高中数学数形结合思想在解题中的应用

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学数形结合思想在解题中的应用

一、知识整合

1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=21422

3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析

例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322

-=++ 分析:0)(32)(2

=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令

()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,

()()02b

f f k a

-

=-<10(10)k k -<<∈-同时成立,解得,故,

例2. 解不等式x x +>2 解:法一、常规解法:

原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪

⎪<+≥⎧⎨⎩

020

20202

解,得;解,得()()I x II x 0220≤<-≤<

综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222

法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=

+=+>=

+

在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<

而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22

例3. 已知,则方程的实根个数为01<<=a a x x a ||

|log |(

)

A. 1个

B. 2个

C. 3个

D. 1个或2个或3个

分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==||

|log | 出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B )。

例4. 如果实数、满足,则的最大值为x y x y y

x

()()-+=232

2

A B C D .

.

.

.12

33

32

3

分析:等式有明显的几何意义,它表坐标平面上的一个圆,()x y -+=232

2

圆心为,,半径,如图,而

则表示圆上的点,与坐()()()20300

r y x y x x y ==-- 标原点,的连线的斜率。如此以来,该问题可转化为如下几何问题:动点()00A 在以,为圆心,以为半径的圆上移动,求直线的斜率的最大值,由图()203OA

可见,当∠在第一象限,且与圆相切时,的斜率最大,经简单计算,得最A OA 大值为°tg 603=

例5. 已知,满足

,求的最大值与最小值x y x y y x 22

1625

13+=- 分析:对于二元函数在限定条件

下求最值问题,常采用y x x y -+=31625

122

构造直线的截距的方法来求之。 令,则,y x b y x b -==+33

原问题转化为:在椭圆

上求一点,使过该点的直线斜率为,x y 22

1625

13+= 且在轴上的截距最大或最小,y

由图形知,当直线与椭圆

相切时,有最大截距与最小y x b x y =++=31625

122

截距。

y x b x y x bx b =++=⎧⎨⎪⎩

⎪⇒++-=3162511699616400022

22 由,得±,故的最大值为,最小值为。∆==--01331313b y x

例6. 若集合,,集合,M x y x y N x y y x b ===⎧⎨

⎩<<⎧⎨⎪⎩⎪⎫⎬⎪

⎪==+()cos sin (){()|}330θθθπ 且≠,则的取值范围为

。M N b ∅

分析:M x y x y y M =+=<≤{()|}(),,,显然,表示以,为圆心,2

2

90100 以3为半径的圆在x 轴上方的部分,(如图),而N 则表示一条直线,其斜率k=1,纵截

距为,由图形易知,欲使≠,即是使直线与半圆有公共点,b M N y x b ∅=+ 显然的最小逼近值为,最大值为,即b b --<≤332332

例7. 点是椭圆

上一点,它到其中一个焦点的距离为,为M x y F N 22

12516

12+= MF 1的中点,O 表示原点,则|ON|=( ) A B C D .

(32)

248

相关文档
最新文档