE+EC=CF+EC即EF=CB在Rt△ABC与Rt△DFE中∴Rt△ABC≌Rt△DFE(HL).故答案为:DE=AC(答案不唯一).16.【答案】见试题解答内容【解答】解:(1)当CD=1时,设DO=m,且0<m<1 BD>1,如图1所示:∵Rt△ABC≌Rt△DBC∴∠BAC=∠BDC=90°,BA=BD,CA=CD ∴△ABD是等腰三角形∴AO=DO=m又∵BC=2AD∴BC=4m又∵AD⊥BC∴=2m2又∵CD⊥BD∴=BD∴2m2=BD解得:BD=4m2在Rt△DBC中,由勾股定理得:BD==∴4m2=解得:m2=或m2=∴4m2=2+或4m2=2﹣(舍去)∵BD>1∴BD=2+;(2)当BD=1时,设DO=x,且0<x<1CD<1,如图1所示:同理可求得:或∴4x2=2+(舍去),或4x2=2﹣∵CD<1∴CD=2﹣;综合所述,另一条直角边的长为2+或2﹣故答案为2+或2﹣.三.解答题(共6小题,满分52分)17.【答案】证明见解析.【解答】证明:在△OAC与△OBD中∴△OAC≌△OBD(AAS).18.【答案】(1)7.(2)45°.【解答】解:(1)∵BD垂直平分AE,AB=6∴BA=BE=6,DA=DE∵△ABC的周长为19∴AB+BC+AC=19∴AB+BE+EC+AD+DC=2AB+EC+DE+CD=19∴CE+ED+DC=19﹣2AB=19﹣2×6=7∴△DEC的周长为7;(2)∵∠ABC=35°,∠C=50°∴∠BAD=180°﹣∠ABC﹣∠C=180°﹣35°﹣50°=95°∵BD垂直平分AE∴BA=BE,DA=DE在△BAD和△BED中∴△BAD≌△BED(SSS)∴∠BAD=∠BED=95°∴∠DEC=180°﹣∠BED=180°﹣95°=85°∴∠CDE=180°﹣∠DEC﹣∠C=180°﹣85°﹣50°=45°.19.【答案】见解析.【解答】解:如图所示:20.【答案】(1)AB∥DE,理由见解析;(2)6.【解答】解:(1)AB∥DE,理由如下:∵△ABC≌△DEF∴∠B=∠F∴AB∥DE;(2)∵△ABC≌△DEF∴EF=BC=5∵FC=4∴CE=EF﹣FC=1∴BE=BC+CE=6.21.【答案】(1)证明见解析;(2)1.【解答】(1)证明:过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F ∵点O是∠CAB、∠ACB平分线的交点∴OD=OF,OE=OF∴OE=OD∵OD⊥BC,OE⊥AB∴BO平分∠ABC;(2)解:∵BC=4cm,AC=5cm,∠ABC=90°∴AB==3∵△ABC的面积=△OBC的面积+△AOB的面积+△AOC的面积∴BC•AB=BC•OD+AB•OE+AC•OF∴3×4=(3+4+5)×OE∴OE=1∴点O到边AB的距离是1.22.【答案】见解析.【解答】解:∵两个滑梯长度相同∴BC=EF∵AC=DF,∠CAB=∠FDE=90°在Rt△CAB和Rt△FDE中∴Rt△CAB≌Rt△FDE(HL)∴∠ABC=∠DEF∵∠DFE+∠DEF=90°∴∠DFE+∠ABC=90°即:两个滑梯的倾斜角∠ABC和∠DFE互余.。

初中数学人教版八年级上册 第十二章 全等三角形 单元测试(含答案)

第十二章全等三角形一、单选题1.下列各组图形中不是全等形的是()A.B.C.D.2.如图,AB=AC,BD=CE,要使△ABD≌△ACE,添加条件正确的是()A.∠DAE=∠BAC B.∠B=∠CC.∠D=∠E D.∠B=∠E3.如图,点B、D、E、C在一条直线上,若△ABD≌△ACE,BC=12,BD=3,则DE的长为()A.9B.6C.5D.74.下列说法中,正确的是()A.两个面积相等的图形一定是全等形B.两个等边三角形是全等形C.若两个三角形的周长相等,则它们一定是全等形D.两个全等三角形的面积一定相等5.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为( )A.3B.4C.1或3D.3或56.为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离,甲、乙两位同学分别设计了如下两种方案:甲:如图1,在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可.乙:如图2,先确定直线AB,过点B作直线BE,在直线BE上找可以直接到达点A的一点D,连接DA,作∠ADB=∠BDC,交直线AB于点C,最后测量BC的长即可.其中可行的测量方案是()A.只有方案甲可行B.只有方案乙可行C.方案甲和乙都可行D.方案甲和乙都不可行7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC长是()A.3B.4C.5D.68.如图,CA⊥AB,垂足为点A,AB=12米,AC=6米,射线BM⊥AB,垂足为点B,动点E 从A点出发以2米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过t秒时,由点D、E、B组成的三角形与△BCA全等.请问t有几种情况?( )A.1种B.2种C.3种D.4种9.如图,D为△BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF,②CE=AB+AE;③∠BDC=∠BAC.其中正确的结论有()A.0个B.1个C.2个D.3个10.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CEF.其中正确的是( )A.①③B.②③④C.①③④D.①②③④二、填空题11.如图,若△ABE≌△ACF,AB=4,AE=2,则EC的长为.12.如图,∠ACB=∠DFE,BF=CE,要使ΔABC≌ΔDEF,则需要补充一个条件,这个条件可以是(只需填写一个).13.如图,△ABC≌△DBC,∠A=32°,∠DCB=38°,则∠ABC=.14.△OAB和△OA′B′在平面直角坐标系中的位置如图所示,其中点A,B的坐标分别为(−3,0),(0,2),点A′在x轴上,且△OA′B′≌△AOB.则点B′的坐标为.15.如图,小明用10块高度都是a的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放一个等腰直角三角尺ABC,点C在DE上,点A,B分别与木墙的顶端重合,则两堵木墙之间的距离为.(用含a的代数式表示)16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=10,CD=3,则△ABD的面积.17.如下图,一把直尺压住射线OB,另一把完全一样的直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠AOB的平分线.”这样说的依据是.18.如图所示,△ABC中,AB=AC,∠BAC=90°.直线l经过点A,过点B作BE⊥l于点E,过点C作CF⊥l于点F.若BE=3,CF=7,则EF=.三、解答题19.如图,在△ABC中,点D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD.(2)若△ABD的面积为6,求△ACE的面积.20.已知,如图,AC=BD,∠1=∠2.(1)求证: ΔABC≌ΔBAD;(2)若∠2=∠3=25°,则∠D= °.21.如图,已知△ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD 到F,使DF=CD,连接AF,AG.(1)补全图形;(2)AF与AG的大小关系如何?证明你的结论;(3)F,A,G三点的位置关系如何?证明你的结论.22.如图,BC平分∠ABD,AC=CD,CE⊥BD.(1)求证:∠A+∠D=180°;(2)求证:AB+BD=2BE.23.如图,在△ABC中,∠C=90∘,BC=AC,D为直线BC上一动点,连接AD.在直线AC 的右侧作AE⊥AD,且AE=AD.观察发现:(1)如图①,当点D在线段BC上时,过点E作AC的垂线,垂足为N,判断线段EN与BC之间的关系,并说明理由;探究迁移:(2)将如图①中的B,E连接,交直线AC于点M,我们很容易发现MN=MC.如图②,当点D在线段BC的延长线上时,连接BE交直线CA于点M,线段EN和线段BC之间的关系有没有变化?此时MN=MC吗?说说理由.拓展应用:(3)如图③,当点D在线段CB的延长线上时,当AC=7,CM=2时,求△ABD和△ABE的面积.参考答案:1.C2.B3.B4.D5.D6.A7.B8.D9.D10.C11.212.AC=DF(答案不唯一)13.110°14.(3,−2)15.10a16.1517.在一个角的内部,到角的两边距离相等的点在这个角的平分线上18.1019.(1)证明:∵点D是BC的中点.∴BD=DC∵AE与BC相交于点D∴∠ADB=∠EDC∵在△ABD和△ECD中{BD=DC∠ADB=∠EDCAD=DE∴△ABD≌△ECD(SAS)(2)∵D是边BC的中点∵S△ABD=S△ACD又∵△ABD≌△ECD ,△ABD 的面积为6∵S △ACE =S △ACD +S △ECD=2S △ABD=2×6=12.20.105°21.(1)补全图形,如图所示;(2)AF =AG ,理由为:在△AFD 和△BCD 中,{AD =BD ∠ADF =∠BDC FD =CD∴△AFD≌△BCD (SAS),∴AF =BC ,在△AGE 和△CBE 中,{AE =CE ∠AEG =∠CEB GE =BE∴△AGE≌△CBE (SAS),∴AG =BC ,则AF =AG ;(3)F ,A ,G 三点共线,理由为:∵△AFD≌△BCD ,△AGE≌△CBE ,∴∠FAB =∠ABC ,∠GAC =∠ACB ,∵∠BAC +∠ABC +∠ACB =180°,∴∠FAB +∠BAC +∠GAC =180°,则F ,A ,G 三点共线.22.(1)证明:过点C 作CF ⊥BA 的延长线于点F,∵∠CF ⊥BF ,CE ⊥BD ,BC 平分∠ABD ,∴CF =CE ,∠F =∠CED =90°,在Rt △CFA 和Rt △CED 中,{AC =DC CF =CE ,∴Rt △CFA≌Rt △CED (HL),∴∠CAF =∠D ,∵∠BAC +∠CAF =180°,∴∠BAC +∠D =180°,即∠A +∠D =180°;(2)证明:由(1)CF =CE ,AF =DE ,∠F =∠CEB =90°,在Rt △CFB 和Rt △CEB 中,{BC =BC CF =CE,∴Rt △CFB≌Rt △CEB (HL),∴BF =BE ,∴AB +BD =AB +BE +DE =BF +BE =2BE .23.(1) EN =BC 且EN ∥BC∵∠DAC +∠CAE =90∘∠E +∠CAE =90∘∴∠E =∠DAC在△EAN 与△ADC 中{∠C =∠ANE =90∘∠E =∠DAC AD =AE∴△EAN≌△ADC (AAS)∴EN =AC,∠ENA =∠C =90°,∴∠ENC=∠C=90°,∴EN∥BC∵BC=AC∴EN=BC(2)它们的关系没有变化,此时MN=MC,∵∠DAC+∠NAE=90∘,∠AEN+∠NAE=90∘,∴∠DAC=∠AEN,在△EAN与△ADC中{∠ACD=∠ANE=90∘∠AEN=∠DACAD=AE∴△EAN≌△ADC(AAS)∴EN=AC,∠ACD=∠ENA=90°,∴EN∥BC∵BC=AC∴EN=BC在△MEN与△MBC中{∠BMC=∠EMN∠N=∠ACB=90∘EN=BC∴△MEN≌△MBC(AAS)MN=MC(3)由(2)可得,△EAN≌△ADC和△MEN≌△MBC仍然成立∴MC=MN=2AC=BC=EN=7BD=AN−BC=11−7=4∴S△ABD=12×BD×AC=12×4×7=14S△ABE=12×AM×BC+12×AM×EN=12×9×7+12×9×7=63。

2023-2024学年八年级数学上册《第十二章 全等三角形》单元测试卷题含答案(人教版)

2023-2024学年八年级数学上册《第十二章全等三角形》单元测试卷题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的有( )A.∠BAD=∠CAEB.△ABD≌△ACEC.AB=BCD.BD=CE2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SASB.ASAC.AASD.SSS3.如图,下面4个正方形的边长都相等,其中阴影部分的面积相等的图形有( )A.0个B.2个C.3个D.4个4.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在C'处,折痕为EF.若AB=1,BC=2,则△ABE和△BC'F的周长之和为( )A.3B.4C.6D.85.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD6.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③7.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.180°B.210°C.360°D.270°8.如图,在△ABC中,AB=AC,点E,F是中线AD上两点,则图中可证明为全等三角形的有( )A.3对B.4对C.5对D.6对9.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP.其中正确的是( )A.①③B.②③C.①②D.①②③10.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )A.1B.2C.3D.411.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有( ) 个.A.1B.2C.3D.412.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=( )A. 6B. 3C. 2D. 1.5二、填空题13.已知△DEF≌△ABC,AB=AC,且△ABC的周长为22cm,BC=4cm,则DE= cm.14.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.15.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l和直线l外一点P.求作:直线l的平行直线,使它经过点P.作法:如图2.(1)过点P作直线m与直线l交于点O;(2)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;(3)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;(4)作直线PD.所以直线PD就是所求作的平行线.请回答:该作图的依据是.16.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.17.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.18.如图,DE⊥AB于E,DF⊥A于F,若BD=CD,BE=CF.则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是 .三、解答题19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.20.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.21.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.22.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.23.如图,在等腰Rt△ACB中,∠ACB是直角,AC=BC,把一个45°角的顶点放在C处,两边分别与AB交于E,F两点.(1)将所得△ACE以C为中心,按逆时针方向旋转到△BCG,试求证:△EFC≌△GFC;(2)若AB=10,AE∶BF=3∶4,求EF的长.24.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.(1)求∠AOC的度数;(2)求证:AC=AE+CD.25.已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF 上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案1.C2.D3.C4.C5.B6.A7.B8.D.9.C.10.D11.C12.D.13.答案为:9.14.答案为:2.15.答案为:三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等,两直线平行.16.答案为:4.17.答案为:3.18.答案为:①②④;19.解:(1)河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.20.证明:(1)∵CF∥AB∴∠B=∠FCD,∠BED=∠F∵AD是BC边上的中线∴BD=CD∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF∴BE=CF=2∴AB=AE+BE=1+2=3∵AD⊥BC,BD=CD∴AC=AB=3.21.证明:(1)∵点O是线段AB的中点∴AO=BO∵OD∥BC∴∠AOD=∠OBC在△AOD与△OBC中∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC∴∠ADO=∠OCB=35°∵OD∥BC∴∠DOC=∠OCB=35°.22.解:(1)∵∠BAD=∠CAE=90°∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD.在△ABC和△ADE中∴△ABC≌△ADE(SAS).∴BC=DE(2)∵△ABC≌△ADE∴S△ABC =S△ADE∴S 四边形ABCD =S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =12×122=72.23.解:(1)由旋转知:△BCG ≌△ACE.∴CG =CE ,∠BCG =∠ACE.∵∠ACE +∠BCF =45°∴∠BCG +∠BCF =45°即∠GCF =∠ECF =45°而CF 为公共边∴△EFC ≌△GFC(SAS);(2)连接FG.由△BCG ≌△ACE 知:∠CBG =∠A =45°∴∠GBF =∠CBG +∠CBF =90°由△EFC ≌△GFC 知:EF =GF.设BG =AE =3x ,BF =4x则在Rt △GBF 中,GF =5x∴EF =GF =5x∴AB =3x +5x +4x =10∴AB =56∴EF =5x =256. 24.解:如图,在AC 上截取AF =AE ,连接OF∵AD 平分∠BAC∴∠BAD =∠CAD在△AOE和△AOF中∴△AOE≌△AOF(SAS)∴∠AOE=∠AOF∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB∴∠AOC=120°;(2)∵∠AOC=120°∴∠AOE=60°∴∠AOF=∠COD=60°=∠COF在△COF和△COD中∴△COF≌△COD(ASA)∴CF=CD∴AC=AF+CF=AE+CD.25.解:(1)如图1∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF∴PB=PC,∠PBM=∠PCN=90°∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,PM=PN,PB=PC∴Rt△PBM≌Rt△PCN(HL)∴BM=CN(2)AM+AN=2AC(3)解:如图2,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF ∴PB=PC,∠PBM=∠PCN=90°∵在Rt △PBM 和Rt △PCN 中,PBM=∠PCN=90°,PM=PN,PB=PC ∴Rt △PBM ≌Rt △PCN (HL )∴BM=CN∴S △PBM =S △PCN∵AC :PC=2:1,PC=4∴AC=8∴由(2)可得,AB=AC=8,PB=PC=4∴S 四边形ANPM =S △APN +S △APB +S △PBM =S △APN +S △APB +S △PCN =S △APC +S △APB = 0.5AC •PC+ 0.5AB •PB= 0.5×8×4+ 0.5×8×4=32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章全等三角形单元测试
一、选择题(每小题4分,共32分)
1.下列条件中,不能判定三角形全等的是()
A.三条边对应相等
B.两边和一角对应相等
C.两角的其中一角的对边对应相等
D.两角和它们的夹边对应相等
2. 如果两个三角形全等,则不正确的是()
A.它们的最小角相等
B.它们的对应外角相等
C.它们是直角三角形
D.它们的最长边相等
3.在⊿ABC和⊿A′B′C′中,AB=A′B′,∠A=∠A′,若证⊿ABC≌⊿A′B′C′还要从下列条件中补选一个,错误的选法是()
A. ∠B=∠B′
B. ∠C=∠C′
C. BC=B′C′
D. AC=A′C′
4.P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB 两边距离之和.( )
A.小于B.大于C.等于D.不能确定
(4题)(5题)(7题)5.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()
A.1个B.2个C.3个D.4个
6.. 下列说法中不正确的是()
A.全等三角形的对应高相等
B.全等三角形的面积相等
C.全等三角形的周长相等
D.周长相等的两个三角形全等
7.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()
A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5
8.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别
交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()
A
C
E
F
A .∠C=∠ABC B.BA=BG C .AE=CE D. AF=FD 二、填空题(每小题4分,共24分)
9.如图,Rt △ABC 中,直角边是 ,斜边是 。

10.如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于
点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是 (只要写一个条件).
(10题) (11题) (12题)
11.如图,把△ABC 绕C 点顺时针旋转35°,得到△A’B’C , A’B’交AC 于点D , 若 ∠A’DC=90°,则∠A= °.
12.如图,AB ∥CD ,AD ∥BC ,OE=OF,图中全等三角形共有_____对.
13.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去
配一块完全一样的玻璃,那么最省事的办法是带 去。

(填序号) 14.正方形ABCD 中,AC 、BD 交于O,∠EOF =90o ,已知AE =3,
CF =4, 则S △BEF 为___.
三:解答题(共44分)
15、(5分)已知: 如图, AC 、BD 相交于点O , ∠A =∠D , AB=CD. 求证:△AOB ≌△DOC ,。

16. (7分)已知:如图,AB AD =,AC AE =,12∠=∠, 求证:BC DE =
17.如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A 区内,到铁路与到公路的距离相
C
B'
A
A'
B
D
O
C
E
A D
B
A
B C
D
O
1
2
A
B
C
E
A
D
B C F
E
等,且离铁路与公路交叉处B 点700米,如果你是红方的指挥员,请你在图1所示的作战图上标出蓝方指挥部的位置,并简要说明理由。

(5分)
18.(7分)如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,DE FE =,AE CE =,
AB 与CF 有什么位置关系?证明你的结论。

19.(8分)如图9,在△ABC 中,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于点F ,且BE=CF. 求证:AD 平分∠BAC .
20.阅读理解题(12分)
E C
B
A
F
初二(1)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,延长BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;
(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD 的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离. 阅读后回答下列问题:
(1)方案(Ⅰ)是否可行?请说明理由。

(2)方案(Ⅱ)是否可行?请说明理由。

(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目是;
若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?.
(图1)(图2)
参考答案:
一、选择题(每小题4分,共32分)
1 B ,
2 C ,
3 C ,
4 B ,
5 B ,
6 D ,
7 C ,
8 B
二、填空题(每小题4分,共24分) 9. AC 、BC , AB 。

10. AB=AC 或∠B=∠C 或∠ADC=∠AEB,BD=CE (只要写一个条件). 11.55 °, 12._5, 13. ③ , 14. 6.
15、证明:∵∠A =∠D , AB=CD. ∠A OB=∠DOC ,
∴△AOB ≌△DOC (ASA )
16. 解:∵ 12∠=∠, ∴∠B A C =∠D A E ∵∠A =∠D , AB=CD. ∠A OB=∠DOC ,
∴△AOB ≌△DOC (ASA ) 由SAA 可得全等,BC DE =
17.
解: AB ∥CF ,
∵DE FE =,AE CE =,∠A ED=∠FEC ∴△ADE ≌△CFE, ∴∠A =∠F A E,∴AB ∥CF
18.解: 作∠MBN 的角平分线,在角平分线上取BP=3.5cm ,则点P 即为蓝方指挥部的位置
∵蓝方指挥部在A 区内,到铁路到公路的距离相等
∴蓝方指挥部一定在∠MBN 的角平分线上,而它又离铁路与公路交叉处B 点700米,通过比例尺知,蓝方指挥部在距B 点3.5cm 处的P 处。

如图:
19.证明:∵BE=CF ,BD=CD
A
D
B C
F
E
A
B C
D
O
1 2
A
B
D
C
E C
B
A
F
∴Rt△BDE≌Rt△CDF,
∴DE=DF,又DE⊥AB于E,DF⊥AC
∴AD平分∠BAC
20解:(1)方案(Ⅰ)可行
∵∠ACB=∠ECD,AC=CD,BC=CE
∴⊿ACB≌⊿ECD,
∴DE=AB ∴方案(Ⅰ)可行
(2)方案(Ⅱ)可行
∵∠ACB=∠ECD,∠ABD=∠BDE,BC=CD
∴⊿ACB≌⊿ECD,DE=AB ∴方案(Ⅱ)可行
(3) 方案(Ⅱ)中作BF⊥AB,ED⊥BF的目是构造三角形全等,
若仅满足∠ABD=∠BDE,方案(Ⅱ)不一定成立。

∵A,C,E不一定共线。

∴⊿ACB不一定全等⊿ECD,DE不一定等于AB 。

(图1)(图2)
作者留言:
非常感谢!您浏览到此文档。

为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。

相关文档
最新文档