高中数学数形结合思想在解题中的应用
数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,割裂分家万事休。
”数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果。
数形结合的重点是研究“以形助数”。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓思维视野。
数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。
另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
运用数形结合思想解题的三种类型及思维方法:一、“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
例如:已知二次函数y=ax2+bx+c(a≠0)的图像如图,在下列代数式中(1)a+b+c>0,(2)-4a<b<-2a,(3)abc>0,(4)5a-b+2c<0,其中正确的个数为(A)。
A.1个B.2个C.3个D.4个由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误。
又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误。
∵对称轴在1和2之间,∴1<-<2,又a>0,∴在不等式左右两边都乘以-2a得:-2a>b>-4a,故(2)正确。
又x=-1时,对应的函数值大于0,故将x=1代入得:a-b+c>0,又a>0,即4a>0,c>0,∴5a-b+2c=(a-b+c)+4a+c>0,故(4)错误。
数形结合思想方法在高中数学教学中的运用

数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。
这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。
二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。
教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。
对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。
2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。
通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。
教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。
3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。
教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。
教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。
2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。
数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。
3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。
通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。
2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。
数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用1. 引言1.1 概述数形结合思想方法是一种通过将数学与几何图形相结合的方式来解决数学问题的方法。
在高中数学教学与解题中,数形结合思想方法被广泛运用,对学生的数学思维能力和解题能力有着显著的提升作用。
本文将从理论基础、教学应用、解题实际操作、优势局限性和案例分析等方面对数形结合思想方法进行详细介绍和分析,旨在探讨这种方法在高中数学教学和解题中的实际应用效果及其潜在局限性。
通过对数形结合思想方法的深入研究,可以为未来数学教学和研究提供新的思路和方法,促进学生对数学的深入理解和应用能力的提高。
【概述】1.2 研究背景随着科技的不断发展和社会的快速进步,教育也在不断改革和创新。
高中数学作为学生必修科目之一,承担着培养学生逻辑思维能力和数学素养的重要使命。
在传统的数学教学中,很多学生常常感到枯燥和无趣,难以理解和掌握抽象的概念和定理。
有必要寻找一种更加生动、直观且实用的教学方法来激发学生学习数学的兴趣和动力。
1.3 研究意义数范围等。
【研究意义】内容如下:研究数形结合思想方法在高中数学教学与解题中的应用具有重要的实际意义。
数学教学是培养学生逻辑思维能力和问题解决能力的重要途径,而数形结合思想方法能够帮助学生更好地理解数学知识,提高他们的数学学习兴趣和学习效果。
数形结合思想方法在解题中的应用能够帮助学生更加深入地理解问题的本质,提高他们的问题解决能力和创新思维水平。
研究数形结合思想方法的优势和局限性,有助于教师更好地指导学生应用该方法解决问题,并且能够帮助教育部门和相关机构调整和改进数学教学计划,推动数学教育的发展和进步。
深入研究数形结合思想方法在高中数学教学与解题中的应用,对于提高我国数学教育质量,培养优秀数学人才,具有重要的现实意义和战略意义。
2. 正文2.1 数形结合思想方法的理论基础数,具体格式等。
数形结合思想方法的理论基础主要包括几何与代数的融合和数学建模的理论支持。
高中数学中数形结合思想在函数解题中的运用

高中数学中数形结合思想在函数解题中的运用(一)数形结合在求函数定义域方面的应用例1:求函数y =的定义域. 解析:若要解决该函数的定义域,则有23200x x x ⎧-+≥⎨≠⎩,要解决此类不等式的解集, 需要借助图像,如右图:由图像可以看出,若要2320x x -+≥,只需1,x ≤或2x ≥,再由0x ≠,得出该函数的定义域即为:()(][),00,12,-∞+∞. 小结:随着学生做题熟练程度的增强,二次不等式的求解已不用再画图。
因此在求函数定义域方面,多见于画数轴选择出取值范围。
(二)数形结合在求函数值域方面的应用例2:求函数(]223,1,2y x x x =--∈-的值域. 解析:看到所求函数为二次函数,由于函数是非单调的,所以并不能代端点值去求出值域,因此需要借助图像来观察,如右图:借助图像的直观表达可知道,具有区间范围的该二次函数的图像应为黄色区域部分,此函数的最小值是在对称轴处取得,即当1x =时,4y =-。
从而该函数的值域为:(]0,4-。
小结:对于此类问题是学生的常见出错点,学生们习惯于直接带入端点值得出其值域,因此对于给定区间上的二次函数值域问题,培养学生数形结合的思想是非常重要的。
(三)数形结合在函数单调性方面的应用例3:已知2()2(1)2f x x a x =+-+在(],4-∞上是减函数,求实数a 的取值范围。
解析:函数解析式中含有字母,因此函数在坐标系内的具体位置不能固定,需要画图分析,看何种情况才能满足题干要求:通过图像分析可知:若要满足函数在给定区间上为单调函数,只能是后两种情况,也就是函数图像的对称轴不能出现在所给区间内,从而解题找到突破口。
所给函数对称轴方程:1x a =- ,由图像分析可知,需有a 14-≥,从而a 5≥。
小结:该类问题常见于二次函数中,因其单调性与对称轴的位置有关,故通常画图分析更能直观得出题目所需情况,从而快速得出结论。
(四)数形结合在函数奇偶性方面的应用例4:已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.试求当0x <时,函数()f x 的解析式。
数形结合思想在解题中的应用

数形结合思想在解题中的应用2012年秋季学期,广西将进入高中新课程改革,新课程理念逐渐深入人心;学习新理念,转变旧观念正成为高中教师重要的课题.数学课程改革的重心是发展学生的广泛的数学能力,注重数学思想、方法的教学渗透,培养学生形成良好的数学素质.数形结合是高中数学中重要的思想方法,通过数形结合可沟通数与形的内在联系,把代数语言的精确刻画与几何图形的直观描述有机地结合起来,使复杂问题简单化,抽象问题具体化,能使高中数学中许多复杂问题迎刃而解,收到事半功倍的效果.【例1】解不等式x+2>x.解法一:原不等式可化为x≥0x+2≥0x+2≥x2或x<0x+2≥0,解得0≤x<2或-2≤x<0,∴原不等式的解集为{x|-2≤x<2}.解法二:设y1=x+2,y2=x,在同一坐标系中作出这两个函数的图象(如图1),则不等式x+2>x的解就是y1=x+2的图象在y2=x的上方的那一段对应的横坐标,即不等式的解集为{x|xa≤x<xb},其中xa=-2,解方程x+2=x得xb=2.∴原不等式的解集为{x|-2≤x<2}.评析:比较上述两种解法,可以看到用图形直观地反映数量关系,解决问题简洁明了.【例2】设f(x)=x2-2ax+2-a,当x∈[-1,+∞]时,f(x)>a恒成立,求实数a的取值范围.解法一:f(x)>a在x∈[-1,+∞)上恒成立等价于x2-2ax+2-a >0在x∈[-1,+∞)上恒成立.设函数g(x)=x2-2ax+2-a,其图象在x∈[-1,+∞)时位于x轴上方有两种情况(如图2、图3所示).(1)δ=4a2-4(2-a)<0,解得-2<a<1;(2)δ=4a2-(2-a)≥0a<-1g(-1)=a+3>0,解得-3<a≤-2.故实数a的取值范围是(-3,1).解法二:由f(x)>a得x2+2>a(2x+1),设h(x)=x2+2,t(x)=a(2x+1),在同一坐标系中这两个函数的图象如图4所示,直线l1与抛物线相切,的对应值为1,直线l2经过点(- 12,0) 和点(-1,3),a的对应值为-3,符合题意的直线t(x)=a(2x+1)恒过点(-12,0)且位于l1与l2之间,故实数a的取值范围是(-3,1).图5【例3】已知:椭圆x29+y24=1 与抛物线y=x2+m有四个不同的交点,求实数m的取值范围.错解:在同一坐标系中作出椭圆和抛物线的图象(如图5),根据图象可得:m<-2-m<3,解得-9<m<-2.评析:图形的直观性给解决问题提供了很大的帮助,但离开了严格的数学推理,往往受图形直观错觉的影响得出错误的结论.图6正解:联立椭圆和抛物线的方程,得x29+y24 =1y=x2+m ,消去y,整理得9x4+(18m+4)x2+9m2-36=0,令t=x2,得9t2+(18m+4)t+9m2-36=0.设f(t)=9t2+(18m+4)t+9m2-36,根据题意知方程f(t)=0在(0,+∞)上有两个不相等的实数根(如图6),即得δ=(18m+4)2-36(9m2-36)>0,-18m+418 >0,f(0)=9m2-36>0解得-829<m<-2 .评析:这是一个关于图形交点的问题,求解过程却是从分析方程的根的情况入手,而在讨论方程f(t)=0在(0,+∞)上有两个不相等的实数根时,又需要利用二次函数的图象特征,这样数和形的密切结合、相互补充,使问题得到了圆满的解决.(责任编辑黄春香)。
高中数学解题中数形结合思想应用论文

高中数学解题中数形结合思想的应用摘要:数形结合思想在高中数学中应用十分广泛,常见的比如在函数、集合、向量、不等式、立体几何、线性规划等问题中都有应用。
本文通过一些典型例题,列举了数形结合思想的应用方法,避免复杂的数学推理与计算,简化解题过程,加强学生的解题能力。
关键词:数学解题;数形结合;高中数学在高中教学中,数和形是两个最基本的概念,数形结合的思想不仅是高中数学解题中的一种重要思想,也是教学的重点。
在高中数学解题中使用数形结合的方法,研究数和形的对应关系,使抽象问题具体化,复杂问题简单化。
在教学中培养学生数形结合的思想,能够有效的提高学生的解题技巧,做到举一反三,加强学生的解题能力。
数和形是数学研究的两大基本对象,数形结合即是以形助教,以数解形,就是数和形之间的相互转化。
通过数和形的相互转化来解决数学问题,使抽象思维转换为形象思维,有助于理解数学问题的本质。
数形结合可以求解很多问题,在高中数学中主要表现在以下几个方面:(1)通常可以结合数轴和文氏图进行求解集合问题;(2)数形结合可以使用函数的图像性质求解函数问题,可以研究函数的奇偶性、周期性、增减性,以及求函数的定义域、最值和极值、值域等问题。
(3)数形结合可以联系向量的几何意义用于求解向量问题,运用点、线、曲线的性质用于解析几何问题。
(4)数形结合可以构造几何图形和函数特点求解不等式问题,从题目的条件和结论出发,分析几何意义,从图形上寻找解题的思路。
使用数形结合的思想求解问题的关键在于图形的构造,抓住一些重要的量,巧妙地运用式子规律、数学概念符号去思考其内在的关系。
思考途径可以用下图表示:数形结合的解题思路一、利用坐标法解决几何问题坐标法就是将几何问题坐标化。
在解决几何问题中运用坐标法的基本思路是,首先根据几何问题的特点建立合适的坐标系,其次将几何问题转变为代数问题,经过推理和计算,获得相关的代数结论。
最后考虑坐标系,将代数结论转化为几何结论,由此得到原几何问题的答案。
数形结合思想在高中数学教学中的应用分析

数形结合思想在高中数学教学中的应用分析
数形结合思想是通过将数学与几何相结合的方式来解决问题,它充分利用了几何图形
的直观性和数学公式的精确性。
在高中数学教学中,数形结合思想可以被广泛应用于各种
数学概念和技巧的讲解,以及问题的解决。
在几何学中,数形结合思想可以用于解决诸如平面面积、体积等问题。
例如,如果我
们将一个三角形分成两个小的三角形,那么它们的面积加起来就等于原来的三角形的面积。
这就是数形结合思想的应用。
在高中数学教学中,这个思想可以用于教学基本几何概念,
例如勾股定理,三角形面积,正方体体积等。
另一方面,数形结合思想在代数学中也有重要的应用。
例如,在解方程的时候,我们
可以通过画出函数图像,通过图像的交点得到解方程的方法。
在高中数学教学中,这个思
想可以用于数学分析和高等代数的教学中。
此外,数形结合思想也可以用于数学模型的建立和实际问题的解决。
例如,当我们需
要解决一个有关面积或体积的实际问题时,我们可以通过用数学公式计算出形状的尺寸,
然后用这些尺寸来计算出我们所需要的面积或体积。
在高中数学教学中,这个思想可以用
于实际应用问题的教学中,例如纯算题,数学建模竞赛等等。
总之,数形结合思想在高中数学教学中的应用非常广泛。
它可以用于解决几何和代数
问题,用于建立数学模型,和解决实际问题。
更重要的是,数形结合思想可以帮助学生更
好地理解和运用数学知识,拓展他们对数学的视野,进而对数学产生了浓厚的兴趣。
“数形结合”思想在高中解题中的应用

例 3 等 差 数 列 { 中, %} d<0 若 l 1 , a : 3 l l则 数 列 { 的 前 几项 的和 最 大 ? a, g %}
解
・ . .
【 考文献 】 参
[ ]张 奠 宙 . 学 代 数 研 究 [ . 京 : 等 教 育 出版 1 中 M]北 高
解
八
构 造 点 ( , , 1 1 , 1 0) ( , )
C( 1 , O, ) 四 边 形 ABC 为 O, ) D( 0 , D 正 方 形 ( 图 6) 如 ,令 P点 坐 标 为 ( , ,贝 IDI / +b , P = n b) 0P =、 I I A 、 ( —0 6 , BI /( 一 ) 1 6 , / 1 )+ I =、 1 。 — ) P +(
三 、 形 结 合 思 想 在 解 不 等 式 中 的应 用 数
例 3 设 不 等 式I x一1 +I பைடு நூலகம் x一4 <n有 实 数 解 .求 实 数 Ⅱ 1
的取 值 范 围.
解
令 Y =I l x一1+ 一4 ,2 , l 1 =n Y
\
函 数 v = ~1 + 一4 的 零 点 l 1
、 +( 一 ) ≥ 2 / . / 1 b 、2
数形 结合 的特 点是 属性 互化 ,不仅 直观 易 于寻 找解题 途 径, 而且 能避 免 繁杂 的计算 和推 理. 可起 到事 半功倍 的效 果 .
图
3
和=一求 c 的 坐 是 .以 +=× = y3 , 点 横 标 所 卢2手 3 得
时 ,。 x一5 Y , : 图 像 如 图 6 Y =2 . Y 的
所示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学数形结合思想在解题中的应用一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
{|}x x -≤<22例3. 已知,则方程的实根个数为01<<=a a x x a |||log |()A. 1个B. 2个C. 3个D. 1个或2个或3个分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log | 出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B )。
例4. 如果实数、满足,则的最大值为x y x y yx()()-+=2322A B C D ....1233323分析:等式有明显的几何意义,它表坐标平面上的一个圆,()x y -+=2322圆心为,,半径,如图,而则表示圆上的点,与坐()()()20300r y x y x x y ==-- 标原点,的连线的斜率。
如此以来,该问题可转化为如下几何问题:动点()00A 在以,为圆心,以为半径的圆上移动,求直线的斜率的最大值,由图()203OA可见,当∠在第一象限,且与圆相切时,的斜率最大,经简单计算,得最A OA 大值为°tg 603=例5. 已知,满足,求的最大值与最小值x y x y y x 22162513+=- 分析:对于二元函数在限定条件下求最值问题,常采用y x x y -+=31625122构造直线的截距的方法来求之。
令,则,y x b y x b -==+33原问题转化为:在椭圆上求一点,使过该点的直线斜率为,x y 22162513+= 且在轴上的截距最大或最小,y由图形知,当直线与椭圆相切时,有最大截距与最小y x b x y =++=31625122截距。
y x b x y x bx b =++=⎧⎨⎪⎩⎪⇒++-=316251169961640002222 由,得±,故的最大值为,最小值为。
∆==--01331313b y x例6. 若集合,,集合,M x y x y N x y y x b ===⎧⎨⎩<<⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪==+()cos sin (){()|}330θθθπ 且≠,则的取值范围为。
M N b ∅分析:M x y x y y M =+=<≤{()|}(),,,显然,表示以,为圆心,2290100 以3为半径的圆在x 轴上方的部分,(如图),而N 则表示一条直线,其斜率k=1,纵截距为,由图形易知,欲使≠,即是使直线与半圆有公共点,b M N y x b ∅=+ 显然的最小逼近值为,最大值为,即b b --<≤332332例7. 点是椭圆上一点,它到其中一个焦点的距离为,为M x y F N 221251612+= MF 1的中点,O 表示原点,则|ON|=( ) A B C D . (32)248分析:①设椭圆另一焦点为F 2,(如图), 则,而||||MF MF a a 1225+==||||MF MF 1228==,∴ 又注意到N 、O 各为MF 1、F 1F 2的中点, ∴ON 是△MF 1F 2的中位线, ∴×||||ON MF ===1212842 ②若联想到第二定义,可以确定点M 的坐标,进而求MF 1中点的坐标,最后利用两点间的距离公式求出|ON|,但这样就增加了计算量,方法较之①显得有些复杂。
例8. 已知复数满足,求的模的最大值、最小值的范围。
z z i z ||--=222分析:由于,有明显的几何意义,它表示复数对应的|||()|z i z i z --=-+2222点到复数对应的点之间的距离,因此满足的复数对应点2+2i |()|z i z -+=222Z z z ,在以,为圆心,半径为的圆上,如下图,而表示复数对应的()()||222 点到原点的距离,显然,当点、圆心、点三点共线时,取得最值,Z O Z C O z || ||||min max z z ==232,,∴的取值范围为,||[]z 232例9. 求函数的值域。
y x x =+-sin cos 22解法一(代数法):则得y x x y x y x =+--=+sin cos cos sin 2222, sin cos sin()x y x y y x y -=--++=--221222,ϕ ∴,而sin()|sin()|x y y x +=--++≤ϕϕ22112∴,解不等式得||--+≤--≤≤-+22114734732y y y ∴函数的值域为,[]---+473473解法二(几何法):y x x y y y x x =+-=--sin cos 222121的形式类似于斜率公式y x x P P x x =+--sin cos ()(cos sin )22220表示过两点,,,的直线斜率221P x y +=由于点在单位圆上,如图, 显然,k y k P A P B 00≤≤设过的圆的切线方程为P y k x 022+=-() 则有,解得±||22114732k k k ++==-即,k k P A P B 00473473=--=-+ ∴--≤≤-+473473y ∴函数值域为,[]---+473473例10. 求函数的最值。
u t t =++-246分析:由于等号右端根号内同为的一次式,故作简单换元,无法t t t m 24+= 转化出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元。
解:设,,则x t y t u x y =+=-=+246且,x y x y 2221604022+=≤≤≤≤()所给函数化为以为参数的直线方程,它与椭圆在u y x u x y =-++=22216 第一象限的部分(包括端点)有公共点,(如图)u min =22相切于第一象限时,u 取最大值y x u x y x ux u =-++=⎧⎨⎩⇒-+-=2222216342160 解,得±,取∆=0==u u 2626 ∴u max =26三、总结提炼数形结合思想是解答数学试题的的一种常用方法与技巧,特别是在解决选择、填空题是发挥着奇特功效,复习中要以熟练技能、方法为目标,加强这方面的训练,以提高解题能力和速度。
四、强化训练见优化设计。
【模拟试题】 一、选择题:1. 方程lg sin x x =的实根的个数为( ) A. 1个B. 2个C. 3个D. 4个2. 函数y a x y x a ==+||与的图象恰有两个公共点,则实数a 的取值范围是( ) A. ()1,+∞B. ()-11,C. (][)-∞-+∞,,11D. ()()-∞-+∞,,113. 设命题甲:03<<x ,命题乙:||x -<14,则甲是乙成立的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 不充分也不必要条件4. 适合||z -=11且arg z =π4的复数z 的个数为( )A. 0个B. 1个C. 2个D. 4个5. 若不等式x a x a +≥>()0的解集为{|}||x m x n m n a ≤≤-=,且,2则a 的值为( ) A. 1B. 2C. 3D. 46. 已知复数z i z z z 121232=-=+,,则||||的最大值为( ) A.102- B. 5C. 210+D. 222+7. 若x ∈()12,时,不等式()log x x a -<12恒成立,则a 的取值范围为( ) A. (0,1)B. (1,2)C. (1,2]D. [1,2]8. 定义在R 上的函数y f x =-∞()()在,2上为增函数,且函数y f x =+()2的图象的对称轴为x =0,则( ) A. f f ()()-<13 B. f f ()()03> C. f f ()()-=-13D. f f ()()23<二、填空题:9. 若复数z 满足||z =2,则||z i +-1的最大值为___________。
10. 若f x x bx c ()=++2对任意实数t ,都有f t f t ()()22+=-,则f f ()()13、-、f ()4由小到大依次为___________。