高二数学必修2空间几何体的表面积和体积ppt课件

合集下载

高二数学必修2 空间几何体的表面积和体积共108页

高二数学必修2 空间几何体的表面积和体积共108页

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
高二数学必修2 空间几何体的表面积 和体积
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人ቤተ መጻሕፍቲ ባይዱ心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

二、空间几何体的表面积与体积复习课件

二、空间几何体的表面积与体积复习课件

考 点 探 究 • 挑 战 高 考
答案: 3
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
5.(2009年高考上海卷)若等腰直角三角形的直 角边长为2,则以一直角边所在的直线为轴旋 转一周所成的几何体体积是________.
8π 答案: 3
考 点 探 究 • 挑 战 高 考
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
2 ∴AP=AB= 2,EG= . 2 1 ∴S△ABC= AB· BC 2 1 = × 2×2= 2, 2 1 ∴VEABC= S△ ABC· EG 3 1 2 1 = × 2× = . 3 2 3
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
双 基 研 习 • 面 对 高 考
解:如图所示,只有当圆柱的底面圆为直三棱 柱的底面三角形的内切圆时,圆柱的体积最大, 削去部分体积才能最小,设此时圆柱的底面半 径为R,圆柱的高即为直三棱柱的高.
考 点 探 究 • 挑 战 高 考
考 向 瞭 望 • 把 脉 高 考
考 向 瞭 望 • 把 脉 高 考
第8章 立体几何
考点探究•挑战高考
考点突破 几何体的表面积 求解有关多面体表面积的问题,关键是找到其特征 几何图形,如棱柱中的矩形,棱台中的直角梯形, 棱锥中的直角三角形,它们是联系高与斜高、边长 等几何元素间的桥梁,从而架起求侧面积公式中的 未知量与条件中已知几何元素间的联系;求球的表 面积关键是求其半径;旋转体的侧面积就是它们侧 面展开图的面积.
双 基 研 习 • 面 对 高 考
考 点 探 究 • 挑 战 高 考

苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件

苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件
6π [S=2π×1×2+2π×12=6π.]
栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.

人教A版数学课件 必修二 1.3 空间几何体的表面积与体积2

人教A版数学课件 必修二 1.3 空间几何体的表面积与体积2

解:六角螺帽的体积是六棱柱的体积与 圆柱体积之差,即:
V 3 122 610 3.14 (10)2 10
4
2
2956(mm3 ) 2.956(cm3)
10mm
所以螺帽的个数为 5.8×1000÷(7.8×2.956)≈252(个) 答:这堆螺帽大约有252个.
知识小结:
22
V旋转体
V圆锥CO
V圆锥BO

3
2
变式:如图所示,一个空间几何体的正视图、侧视图、
俯视图为全等的等腰直角三角形,如 果直角三角形
的直角边长为1,那么这个几何体的体积为( D )
A.1
B. 1
2
C. 1
3
D. 1 6 [来
图(1)
例2:一堆规格相同的铁制六角螺帽,共重5.8 kg,已知 底面是正六边形,边长为12mm,内孔直径为10mm,高为 10mm,问这堆六角螺帽大约有多少个? 12mm
柱体、锥体与台体的体积
V柱体 Sh(S是底面积 , h是高)
V锥体

1 3
Sh(S是底面积, h是高)
V台体

1 (S' 3
S'S S)h
(S', S分别是上下底面面积 , h是台体高 )
思考:你能发现三者之间的关系吗?
柱体、锥体、台体的体积公式之间有什么关系?
上底扩大
上底缩小
V Sh
C 2.如图所示,圆锥的底面半径为 1,高为 3 ,则圆锥的表面积为( )
A.
B. 2 C.3 D. 4
3.正三棱锥的底面边长为 3,侧棱长为 2 3 ,则这个正三棱锥的体积是( )
A. 27 4

公开课优质课课件第2课时空间几何体的表面积和体积(精)

公开课优质课课件第2课时空间几何体的表面积和体积(精)
公开课优质课课件第2课时空 间几何体的表面积和体积
汇报人:某某
2023-12-26

CONTENCT

• 空间几何体的表面积 • 空间几何体的体积 • 空间几何体表面积和体积的应用 • 空间几何体表面积和体积的积
圆柱体的表面积
01
圆柱体的侧面积
$2pi rh$
进阶练习题2
求一个长为6cm,宽为4cm,高为 2cm的长方体的体积。
综合练习题
综合练习题1
求一个底面半径为4cm,高为 6cm的球体的表面积。
综合练习题2
求一个长为8cm,宽为6cm,高 为5cm的长方体的表面积。
综合练习题3
求一个棱长为6cm的正方体的表 面积和体积。
THANK YOU
感谢聆听
体积计算
根据公式,先确定球的半径,然后代入公式计算体积 。
实例分析
以一个半径为5cm的球体为例,计算其体积。
03
空间几何体表面积和体积的应用
实际应用场景
80%
建筑设计
在建筑设计过程中,计算几何体 的表面积和体积是评估材料需求 、预算和设计方案可行性的关键 步骤。
100%
包装工业
在包装工业中,精确计算产品的 表面积和体积对于优化包装材料 使用、降低成本和提高运输效率 至关重要。
圆锥体的体积
圆锥体的体积公式
V = (1/3)πr²h,其中r是底面 圆的半径,h是高。
体积计算
根据公式,先确定底面圆的半 径和高,然后代入公式计算体 积。
实例分析
以一个底面半径为4cm,高为 6cm的圆锥体为例,计算其体 积。
球体的体积
02
01
03
球体的体积公式

高二数学必修2空间几何体的表面积和体积ppt课件

高二数学必修2空间几何体的表面积和体积ppt课件

25
例5 圆台的上、下底面半径分别为2和
4,高为 2 3 ,求其侧面展开图扇环所
对的圆心角
26
例6:圆台的上、下底半径分别是10cm和 20cm,它的侧面展开图的扇环的圆心角是 1800,那么圆台的侧面积是多少?(结果 中保留π)
答:1800
27
小结:1、弄清楚柱、锥、台的侧面展 开图的形状是关键;
3.14,结果精确到1 cm2 )?
4/16/2021 7:27:01 PM 云在漫步
24
20cm
解:由圆台的表面积公式得
花盆的表面积:
15cm
S15 21 51 52 015 1.52 15cm
2 2 2 2
999(cm2)
答:花盆的表面积约是999 cm2 .
4/16/2021 7:27:01 PM 云在漫步
(2)正四棱锥底面边长为6 ,高是4,中截面 把棱锥截成一个小棱锥和一个棱台,求棱 台的侧面积.
15
例3:一个正三棱台的上、下底面边长
分别是3cm和6cm,高是3/2cm,求三棱
台的侧面积.
分析:关键是 求出斜高,注
A1 O1 C1 B1 D1 C
意图中的直角 梯形
A
O ED
B
答:60
答:9 7
16
的棱锥
4、正棱台: 正棱锥被平行于底面的平面所截,截面和底面之间的部 分叫正棱台
3
斜高的概念
作直三棱柱、正三棱锥、正三棱台各一个,找出 斜高
C1
P
A1
B1
A1
C1
C A
B1 D1
A
C
B
O
D
B
C O
D

人教版高中数学必修二课件:1.3.1空间几何体的表面积和体积(共17张PPT)

人教版高中数学必修二课件:1.3.1空间几何体的表面积和体积(共17张PPT)

体积
V=__S_h___
1 V=__3_S_h__
Sh
体积
V=13(S 上+S 下+ S上S下)h
V=___43π_R__3 ___
2.三视图 (1)正视图是光线自物体的 前面向后面 正投影所得 的投影图.俯视图是光线自物体的 上方向下方 正投影
所得的投影图.侧视图是光线自物体的 左面向右面 正
投影所得的投影图.
60°=
3 2.
所以侧视图的面积为 S=12× 23× 3=43. 答案:C
答案 2
(2)已知三棱锥的底面是边长为 1 的正三角形,其正视图 与俯视图如图所示,则其侧视图的面积为( )
3 A. 4
B.
3 2
C.43 D.1
解:(2)由图可知其侧视图为三角形,根据三视图的“高平 齐”得侧视图的高为 3,又由“宽相等”可知侧视图的宽度
和俯视图的宽度相等,得侧视图的底为
1×sin
图可以是(
)
A
解:由题意可知带卯眼的木构件的直观图如图所示, 由直观图可知其俯视图应选 A.
答案:A
(2)(2016·天津卷)将一个长方体沿相邻三个面的对角线 截去一个棱锥,得到的几何体的正视图与俯视图如图所示, 则该几何体的侧(左)视图为( )
A
B
C
D
解:(2)先根据正视图和俯视图还原出几何体,再作其 侧(左)视图.
等 ;是以半圆的直径所在的直 球
线为旋转轴,半圆面旋转一周形
成的几何体
图例
3.空间几何体的表面积与体积
几何体
名称
表面积
柱体 (棱柱和圆柱)
S 表面积=S 侧+2S 底
锥体 (棱锥和圆锥)
S 表面积=S 侧+S 底

新版高中数学必修2课件:8.3.2圆柱、圆锥、圆台、球的表面积和体积

新版高中数学必修2课件:8.3.2圆柱、圆锥、圆台、球的表面积和体积
解析:设球的半径为R,则圆柱的底面半径为R,高为2R. ∵V球=43πR3,V圆柱=πR2·2R=2πR3, ∴V球:V圆柱=43πR3:2πR3=23. 答案:2:3
易错辨析 对球的“切、接”的结构特点认识模糊致错 例5 设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点在 一个球面上,则该球的表面积为( ) A.πa2 B.73πa2 C.74πa2 D.5πa2
解析:由题意知,该三棱柱为正三棱柱,如图. 设O1,O分别为上,下底面的中心,且球心O2为OO1的中点, 连接AO交BC于D点,球半径为R.
∵AD= 23a,AO=23AD= 33a,OO2=a2, ∴R2=AO22=13a2+14a2=172a2. ∴S球=4πR2=4π×172a2=73πa2.故选B. 答案:B
S底=_π_(r_′__2_+__r2) S侧=π_(_r_′__+__r_)l S=4πR2 S表=π_(_r_′__2+__r_2)+π(r+r′)l
要点二 体积公式 图形
体积公式
圆 柱
底面半径为r,高为h,V=_π_r_2_h____
圆 锥
底面半径为r,高为h,V=__13_π_r_2_h__
高中数学必修二
8.3.2 圆柱、圆锥、圆台、 球的表面积和体积
要点一 圆柱、圆锥、圆台、球的表面积
圆柱(底面半 径为
圆台(上、下 底面半径分别 球半径为 为r′,r,母 R
线长为l)
侧面展 开图
底面积 S底=__2_π_r2__ S底=__π_r_2__ 侧面积 S侧=__2_π_rl__ S侧=__π_r_l__ 表面积 S表=_2_π_r(_r_+__l)_ S表=_π_r(_r_+__l)
16π C. 3
64π D. 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

rO
S侧 r(l x) r' x (rl rx r' x)
(r'l rl)
S (r'2 r 2 r'l rl ) 22
圆柱、圆锥、圆台三者的表面积公式之间有什么关系?
r O
r'O’ l
l
r
O
l
O
rO
S r2 rl r(r l)
小结:1、弄清楚柱、锥、台的侧面展 开图的形状是关键;
2、对应的面积公式
S正三棱锥侧=
1 2
ch'
S圆锥侧= πrl
C’=0
r1=0
S正棱台侧=
1(c+c' 2
)h'
S圆台侧=π(r1+r2)l
C’=C
S直棱柱侧=ch' ch
r1=r2 S圆柱侧=28 2πrl
知识小结
柱体、锥体、台体的表面积 展开图
1.3 简单几何体的表面积和体积
1
1、表面积:几何体表面的面积 2、体积:几何体所占空间的大小。
2
回忆复习有关概念 1、直棱柱: 侧棱和底面垂直的棱柱叫直棱柱 2、正棱柱: 直 底面是正多边形的 棱柱叫正棱柱 3、正棱锥:底面是正多边形,顶点在底面的射影是底面中心
的棱锥
4、正棱台: 正棱锥被平行于底面的平面所截,截面和底面之间的部 分叫正棱台
解:先求ABC的面积,过点作 SD B,C
交BC于点D.
A
因为BC=a,SD SB sin 60 3 a 2
BD
C
所以:SABC

1 2
BC
SD

1 2
a
3a 2
3 a2 4
因此,四面体S-ABC 的表面积
S 4 3 a2 3a2.
4 8/23/2019 2:49:20 AM 云在漫步
圆柱 S 2r(r l) r r
圆台S (r2 r 2 rl rl)
r 0 圆锥 S r(r l)
各面面积之和
29
一、体积的概念与公理:
几何体占有空间部分的大小叫做它的体积
公理1、长方体的体积等于它的长、宽、高的积 。
S (r'2 r 2 r'l rl )
S 2 r2 2 rl 2 r(r l)
23
典型例题
例4 如图,一个圆台形花盆盆口直径20 cm,盆 底直径为15cm,底部渗水圆孔直径为1.5 cm,盆壁长
15cm.那么花盆的表面积约是多少平方厘米( 取
3.14,结果精确到1 cm2 )?
h' h'
S正


侧=
1 2
ch'
9
侧面展开
h' h'
正五棱锥的侧面展开图
S表面积 S侧 S底 10
典型例题
例1 已知棱长为a,各面均为等边三角形的四面 体S-ABC,求它的表面积 .
8/23/2019 2:49:20 AM 云在漫步
11
分析:四面体的展开图是由四个全等的正三角形
组成. S
h
正棱柱的侧面展开图
S表面积 S侧 2S底 6
把直三棱柱侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h
cb
a
h
h
a
bc
S直棱柱侧=(a b c) h ch
7
棱锥的侧面展开图是什么?如何计算它的表面积?
正三棱锥的侧面展开图
h/ h/
8
把正三棱锥侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
(2)正四棱锥底面边长为6 ,高是4,中截面 把棱锥截成一个小棱锥和一个棱台,求棱 台的侧面积.
15
例3:一个正三棱台的上、下底面边长
分别是3cm和6cm,高是3/2cm,求三棱
台的侧面积.
分析:关键是 求出斜高,注
A1 O1 C1 B1 D1 C
意图中的直角 梯形
A
O ED
B
答:60
答:9 7
16
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?
r
l
长方形
宽= l
长 =2r
S圆 柱 侧 S长 方 形=2rl
17
r O
l
2 r
O
圆柱的侧面展开图是矩形
S表面积 S侧 2S底
S 2 r2 2 rl 2 r(r l)
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?
扇环
r1
l
r2
S圆台侧=S扇环=(r1 r2 )l
21
S (r'2 r 2 r'l rl )
r' x
r xl
x 2r'
r'O’
2r
l
rx r' x r'l
8/23/2019 2:49:20 AM 云在漫步
25
例5 圆台的上、下底面半径分别为2和
4,高为 2 3 ,求其侧面展开图扇环所
对的圆心角
26
例6:圆台的上、下底半径分别是10cm和 20cm,它的侧面展开图的扇环的圆心角是 1800,那么圆台的侧面积是多少?(结果 中保留π)
答:1800
27
18
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线
展开,分别得到什么图形?展开的图形与原图 有什么关系?
扇形
R扇=l
l扇=
nl
180
l
r
S圆

侧=S扇=
nl 2
360
1 129 l扇l
rl
2r
l
rO
圆锥的侧面展开图是扇形
S r2 rl r(r l) 20
12
把正三棱台侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?(类比梯形的面积)
h'
h'
S正


侧=
1(c 213

c'
)h'
棱台的侧面展开图是什么?如何计算它的表面积?
侧面展开
h'
正四棱台的侧面展开图
h'
S表面积 S侧 S上底 S下底
14
例2:(1)一个正三棱柱的底面是边长为5 的正三角形,侧棱长为4,则其侧面积 为 ______;
8/23/2019 2:49:20 AM 云在漫步
24
解:由圆台的表面积公式得 花盆的表面积:
20cm
15cm
S


15
2

15
15

20
15

1.5
2
15cm
2 2
2 2盆的表面积约是999 cm2 .
3
斜高的概念
作直三棱柱、正三棱锥、正三棱台各一个,找出 斜高
C1
A1
B1
C
C
A
B
P
A1
C1
A
B
O
D
B1 D1 C
O D
B
A
4
h'
h'
棱柱、棱锥、棱台都是由多个平面图形围成的几何体,
它们的侧面展开图还是平面图形,
计算它们的表面积就是计算它的各个侧面面积和底面面积 之和
5
棱柱的侧面展开图是什么?如何计算它的表面积?
相关文档
最新文档