《一元一次方程》教学设计与反思
一元一次方程教学设计(共3篇)

一元一次方程教学设计(共3篇)第1篇:一元一次方程教学设计删繁就简三秋树领异标新二月花————“一元一次方程应用”教学实录及反思临沂高都中学王兴玲列方程解应用题,是整个初中阶段数学教学的重点。
因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。
在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。
具体设计如下:一、引言——故事的开端(为什么要列方程)问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。
在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米。
”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?问题1、小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?生1:沂河大桥长为(米)(师板演)师:除了列算式外,还有别的方法吗?生2:可以列方程师:如果用列方程的方法来解,设哪个未知数为x?生2:设沂河大桥的长为x米。
师:根据怎样的相当关系来列方程?方程的解是多少?生2:根据小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,列方程1135=2x+55,解得:x=540(教师板演)师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?生3:列方程就是直来直往。
师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题……(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)二、故事的发展——怎样列方程师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。
浙教版数学七年级上册5.1《一元一次方程》教学设计1

浙教版数学七年级上册5.1《一元一次方程》教学设计1一. 教材分析《一元一次方程》是浙教版数学七年级上册第五章第一节的内容。
本节课主要让学生掌握一元一次方程的定义、解法以及应用。
教材通过生活实例引入方程的概念,使学生感受到方程在实际生活中的重要性。
通过探究、合作的学习方式,让学生掌握一元一次方程的解法,培养学生解决问题的能力。
二. 学情分析七年级的学生已经掌握了整数、分数、有理数等基础知识,具备了一定的逻辑思维能力。
但学生在解决实际问题时,还往往不能很好地将数学知识与实际问题相结合。
因此,在教学过程中,教师要关注学生的认知水平,引导学生正确地列出方程,并运用方程解决问题。
三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够运用一元一次方程解决实际问题。
3.培养学生的合作交流能力,提高学生解决问题的能力。
四. 教学重难点1.重难点:一元一次方程的定义、解法及应用。
2.重点:让学生通过实际问题,感受方程的重要性,掌握一元一次方程的解法。
3.难点:如何引导学生将实际问题转化为方程,并运用方程解决问题。
五. 教学方法1.采用情境教学法,以生活实例引入方程的概念,激发学生的学习兴趣。
2.采用合作探究法,让学生在小组内讨论、交流,共同解决问题。
3.采用实践教学法,让学生通过动手操作,加深对一元一次方程的理解。
六. 教学准备1.准备相关的生活实例,用于引入方程的概念。
2.准备一些练习题,用于巩固所学知识。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过呈现一个生活实例,引导学生发现实际问题中存在的等量关系,从而引入方程的概念。
2.呈现(10分钟)教师讲解一元一次方程的定义,让学生明确一元一次方程的形式。
并通过示例,演示一元一次方程的解法。
3.操练(10分钟)学生分组讨论,尝试解决一些简单的一元一次方程问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成,检验学生对一元一次方程的掌握程度。
数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)随着时光的流逝,新的一个学期又开始了,为了更好的完成新学期的教育教学工作,使以后的工作有目的、有计划、有组织的顺利的进行,这次帅气的小编为您整理了数学《一元一次方程》教学设计(优秀3篇),希望大家可以喜欢并分享出去。
教学目标:篇一知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。
过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。
情感与态度:增强应用数学的意识,激发学习数学的热情。
教学重点:从实际问题中寻找相等关系。
教学难点:从实际问题中寻找相等关系。
学习路线:篇二1、阅读课本。
2、完成以下学习任务:(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。
求王家庄到翠湖的路程?①列算式用算术方法解决这个实际问题:____________________②用方程来解决这个实际问题:先画示意图:再找相等关系来列方程:(小组交流,讨论多种方法)(2)方程的概念:___________________________判断以下式子哪些是方程?是的画3+1=4; ;(3)根据下列问题列方程:①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________④课本的三道练习题:(完成后小组批改)(4)一元一次方程的概念:___________________________注意:是整式方程。
(5)什么叫做解方程:____________________________(6)什么叫做方程的解?__________________________(7)括号里的数( =3,=4,=-4)是方程的解有____________归纳:设未知数列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
一元一次方程的应用教学设计与反思白小莉

一元一次方程的应用教学设计与反思教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生爱国主义热情,决心为国家的繁荣昌盛而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
教学重点和难点1.教学重点:根据题意寻找和;差;倍;分问题的相等关系2.教学难点:根据题意列出一元一次方程教学过程一、从学生原有的认知结构提出问题师生问好.在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题.例1 某数的3倍减2等于某数与4的和,求某数.(首先,用算术方法解,由学生回答,教师板书)解法1:(4+2)÷(3-1)=3.答:某数为3.(其次,用代数方法来解,教师引导,学生口述完成)解法2:设某数为x,则有3x-2=x+4.解之,得x=3.答:某数为3.纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤例2 某面粉仓库存放的面粉运出15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以x=50 000.答:原来有50 000千克面粉.此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;(2)例2的解方程过程较为简捷,同学应注意模仿.依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)解:设第一小组有x个学生,依题意,得3x+9=5x-(5-4),解这个方程:2x=10,所以x=5.其苹果数为3×5+9=24.答:第一小组有5名同学,共摘苹果24个.学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?2.我国城乡居民1988年末的储蓄存款达到 3 802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.四、师生共同小结1.本节课学习了哪些内容?2.列一元一次方程解应用题的方法和步骤是什么?3.在运用上述方法和步骤时应注意什么?依据学生的回答情况,教师总结如下:(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;(2)以上步骤同学应在理解的基础上记忆.五、作业1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2 050台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数教学反思在本节课教学中我能一.求活——挖掘习题本身的内在力量保持兴趣思维方法活为了让学生在解题时保持兴趣,可给学生提供一些能用多种方法解决问题的习惯。
初中数学教学课例《一元一次方程》课程思政核心素养教学设计及总结反思

示数的优越性。
教学目标
2、能将实际问题抽象为数学问题,并通过方程解
决问题。
3、增加应用数学的意识,激发学习数学的热情。
本节课学生学生要掌握一元一次方程的判断和如
何解决一元一次方程实际问题。多数学生在学习中能够 学生学习能
判断出一元一次方程,但是在解决一元一次方程应用题 力分析
时,部分学生找不到等量关系。学生积极性不高,需要
初中数学教学课例《一元一次方程》教学设计及总结反思
学科
初中数学
教学课例名
《一元一次方程》
称
本节课的内容是在学生初步学习方程的基础上进
一步学生一元一次方程,解决实际生活中的一元一次方
程问题。
教材分析
重点:理解一元一次方程的概念,辨识一元一次方
程
难点:一元一次方程的理解,根据实际问题列一元
一次方程
1、了解方程和一元一次方程的概念,体会字母表
的 25 倍少一吨,这头大象重几吨
(1)用算数方法解决上述问题。
(124+1)25=5ຫໍສະໝຸດ (2)用方程的思想解决上述问题
解:设这头大象重 x 吨
教学过程
25x-1=124 (体现了两种运算方式的差异,同时也体现了方程
的优点)
二、深入探究、现学现用。
例1根据下列问题,设未知数并列出方程
(1)用一根长 24cm 的铁丝围成一个正方形,正方形
加强合作探索。
教学策略选
本节课我采用引导法引导学生学习一元一次方程,
择与设计 找出其中的等量关系。教学设计做到以下几点:1、精
心设计问题,提高学生学习兴趣。2、教学联系生活,
增强学生生活技能。3、训练举一反三,发展学生思维
认识一元一次方程教学设计通用3篇

认识一元一次方程教学设计通用3篇元一次方程教学设计篇一一、教学目标:1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念3、积累活动经验。
二、重点和难点重点:归纳一元一次方程的概念难点:感受方程作为刻画现实世界有效模型的意义三、教学过程1、课前训练一(1)如果|| = 9,则= ;如果2 = 9,则=(2)在数轴上距离原点4个单位长度的数为(3)下列关于相反数的说法不正确的是()A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等C、0的相反数是0D、互为相反数的两个数的和为0(字母表示为、互为相反数则)E、有理数的相反数一定比0小(4)乘积为1的两个数互为倒数,如:(5)如果,则()A、互为倒数B、互为相反数C、都是0D、至少有一个为0(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程2、由课本P149卡通图画引入新课3、分组讨论P149两个练习4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()A、+25=310B、+(+25)=310C、2 =310D、2=310课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。
已知每个笔记本比练习本贵1.2元,求每个练习本多少元?解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:6、归纳方程、一元一次方程的概念7、随堂练习PO1518、达标测试(1)下列式子中,属于方程的是()A、B、C、D、(2)下列方程中,属于一元一次方程的是()A、B、C、D、(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。
一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
初中数学教学课例《一元一次方程》教学设计及总结反思

是根据题意找出相等关系,然后列出方程,关键在于分
教学目标 析已知未知量之间关系及寻找相等关系。
(B)通过和;差;倍;分的量与量之间的分析以
及公式中有一个字母表示未知数,其余字母表示已知数
的情况下,列出一元一次方程解简单的应用题。
(2)能力目标: 通过教学初步培养学生分析问题,解决实际问题, 综合归纳整理的能力,以及理论联系实际的能力。 (3)思想目标: 通过对一元一次方程应用题的教学,让学生初步认 识体会到代数方法的优越性,同时渗透把未知转化为已 知的辩证思想,介绍我国古代数学家对一元一次方程的 研究成果,激发学生热爱中国共产党,热爱社会主义, 决心为实现社会主义四个现代化而学好数学的思想;同 时,通过理论联系实际的方式,通过知识的应用,培养 学生唯物主义的思想观点。
1:学生初学列方程解应用题时,往往弄不清解题 步骤,不设未知数就直接进行列方程或在设未知数时, 有单位却忘记写单位等。
2:学生在列方程解应用题时,可能存在三个方面 的困难: 学生学习能
(1)抓不准相等关系;(2)找出相等关系后不会 力分析
列方程;(3)习惯于用小学算术解法,得用代数方法 分析应用题不适应,不知道要抓怎样的相等关系。
的本质.
1、突出问题的应用意识。在各个环节的安排上都 设计成一个个问题,使学生能围绕问题展开讨思考、讨 论,进行学习。
2、体现学生的主体意识。让学生通过列算式与列 方程的比较,分别归纳出它们的特点,从而感受到从算 术方法到代数方法是数学的进步;让学生通过合作交 流,得出问题的不同解法;让学生对一节课的学习内容、 方法、注意点等进行归纳。 课例研究综
3、体现学生思维的层次性。教师首先引导学生尝 述
试用算术方法解决问题,然后再引导学生列出含未知数 的式了,寻找相等关系列出方程,在寻找相等关系、设 未知数及作业的布置等环节中都注意了学生思维的层 次性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次方程》教学设计
教学目标:
1、了解方程和方程的解以及一元一次方程的概念;
2、使学生从简单的实际问题中建立一元一次方程的模型;
3、经历把具体问题转化成一元一次方程的过程。
教学重点和难点:
重点难点:理解和掌握一元一次方程。
教学过程:
一、创设情境,引入新课:
猜一猜老师的年龄。
我的年龄乘2减20得32。
请同学们讲出自己的想法。
学生有用算术方法解的有用方程解的。
这时提出方法的概念:含有未知数的等式叫方程
二、探究新知:
(一)练一练:
判断下列各式是不是方程,并讲明理由。
(1)-2+5=3 (2)3X-1=7
(3)x+y=8 (4)2a+b
分析“我的年龄乘2减20得40.
设我的年龄为X岁。
(设未知数)
年龄X2-20=40 (找出等量关系)
2x-20=40 (列出方程)
(二)建立一元一次方程模型:
根据下列问题,设未知数并列出方程:
①、用一根长24cm的铁丝围成一个长方形,使它的长是
宽的1.5倍,长方形的长,宽各是多少?
解:(1)设宽为xcm,那么长为1.5xcm。
(2)等量关系:(长+宽)×2=24
(3)1.5x+x=24
②国庆节商场进行打折活动的时候,晨晨同学看中一件
运动衣,按8折销售为80元,这件衣服的原价是多少元?
解:设这件衣服的原价为x元,则:
0.8x=80
③因校园搞绿化,有一棵树刚移栽到我们学校时,树高
为2米,假设以后平均每年长0.3米,几年后树高为5米?
解:设x年后树高为5米,则:
2+0.3x=5
(三)一元一次方程的认识:
请同学们比较一下刚才你们列的三个方程,有什么样的特点?
1.5x+x=24 0.8x=80 2+0.3x=5
注意:方程两边都是整式;
只含有一个未知数;
未知数的指数是一次。
问题①:一元一次方程中元指的是什么?次指的是什么?
②判断下列成员是否是一元一次方程家庭成员,能否进入家庭聚会之门?若不行,请说明理由。
第一组: 1)、5x=0 2)、 1+3x
3)、y2=4+y 4)、 3m+2=1-n
第二组: 若2xb+1=5, (a-1)x2+x=3也想参加聚会,a,b应满足什么条件?
③估算2+0.3x=5中x的值。
根据学生的回答,当x=8或者x=10时,怎样来验证?引导学生用左边等于右边进行检验:
把x=10代入方程左、右两边,
右边=5
左边右边=5
左边=右边,所以x=10是方程2+0.3x=5的解
a、学生自己练习当x=8时,是不是方程的解
b、学生总结出方程的解的概念:能使方程左右两边的值相等的未知数的值叫作方程的解。
c、什么叫解方程:
求方程的解的过程叫做解方程。
三、巩固练习:
1-1=4是方程吗?
(1)
x
(2)列式表示a与3的差等于-2。
(3)上题列出的式子是方程吗?如果是,未知数是什么?方程的解是什么?并说明自己的理由。
(4)综合题:天平的两个盘A、B分别盛有51g,45g盐,设应该从盘A内拿出多少g盐到盘B内,才能使两者所盛盐的质量相等?
《一元一次方程》教学反思
这节课是湘教版七年级上册《一元一次方程》的第一节课,内容比较简单。
本课的重点是让学生根据多种实际问题中的数量关系,找出等量关系,感受方程就是将众多实际问题“数学化”的一个重要模型,列出方程,并归纳出一元一次方程的概念。
学生在小学已经学过了等式、等式的基本性质、方程、方程的解等知识,对方程已有初步认识. 但这个过程没有给“一元一次方程”这样准确的理性的概念。
本节课是基于学生在小学已经学习的基础上来进行的。
继续对有关方程的一些初步知识,并能通过对多个熟悉的实际问题的分析,由学生结合已有知识,得出一元一次方程,并能给出一元一次方程的简单概念及一些相关概念。
上完本节课。
我的反思有以下几点:
1、本课利用“猜年龄”的游戏导入新课极大地调动了学生的积极性。
2、通过以练带学发现学生对方程以及方程解的定义掌握的比较好。
3、通过探究新知这部分的学习,发现学生参与课堂活动特别积极,,能主动的进行交流,而不是流于形式。
每位学生都有所收获,体现了学生的主体地位。
4、巩固练习这部分恰到好处,掌握的也很好。
由于时间关系,没来得及让学生自己课堂小结
5、在一元一次方程概念上讲解的不是特别清楚,另外练习题讲解的有点快,部分学生掌握效果不好。
总的来说,这节课有设计比较好的部分,在具体的操作过程中也出现了失误。
要想让每一位同学都有所收获,还需要很大的努力。
对于以上优点,我将继续发扬;对于出现的不足,争取在以后的课堂上改进。