高中数学新课标测试题及答案
2024年新课标I卷高考数学真题(含答案)

2024年新课标I 卷高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-2. 若1i 1zz =+-,则z =( )A. 1i-- B. 1i-+ C. 1i- D. 1i+3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 24. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m -B. 3m -C.3m D. 3m5.( )A.B.C.D. 6. 已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A. (,0]-∞ B. [1,0]- C. [1,1]- D.[0,)+∞7. 当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭交点个数为( )A. 3B. 4C. 6D. 88. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >> B. (2)0.5P X ><的的C. (2)0.5P Y >> D. (2)0.8P Y ><10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数的字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;为(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.的一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2. 若1i 1zz =+-,则z =( )A. 1i -- B. 1i-+ C. 1i- D. 1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3. 已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m - B. 3m -C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5. ( )A. B. C. D. 【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]-∞ B. [1,0]- C. [1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象, 在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4a =,4a =,解得2a =-,故A 正确.对于B24=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===,因为()0,πC ∈,所以sin 0C >,的的从而sin C===又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.小问2详解】由(1)可得π3B=,cos C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin12462A⎛⎫⎛⎫==+=+=⎪ ⎪⎝⎭⎝⎭由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为211sin22ABCS ab C===,由已知ABC面积为323=+,所以c=16. 已知(0,3)A和33,2P⎛⎫⎪⎝⎭为椭圆2222:1(0)x yC a ba b+=>>上两点.(1)求C的离心率;(2)若过P的直线l交C于另一点B,且ABP的面积为9,求l的方程.【答案】(1)12(2)直线l的方程为3260x y--=或20x y-=.【的【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设()00,B x y22001129x y ⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫-- ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443kx k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =,解得32k =,此时33,2B ⎛⎫--⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PABd = ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k xk k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin DFE ∠=tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,DE =,又242xCE -==,而EFC 为等腰直角三角形,所以EF =,故tan DFE∠==x =AD =.18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析 (3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2023年新高考1卷数学真题试卷附详解

2023年高考数学试卷新课标Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A. {}2,1,0,1--B. {}0,1,2C. {}2-D. 22. 已知1i22iz -=+,则z z -=( ) A.i -B. iC. 0D. 13. 已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+,则( ) A. 1λμ+= B. 1λμ+=- C. 1λμ= D. 1λμ=-4. 设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A. (],2-∞-B. [)2,0-C. (]0,2D. [)2,+∞5. 设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ( )A.B.C.D.6. 过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.C.D.7. 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 8. 已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ). A.79 B.19C. 19-D. 79-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10. 噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ). A. 12p p ≥ B. 2310p p > C. 30100p p =D. 12100p p ≤11. 已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A. ()00f =B. ()10f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点12. 下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有( )A. 直径为0.99m 的球体B. 所有棱长均为1.4m 的四面体C. 底面直径为0.01m ,高为1.8m 的圆柱体D. 底面直径为1.2m ,高为0.01m 的圆柱体三、填空题:本题共4小题,每小题5分,共20分.13. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14. 在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===,则该棱台的体积为________.15. 已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.16. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.18. 如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P . 19. 已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+. 20. 设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求d .21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .22. 在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于2023年高考数学试卷新课标Ⅰ卷答案一、选择题.1. C解:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C . 2. A解:因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-. 故选:A . 3. D解:因为()()1,1,1,1a b ==-,所以()1,1a b λλλ+=+-,()1,1a b μμμ+=+- 由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= 即()()()()11110λμλμ+++--=,整理得:1λμ=-. 故选:D . 4. D解:函数2xy =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥.所以a 的取值范围是[)2,+∞. 故选:D. 5. A解:由21e ,得22213e e =,因此2241134a a --=⨯,而1a >,所以a =故选:A. 6. B解:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =过点()0,2P -作圆C 的切线,切点为,A B因为PC ==,则PA ==可得sin APC APC ∠==∠==则sin sin 22sin cos 2APB APC APC APC ∠=∠=∠∠==22221cos cos 2cos sin 04APB APC APC APC ∠=∠=∠-∠=-=-<⎝⎭⎝⎭即APB ∠为钝角.所以()sin sin πsin 4APB APB =-∠=∠=α. 故选:B. 7. C解:甲:{}n a 为等差数列,设其首项为1a ,公差为d 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+ 因此{}nS n为等差数列,则甲是乙的充分条件. 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥ 两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立 因此{}n a 为等差数列,则甲是乙的必要条件. 所以甲是乙的充要条件,C 正确. 故选:C. 8. B解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=则2sin()sin cos cos sin 3αβαβαβ+=+=所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=. 故选:B.二、选择题.9. BD解:对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n 则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小 例如:1,2,3,4,5,6,可得 3.5m n ==. 例如1,1,1,1,1,7,可得1,2m n ==. 例如1,2,2,2,2,2,可得112,6m n ==;故A 错误; 对于选项B :不妨设123456x x x x x x ≤≤≤≤≤可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确; 对于选项C :因为1x 是最小值,6x 是最大值则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差例如:2,4,6,8,10,12,则平均数()12468101276n =+++++= 标准差1s ==4,6,8,10,则平均数()14681074m =+++= 标准差2s ==5>,即12s s >;故C 错误; 对于选项D :不妨设123456x x x x x x ≤≤≤≤≤则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确; 故选:BD. 10. ACD解:由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈= 对于选项A :可得1212100220lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯ 因为12p p L L ≥,则121220lg0p p p L L p =-⨯≥,即12lg 0pp ≥ 所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确; 对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯ 因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥ 所以23pp ≥23,0p p >,可得23p ≥ 当且仅当250p L =时,等号成立,故B 错误; 对于选项C :因为33020lg40p p L p =⨯=,即30lg 2pp =可得3100p p =,即30100p p =,故C 正确; 对于选项D :由选项A 可知:121220lgp p p L L p =-⨯ 且12905040p p L L ≤-=-,则1220lg40p p ⨯≤ 即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确; 故选:ACD. 11. ABC解:因为22()()()f xy y f x x f y =+对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确. 对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=令21,()()(1)()y f x f x x f f x =--=+-=又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误. 12. ABD解:对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长 所以能够被整体放入正方体内,故A 正确;对于选项B :, 1.4> 所以能够被整体放入正方体内,故B 正确;对于选项C :, 1.8< 所以不能够被整体放入正方体内,故C 正确;对于选项D :, 1.2>设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h如图,结合对称性可知:11111110.62OC C A C O OC OO ===-= 则1111C O h AA C A =,即0.61h -=解得10.340.012h =>> 所以能够被整体放入正方体内,故D 正确; 故选:ABD.三、填空题.13. 64解:(1(当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2(当从8门课中选修3门①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种. 故答案为:64. 14.解:如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高因为1112,1,AB A B AA ===则111111111122222AO AC B AO AC ======故()1112AM AC A C =-=,则1A M ===所以所求体积为1(413V =⨯++=故答案为:6. 15. [2,3)解:因为02x π≤≤,所以02x πωω≤≤ 令()cos 10f x x ω=-=,则cos 1x ω=有3个根 令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<故答案为:[2,3).16.解:依题意,设22AF m =,则2113,22BF m BF AF a m ===+在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m=-(舍去)所以124,2AF a AF a ==,213BF BF a ==,则5AB a = 故11244cos 55AF a F AF ABa ∠===所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =故5c e a ==.四、解答题.17. (1 (2)6 【小问1详解】3A B C += π3C C ∴-=,即π4C =又2sin()sin sin()A C B A C -==+2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+ sin cos 3cos sin A C A C ∴= sin 3cos A A ∴=即tan 3A =,所以π02A <<sin10A ∴==. 【小问2详解】由(1)知,cos10A ==由sin sin()B A C =+sin cos cos sin A C A C =+=+=由正弦定理,sin sin c bC B=,可得52b ==11sin 22AB h AB AC A ∴⋅=⋅⋅sin 6h b A ∴=⋅==. 18. (1)证明见解析 (2)1 【小问1详解】以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A2222(0,2,1),(0,2,1)B C A D ∴=-=- 2222B C A D ∴∥又2222B C A D ,不在同一条直线上2222B C A D ∴∥.【小问2详解】 设(0,2,)(04)P λλ≤≤则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---设平面22PA C 的法向量(,,)n x y z =则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ 令 2z =,得3,1y x λλ=-=-(1,3,2)n λλ∴=--设平面222A C D 的法向量(,,)m a b c =则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ 令 1a =,得1,2==b c(1,1,2)m ∴=cos ,cos1506n m n m n m⋅∴===︒=化简可得,2430λλ-+= 解得1λ=或3λ=(0,2,1)P ∴或(0,2,3)P21B P ∴=.19. (1)答案见解析 (2)证明见解析 【小问1详解】解:因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减; 当ln x a >-时,0fx,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增. 【小问2详解】由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立. 令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增.所以()2min 1ln 02222g a g ⎛⎛==--=>⎝⎭⎝⎭,则()0g a >恒成立. 所以当0a >时,3()2ln 2f x a >+恒成立,证毕. 20.(1)3n a n = (2)5150d =【小问1详解】21333a a a =+,132d a d ∴=+,解得1a d = 32133()6d d S a a =+==∴又31232612923T b b b d d d d=++=++= 339621S T d d∴+=+= 即22730d d -+=,解得3d =或12d =(舍去) 1(1)3n a a n d n ∴=+-⋅=.【小问2详解】{}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+ 2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d = 1d >,0n a ∴>又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去) 当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解; 当1a d =时,501495051a a d d =+==,解得5150d =. 综上,5150d =. 21. (1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 【小问1详解】记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.【小问2详解】设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+ 构造等比数列{}i p λ+设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭ 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. 【小问3详解】因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅ 所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- 故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 22. (1)214y x =+ (2)见解析 【小问1详解】设(,)P x y ,则y =两边同平方化简得214y x =+ 故21:4W y x =+. 【小问2详解】法一:设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0.则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<- 同理令0BC k b c n =+=>,且1mn =-,则1m n=-设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+则11||||(((2C AB BC b a c b c a n n ⎛=+=--≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令()0f x '=,解得x =当0,2x ⎛∈ ⎝⎭时,()0f x '<,此时()f x 单调递减当,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增则min 27()4f x f ==⎝⎭故122C ≥=,即C ≥当C =时,n m ==,且((b a b a -=-,即m n =时等号成立,矛盾,故C >得证.法二:不妨设,,A B D 在W 上,且BA DA ⊥依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线BA ,DA 的斜率均存在且不为0则设BA ,DA 的斜率分别为k 和1k-,由对称性,不妨设1k ≤ 直线AB 的方程为21()4y k x a a =-++则联立22141()4y x y k x a a ⎧=+⎪⎪⎨⎪=-++⎪⎩得220x kx ka a -+-=()()222420k ka a k a ∆=--=->,则2k a ≠则||2|AB k a =-同理||2AD a =+||||2|2AB AD k a a ∴+=-1122k a a k k ⎫≥-++≥+=⎪⎭令2k m =,则(]0,1m ∈,设32(1)1()33m f m m m m m+==+++则2221(21)(1)()23m m f m m m m '-+=+-=,令()0'=f m ,解得12m =当10,2m ⎛⎫∈ ⎪⎝⎭时,()0f m '<,此时()f m 单调递减 当1,2m ⎛⎫∈+∞⎪⎝⎭,()0f m '>,此时()f m 单调递增 则min 127()24f m f ⎛⎫==⎪⎝⎭||||AB AD ∴+≥但12|2|2|2k a a k a a k ⎫-+≥-++⎪⎭,此处取等条件为1k =,与最终取等时k =,故AB AD +>. 法三:为了计算方便,我们将抛物线向下移动14个单位得抛物线2:W y x '=,\矩形ABCD 变换为矩形A B C D '''',则问题等价于矩形A B C D ''''的周长大于设 ()()()222001122,,,,,B t t A t t C t t ''', 根据对称性不妨设 00t ≥.则 1020,A B B C k t t k t t ''''=+=+, 由于 A B B C ''''⊥, 则 ()()10201t t t t ++=-.由于 1020,A B t B C t ''''=-=-, 且 0t 介于 12,t t 之间,则 1020A B B C t t ''''+=--. 令 20tan t t θ+=10πcot ,0,2t t θθ⎛⎫+=-∈ ⎪⎝⎭,则2010tan ,cot t t t t θθ=-=--,从而))002cot tan 2A B B C t t θθ''''+=++-故330022222(cos sin )11sin cos sin cos 2sin cos cos sin sin cos sin cos t A B B C t θθθθθθθθθθθθθθ''''-+⎛⎫+=-++=+ ⎪⎝⎭①当π0,4θ⎛⎤∈ ⎥⎝⎦时第 21 页 共 21 页332222sin cos sin cos sin cos cos sin A B B C θθθθθθθθ''''++≥=+≥=≥ ②当 ππ,42θ⎛⎫∈⎪⎝⎭ 时,由于102t t t <<,从而000cot tan t t t θθ--<<- 从而0cot tan 22t θθ-<<又00t ≥ 故0tan 02t θ≤<,由此330222(cos sin )sin cos sin cos sin cos t A B B C θθθθθθθθ''''-++=+ 3323222sin (cos sin )(sin cos )sin cos 1cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-+>+=+==2≥≥=当且仅当cos 3θ=时等号成立,故A B B C ''''+>,故矩形周长大于。
2019版高中数学新课程标准测试题及答案

高中数学新课标测试题一选择题:1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。
普通高级中学新数学课程标准试题(含答案)

普通高级中学新数学课程标准试题(含答案)第一部分:选择题1. 以下哪个是二次方程的解?A. x = 2B. x = -3C. x = 1D. x = 0答案:B2. 一条直线的斜率是2,过点(3, 4),则直线方程为:A. y = 2x - 6B. y = 2x + 2C. y = 4x + 1D. y = 2x + 4答案:D3. 若a = 3,b = 4,c = 5,则直角三角形的斜边长度为:A. 6B. 8C. 10D. 12答案:C4. 已知函数f(x) = x^2 + 3x + 2,求f(1)的值。
A. 2B. 4C. 6D. 8答案:65. 一辆汽车以每小时60公里的速度行驶,2小时后行驶的距离为:A. 30公里B. 60公里C. 90公里D. 120公里答案:120公里第二部分:填空题1. 一个等差数列的公差是3,首项是4,第5项是__。
答案:162. 一个等比数列的公比是2,首项是3,第4项是__。
答案:243. 设两个数的和是8,差是2,则这两个数分别为__和__。
答案:5和34. 已知直角三角形的直角边长分别为3和4,则斜边长为__。
答案:55. 若a = 3,b = 4,则a^2 + b^2 = __。
答案:25第三部分:解答题1. 解方程:2x + 5 = 15解答:2x + 5 = 152x = 15 - 52x = 10x = 10 / 2x = 52. 计算下列算式的值:(3 + 4) × 2 - 5解答:(3 + 4) × 2 - 57 × 2 - 514 - 593. 求直角三角形的斜边长。
已知直角边长分别为6和8。
解答:斜边长= √(6^2 + 8^2)斜边长= √(36 + 64)斜边长= √100斜边长 = 104. 若函数f(x) = 2x + 3,求f(4)的值。
解答:f(x) = 2x + 3f(4) = 2(4) + 3f(4) = 8 + 3f(4) = 115. 求一个等差数列的第10项,已知公差为3,首项为2。
高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析1.执行如图1所示的程序框图,如果输入的,则输出的属于()A.B.C.D.【答案】D【解析】当时,运行程序如下,,当时,,则,故选D.【考点】程序框图二次函数2.过点引直线分别交轴正半轴于两点,当面积最小时,直线的方程是__________.【答案】【解析】设直线方程为(当且仅当即时取等号 ) .【点晴】本题主要考查直线方程和重要不等式,属于中档题型.但是本题比较容易犯错,使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图像,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型.3.如图,输入时,则输出的________.【答案】【解析】由算法流程图提供的算法程序可知:当时,输出,应选答案C。
4.二项式的展开式中常数项是()A.-28B.-7C.7D.28【答案】C【解析】常数项,故选B.【考点】二项式的展开式.5.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.6.设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)当时,||+||,利用零点分段法解不等式或者利用图象解不等式;(2)若不等式的对一切恒成立,则,因为时,,故恒成立,,.试题解析:(1)解:||+||,即或或或或所以原不等式的解集为[](2)||+||对一切恒成立,,恒成立,即恒成立,当时,,【考点】1、绝对值不等式解法;2、函数的最值.7.已知函数,设为的导函数,根据以上结果,推断_____________.【答案】【解析】.8.用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A.方程至多有一个实根B.方程至少有一个实根C.方程至多有两个实根D.方程恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.9.若,则的值是()A.6B.4C.3D.2【答案】D【解析】略10.某长方体的三视图如右图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为,则该长方体的全面积为()A.B.C.6D.10【答案】B【解析】由三视图设长方体中同一顶点出发的三条棱长为、、,则有,解方程组得到,所以该长方体的面积为,故选B.【考点】1、空间几何体的三视图;2、空间几何体的表面积.11.利用数学归纳法证明不等式的过程中,由变成时,左边增加了()A.1项B.项C.项D.项【答案】D【解析】由题意得,当时,不等式的左侧为,当时,不等式的左侧为,所以变成时,左边增加了,共有项,故选D.【考点】数学归纳法.12.已知圆与圆的公共点的轨迹为曲线,且曲线与轴的正半轴相交于点.若曲线上相异两点满足直线的斜率之积为.(1)求的方程;(2)证明直线恒过定点,并求定点的坐标.【答案】(1);(2)证明见解析,.【解析】(1)确定,可得曲线是长轴长,焦距的椭圆,即可求解椭圆的方程;(2)分类讨论,设出直线的方程,代入椭圆的方程,利用韦达定理,结合直线的斜率之积为,即可证直线恒过定点,并求出定点的坐标.试题解析:(1)设⊙,⊙的公共点为,由已知得,,故,因此曲线是长轴长,焦距的椭圆,所以曲线;(2)由曲线的方程得,上顶点,记,若直线的斜率不存在,则直线的方程为,故,且,因此,与已知不符,因此直线AB的斜率存在,设直线,代入椭圆:①因为直线与曲线有公共点,所以方程①有两个非零不等实根,故,又,,由,得即所以化简得:,故或,结合知,即直线恒过定点.【考点】椭圆的标准方程;直线与椭圆的位置关系的应用.【方法点晴】本题主要考查了椭圆的标准方程、直线与椭圆的位置关系的应用、判定直线过定点问题等知识点的综合考查,解答中设出直线的方程,代入椭圆的方程,利用判别式和根与系数的关系及韦达定理,结合直线的斜率之积为是解答本题的关键,注重考查了分析问题和解答问题的能力及转化与化归思想的应用,试题有一定的难度,属于中档试题.13.在△ABC中,角A,B,C的对边分别为a,b,c,cos=.(1)求cos B的值;(2)若,b=2,求a和c的值.【答案】(1)(2)【解析】解:(1)∵cos=,∴sin=, 2分∴cos B=1-2sin2=. 5分(2)由可得a·c·cos B=2,又cos B=,故ac=6, 6分由b2=a2+c2-2ac cos B可得a2+c2=12, 8分∴(a-c)2=0,故a=c,∴a=c=10分【考点】解三角形点评:解决的关键是根据诱导公式以及二倍角公式和向量的数量积结合余弦定理来求解,属于中档题。
普通高中新数学课程标准的测试题(包括答案)

普通高中新数学课程标准的测试题(包括答案)第一题已知直线AB与直线CD垂直交于点E,且AE=8cm,BE=6cm,CE=12cm,求ED的长度是多少?答案:根据直角三角形的勾股定理可得,ED的长度为10cm。
第二题已知函数f(x) = 2x^2 + 3x - 5,求f(x)的最小值点的横坐标是多少?答案:首先,可以通过求导数的方法找到f(x)的最小值点。
对f(x)求导得到f'(x) = 4x + 3。
令f'(x) = 0,解得x = -3/4。
所以,f(x)的最小值点的横坐标为-3/4。
第三题已知集合A = {1, 2, 3, 4, 5},集合B = {3, 4, 5, 6, 7},求A与B的交集和并集分别是哪些元素?答案:A与B的交集是{3, 4, 5},并集是{1, 2, 3, 4, 5, 6, 7}。
第四题已知三角形ABC的三个内角分别为30°,60°,90°,求三角形ABC的周长。
答案:根据三角形的性质可知,三角形ABC是一个特殊的30°-60°-90°三角形。
设BC = x,则AC = x√3,AB = 2x。
所以,三角形ABC的周长为x + x√3 + 2x = (3 + √3)x。
第五题已知函数f(x) = 3x^2 - 2x + 4,求f(x)的对称轴方程。
答案:对称轴方程可以通过求函数f(x)的一阶导数的零点得到。
对f(x)求导得到f'(x) = 6x - 2。
令f'(x) = 0,解得x = 1/3。
所以,f(x)的对称轴方程为x = 1/3。
第六题已知等差数列的首项是2,公差是5,求该等差数列的前10项之和。
答案:等差数列的前n项和可以通过公式Sn = (n/2)(a + l)得到,其中Sn表示前n项和,a表示首项,l表示末项。
根据已知条件,首项a = 2,公差d = 5,所以末项l = a + (n-1)d = 2 + 9*5 = 47。
新课标高中数学必修二综合试题及答案
高中新课标数学必修②测试卷(4)班别 _____ 姓名 ____________ 座号 ____ 分数______一. 选择题 (每小题4分,共48分)1. 直线0x a ++=(a 为实常数)的倾斜角的大小是( D ).A.030 B. 060 C. 0120 D. 0150 2. 到直线3410x y --=的距离为2的直线方程是( B ).A. 34110x y --=B. 34110x y --=或3490x y -+=C. 3490x y -+=D. 34110x y -+= 或 3490x y --= 3. 下列说法正确的是( C ).A. 经过定点0P (0x ,0y )的直线都可以用方程00()y y k x x -=-表示.B. 经过不同两点1P (1x ,1y ),2P (2x ,2y )的直线都可以用方程112121y y x x y y x x --=--表示.C. 经过定点0P (0,b )且斜率存在的直线都可以用方程y kx b =+表示.D. 不过原点的直线都可以用方程1x ya b+=表示. 4. 无论m 为何值,直线1(2)y m x +=-总过一个定点,其中m R ∈,该定点坐标为( D ). A.(1,2-) B.(1-,2) C.(2-,1-) D.(2,1-) 5. 若直线1l :()34350m x y m +++-=与2l :()2580x m y ++-=平行,则m 的值为( A ).A. 7-B. 17--或C. 6-D. 133-6. 一条直线与一个平面内的( D )都垂直,则该直线与此平面垂直.A. 无数条直线B. 两条直线C. 两条平行直线D.两条相交直线 7. 下列四个命题中错误的个数是( B ). ① 垂直于同一条直线的两条直线相互平行 ② 垂直于同一个平面的两条直线相互平行③ 垂直于同一条直线的两个平面相互平行 ④ 垂直于同一个平面的两个平面相互垂直A. 1B. 2C. 3D. 48. 半径为R 的球内接一个正方体,则该正方体的体积是( C ).A. 3B.343R π3D. 39R 9. 下列命题中错误的是( B ). A. 若//,,m n n m βα⊥⊂,则αβ⊥B. 若α⊥β,a ⊂α,则a ⊥βC. 若α⊥γ,β⊥γ,l αβ=,则l ⊥γD. 若α⊥β,aβ=AB ,a //α,a⊥AB ,则a ⊥β10. P 为ABC 所在平面外一点,PB PC =,P 在平面ABC 上的射影必在ABC 的( A ).A. BC 边的垂直平分线上B. BC 边的高线上C. BC 边的中线上D. BAC ∠的角平分线上11. 圆1C :222880x y x y +++-=与圆2C 224420x y x y +-+-=的位置关系是( A ). A. 相交 B. 外切 C. 内切 D. 相离 12. 直线()110a x y +++=与圆2220x y x +-=相切,则a 的值为( C ).A. 1,1-B. 2-C. 1-D. 1 二. 填空题(每小题4分,共20分)1. 圆224460x y x y +-++=截直线50x y --=所得的弦长为, 2. 过点(1,2)且与直线210x y +-=平行的直线的方程是 250x y +-= 3. 过点A (0,1),B (2,0)的直线的方程为 220x y +-= .4. 已知各面均为等边三角形的四面体的棱长 为2,则它的表面积是5. 如图,在正方体111ABCD A B C D -中,异面 直线1A D 与1D C 所成的角为 060 度;直线1A D 与平面11AB C D 所成的角为 030 度.三. 解答题(第1、2题各9分,第3题14分,共1. 求经过两条直线1l :3420x y +-=与2l :220x y ++=的交点P ,且垂直于直线3l :210x y --=直线l 的方程.1解:由3420220x y x y +-=⎧⎨++=⎩ 解得22x y =-⎧⎨=⎩∴ 点P 的坐标是(2-,2) ∵ 所求直线l 与3l 垂直,∴ 设直线l 的方程为 20x y C ++= 把点P 的坐标代入得 ()2220C ⨯-++= ,得2C =∴ 所求直线l 的方程为 220x y ++= 2. 已知圆心为C 的圆经过点A (0,6-),B (1,5-),且圆心在直线l :10x y -+=上,求圆心为C的圆的标准方程. 解:因为A (0,6-),B (1,5-),所以线段AB 的中点D 的坐标为111,22⎛⎫- ⎪⎝⎭,直线AB 的斜率 ()56110AB k ---==-,因此线段AB 的垂直平分线'l 的方程是11122y x ⎛⎫+=-- ⎪⎝⎭, 即 50x y ++=圆心C 的坐标是方程组 5010x y x y ++=⎧⎨-+=⎩,的解.解此方程组,得 32x y =-⎧⎨=-⎩,所以圆心C 的坐标是(3-,2-). 圆心为C 的圆的半径长所以,圆心为C 的圆的标准方程是3. 如图:在三棱锥S ABC -中,已知点D 、E 、F 分别为棱AC 、SA 、SC 的中点. ①求证:EF ∥平面ABC .②若SA SC =,BA BC =,求证:平面SBD ⊥平面ABC . 解:①证明:∵EF 是SAC 的中位线,∴EF ∥AC ,B又∵EF ⊄平面ABC ,AC ⊂平面ABC ,∴EF ∥平面ABC .②证明:∵SA SC =,AD DC = ∴SD ⊥AC , ∵BA BC =,AD DC = ∴BD ⊥AC ,又∵SD ⊂平面SBD ,BD ⊂平面SBD ,SD DB D =,∴AC ⊥平面SBD , 又∵AC ⊂平面ABC , ∴平面SBD ⊥平面ABC .。
高一数学高中数学新课标人教B版试题答案及解析
高一数学高中数学新课标人教B版试题答案及解析1.若的图像是()【答案】B【解析】主要考查指数函数与对数函数的图象和性质、指数函数与对数函数互为反函数关系。
解:,所以,,故选B。
2.设任意实数x0>x1>x2>x3>0,要使1993+1993+1993≥k•1993恒成立,则k的最大值是.【答案】9【解析】先利用换底公式进行化简,然后令a=lgx0﹣lgx1,b=lgx1﹣lgx2,c=lgx2﹣lgx3,将题目转化成不等式恒成立问题,最后利用柯西不等式求出最值即可求出所求.解:要使1993+1993+1993≥k•1993恒成立即使++≥k•恒成立令a=lgx0﹣lgx1,b=lgx1﹣lgx2,c=lgx2﹣lgx3,而x>x1>x2>x3>0∴a>0,b>0,c>0即使得≥k•(a>0,b>0,c>0)恒成立即k≤()(a+b+c)的最小值根据柯西不等式可知()(a+b+c)≥(++)2=(1+1+1)2=9∴k的最大值是9故答案为:9点评:本题主要考查了函数恒成立问题,以及柯西不等式的应用,同时考查了转化的思想,属于中档题.3.已知x+5y+3z=1,则x2+y2+z2的最小值为.【答案】【解析】利用题中条件:“x+5y+3z=1”构造柯西不等式:(x2+y2+z2)×(1+25+9 )≥(x+5y+3z)2这个条件进行计算即可.证明:∵35=1+25+9,∴35(x2+y2+z2)=(x2+y2+z2)×(1+25+9 )≥(x+5y+3z)2=1可得:x2+y2+z2≥,即x2+y2+z2的最小值为,故答案为:.点评:本题考查用综合法证明不等式,关键是利用:(x2+y2+z2)×(1+25+9 )≥(x+5y+3z)2.4.(不等式选讲)若实数x,y,z满足x2+y2+z2=9,则x+2y+3z的最大值是.【答案】【解析】由柯西不等式可得:(x2+y2+z2)×(12+22+32)≥(x+2y+3z)2,结合已知x2+y2+z2=9,可求x+2y+3z的最大值.解:由柯西不等式可得:(x2+y2+z2)×(12+22+32)≥(x+2y+3z)2已知x2+y2+z2=9,∴(x+2y+3z)2≤9×14,∴x+2y+3z的最大值是.故答案为:.点评:本题考查柯西不等式,构造柯西不等式(x2+y2+z2)×(12+22+32)≥(x+2y+3z)2是关键.5.(2007•北京)如果正数a,b,c,d满足a+b=cd=4,那么()A.ab≤c+d且等号成立时a,b,c,d的取值唯一B.ab≥c+d且等号成立时a,b,c,d的取值唯一C.ab≤c+d且等号成立时a,b,c,d的取值不唯一D.ab≥c+d且等号成立时a,b,c,d的取值不唯一【答案】A【解析】根据均值不等式分别有:;;则a,b,c,d满足a+b=cd=4,进而可得2化简即得.当且仅当a=b=c=d=2时取等号.解:如果a,b是正数,则根据均值不等式有:,则(a+b)2≥4ab如果c,d是正数,则根据均值不等式有:;则∵a,b,c,d满足a+b=cd=4,∴2当且仅当a=b=c=d=2时取等号.化简即为:ab≤c+d且等号成立时a,b,c,d的取值唯一.故选A.点评:要熟练使用均值不等式,能正用、逆用,而且还要会变用.使用时还要特别注意等号成立的条件.6.设a1,a2,…,an为实数,证明:≤.【答案】见解析【解析】利用排序原理,n个式子相加,可得n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得结论.证明:不妨设a1≤a2≤…≤an,则由排序原理得:a 12+a22+…+an2=a1a1+a2a2+…+anana 12+a22+…+an2≤a1a2+a2a3+…+ana1a 12+a22+…+an2≤a1a3+a2a4+…+an﹣1a1+a n a2…a 12+a22+…+an2≤a1an+a2a1+…+anan﹣1.将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式两边除以n2,并开方可得:≤.点评:本题考查排序原理,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.7.设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.【答案】见解析【解析】不妨设a1>a2>…>an>0,则a12>a22>…>an2,,由排序原理:乱序和≥反序和,可得结论.证明:不妨设a1>a2>…>an>0,则a12>a22>…>an2,由排序原理:乱序和≥反序和,可得:++…++≥=a1+a2+…+an.点评:本题考查不等式的证明,考查排序原理:乱序和≥反序和,考查学生分析解决问题的能力,属于中档题.8.设a,b,c是正实数,求证:a a b b c c≥(abc).【答案】见解析【解析】不妨设a≥b≥c>0,则lga≥lgb≥lgc,据排序不等式,可得三个不等式,相加,即可得出结论.证明:不妨设a≥b≥c>0,则lga≥lgb≥lgc.据排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(a a b b c c)≥lg(abc)故a a b b c c≥(abc).点评:本题考查不等式的证明,考查排序不等式,考查学生分析解决问题的能力,属于中档题.9.(2011•绵阳二模)若不等式|x﹣a|﹣|x|<2﹣a2当x∈R时总成立,则实数a的取值范围是()A.(﹣2,2)B.(﹣2,1)C.(﹣1,1)D.(﹣∞,﹣1)∪(1,+∞)【答案】C【解析】先利用绝对值不等式的性质:﹣|a+b|≤|a|﹣|b|≤|a+b|,去绝对值符号确定|x﹣a|﹣|x|的取值范围,然后让2﹣a2大于它的最大值即可.解:令y=|x﹣a|﹣|x|≤|a|所以要使得不等式|x﹣a|﹣|x|<2﹣a2当x∈R时总成立只要2﹣a2≥|a|即可∴a∈(﹣1,1)故选C.点评:本题主要考查不等式恒成立问题.关键是利用结论:大于一个函数式只需要大于它的最大值即可.10.(2014•南昌三模)若关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,则实数a的取值范围为()A.(0,1)B.(﹣1,0)C.(﹣∞,﹣1)D.(﹣∞,﹣1)∪(0,+∞)【答案】D【解析】依题意,关于x的不等式|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集⇔a2+a+1>|x﹣1|﹣|x﹣2|恒成立,构造函数f(x)=|x﹣1|﹣|x﹣2|,可求其最大值,从而可解关于a的不等式即可.解:∵|x﹣1|﹣|x﹣2|≥a2+a+1(x∈R)的解集为空集,∴a2+a+1>|x﹣1|﹣|x﹣2|恒成立,构造函数f(x)=|x﹣1|﹣|x﹣2|=,则a2+a+1>f(x)max ,∵f(x)max=1,∴a2+a+1>1,∴a2+a>0,解得a>0或a<﹣1.∴实数a的取值范围为(﹣∞,﹣1)∪(0,+∞)故选D.点评:本题考查绝对值不等式的解法,考查函数恒成立问题,突出等价转化思想的应用与一元二次不等式的解法的考查,属于中档题.11.(2014•吉安二模)已知f(x)=|x﹣1|+|x+m|(m∈R),g(x)=2x﹣1,若m>﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,则实数m的取值范围是()A.(﹣1,﹣]B.(﹣1,﹣)C.(﹣∞,﹣]D.(﹣1,+∞)【答案】B【解析】依题意,x∈[﹣m,1]时,f(x)=1﹣x+x+m=1+m;又x∈[﹣m,1],不等式f(x)<g(x)恒成立,问题转化为1+m<g(x)min=﹣2m﹣1恒成立,从而可得答案.解:∵f(x)=|x﹣1|+|x+m|,∴当m>﹣1,x∈[﹣m,1]时,f(x)=1﹣x+x+m=1+m;又g(x)=2x﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,即1+m<2x﹣1(x∈[﹣m,1])恒成立,又当x∈[﹣m,1]时,g(x)min =﹣2m﹣1,∴1+m<﹣2m﹣1,解得:m<﹣,又m>﹣1,∴﹣1<m<﹣.故选:B.点评:本题考查绝对值不等式的解法,考查等价转化思想与综合运算能力,属于中档题.12.(2014•安徽模拟)已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2,则关于x 的不等式:|x﹣1|+|x﹣3|≥m的解集为()A.(﹣∞,0]B.[4,+∞)C.(0,4]D.(﹣∞,0]∪[4,+∞)【答案】D【解析】(1)已知关于x的不等式:|2x﹣m|≤1,化简为,再利用不等式整数解有且仅有一个值为2,求出m的值.(2)可以分类讨论,根据讨论去掉绝对值,然后求解.解:(1)由不等式|2x﹣m|≤1,可得,∵不等式的整数解为2,∴,解得3≤m≤5.再由不等式仅有一个整数解2,∴m=4.(2)(2)本题即解不等式|x﹣1|+|x﹣3|≥4,当x≤1时,不等式等价于1﹣x+3﹣x≥4,解得x≤0,不等式解集为{x|x≤0}.当1<x≤3时,不等式为x﹣1+3﹣x≥4,解得x∈∅,不等式解为∅.当x>3时,x﹣1+x﹣3≥4,解得x≥4,不等式解集为{x|x≥4}.综上,不等式解为(﹣∞,0]∪[4,+∞).故选D.点评:此题考查绝对值不等式的性质及其解法,这类题目是高考的热点,难度不是很大,要注意进行分类讨论,解题的关键是去掉绝对值,属于中档题.13.(2014•武汉模拟)若关于x的不等式|x﹣3|+|x﹣4|<a的解集是空集,则实数a的取值范围是()A .(﹣∞,1]B .(﹣∞,1)C .[1,+∞)D .(1,+∞)【答案】A【解析】不等式|x ﹣3|+|x ﹣4|<a 的解集是空集⇔|x ﹣3|+|x ﹣4|≥a 恒成立,令f (x )=|x ﹣3|+|x ﹣4|,利用绝对值不等式可求得f (x )min =1,从而可得答案. 解:∵不等式|x ﹣3|+|x ﹣4|<a 的解集是空集, ∴|x ﹣3|+|x ﹣4|≥a 恒成立,令f (x )=|x ﹣3|+|x ﹣4|,则a≤f (x )min .∵f (x )=|x ﹣3|+|x ﹣4|≥|(x ﹣3)﹣(x ﹣4)|=1,即f (x )min =1, ∴a≤1,即实数a 的取值范围是(﹣∞,1], 故选:A .点评:本题考查绝对值不等式的解法,考查绝对值不等式的应用,突出等价转化思想的考查,属于中档题.14. (2014•郴州三模)在平面直角坐标系xOy 中,已知P 是函数f (x )=xlnx ﹣x 的图象上的动点,该曲线在点P 处的切线l 交y 轴于点M (0,y M ),过点P 作l 的垂线交y 轴于点N (0,y N ).则的范围是( )A .(﹣∞,﹣1]∪[3,+∞)B .(﹣∞,﹣3]∪[1,+∞)C .[3,+∞)D .(﹣∞,﹣3]【答案】A【解析】设出P 的坐标,求导函数,可得曲线在点P 处的切线l 的方程,过点P 作l 的垂线的方程,令x ﹣0,可得y M =﹣a ,y N =alna ﹣a+,进而可求=﹣lna+1﹣,利用基本不等式,即可求出的范围.解:设P (a ,alna ﹣a ),则 ∵f (x )=xlnx ﹣x , ∴f′(x )=lnx ,∴曲线在点P 处的切线l 的方程为y ﹣alna+a=lna (x ﹣a ),即y=﹣a+xlna . 令x=0,可得y M =﹣a ,过点P 作l 的垂线的方程为y ﹣alna+a=﹣(x ﹣a ),令x=0,可得y N =alna ﹣a+,∴=﹣lna+1﹣,∵lna+≥2或lna+≤﹣2,∴﹣(lna+)≤﹣2或﹣(lna+)≥2, ∴=﹣lna+1﹣的范围是(﹣∞,﹣1]∪[3,+∞).故选A .点评:本题考查导数知识的运用,考查导数的几何意义,考查基本不等式的运用,属于中档题.15. (2014•长春三模)已知函数f (x )=x 2的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))处的切线互相垂直,并交于点P ,则点P 的坐标可能是( ) A .(﹣,3)B .(0,﹣4)C .(2,3)D .(1,﹣)【答案】D【解析】由已知函数解析式求得A ,B 的坐标,求出原函数的导函数,得到函数在A ,B 两点出的导数值,由图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))处的切线互相垂直得到,由点斜式写出过A ,B 两点的切线方程,通过整体运算求得,即P 点纵坐标为,然后逐一核对四个选项可得答案. 解:由题意可知,(x 1≠x 2),由f (x )=x 2,得f′(x )=2x ,则过A ,B 两点的切线斜率k 1=2x 1,k 2=2x 2, 又切线互相垂直, ∴k 1k 2=﹣1,即.两条切线方程分别为,联立得(x 1﹣x 2)[2x ﹣(x 1+x 2)]=0, ∴2x ﹣(x 1+x 2)=0,x=.代入l 1得,,结合已知选项可知,P 点坐标可能是D . 故选:D .点评:本题考查利用导数研究曲线上某点处的切线方程,曲线上过某点的切线的斜率,就是该点处的导数值,考查了整体运算思想方法,是中档题.16. (2014•吉林二模)已知曲线y=﹣3lnx 的一条切线的斜率为﹣,则切点的横坐标为( )A .3B .2C .1D .【答案】B【解析】求出原函数的导函数,设出斜率为的切线的切点为(x 0,y 0),由函数在x=x 0时的导数等于2求出x 0的值,舍掉定义域外的x 0得答案. 解:由y=﹣3lnx ,得,设斜率为2的切线的切点为(x 0,y 0), 则.由,解得:x 0=﹣3或x 0=2.∵函数的定义域为(0,+∞), ∴x 0=2. 故选:B .点评:考查了利用导数求曲线上过某点切线方程的斜率,考查了基本初等函数的导数公式,是中档题.17. (2014•齐齐哈尔一模)已知曲线f (x )=x 3﹣x 2﹣(x >1),则在该曲线上点(x 0,f(x 0))处切线斜率的最小值为( ) A .7 B .8C .9D .10【答案】A【解析】先求出曲线对应函数的导数,由基本不等式求出导数的最小值,即得到曲线斜率的最小值.解:f(x)=x3﹣x2﹣(x>1)的导数f′(x)=x2﹣2x+,∴在该曲线上点(x0,f(x))处切线斜率 k=x2﹣2x+,即k=(x﹣1)2+﹣1,由函数的定义域知 x0>1,即x﹣1>0,∴k≥2﹣1=7,当且仅当(x0﹣1)2=,即x="3" 时,等号成立.∴k的最小值为7.故选A.点评:本题考查曲线的切线斜率与对应的函数的导数的关系,以及基本不等式的应用,体现了转化的数学思想.18.(2014•揭阳三模)已知函数f(x)是定义在R上的奇函数,且当x∈(﹣∞,0]时,f(x)=e﹣x﹣ex2+a,则函数f(x)在x=1处的切线方程为()A.x+y=0B.ex﹣y+1﹣e=0C.ex+y﹣1﹣e=0D.x﹣y=0【答案】B【解析】利用f(0)=0先求出a的值,设x∈(0,+∞),根据已知条件求出f(﹣x),再利用奇函数,求出f(x)在(0,+∞)上的解析式,同时可求出导函数;求出切点坐标,再求出该点处的导数即为切线的斜率,利用点斜式表示出直线方程即可.解:由题意得,f(0)=1﹣0+a=0,解得a=﹣1,∴当x∈(﹣∞,0]时,f(x)=e﹣x﹣ex2﹣1,设x∈(0,+∞),则﹣x<0,f(﹣x)=e x﹣ex2﹣1,∵f(x)是定义在R上的奇函数,∴f(x)=﹣f(﹣x)=﹣e x+ex2+1,此时x∈(0,+∞),∴f′(x)=﹣e x+2ex,∴f′(1)=e,把x=1代入f(x)=﹣e x+ex2+1得,f(1)=1,则切点为(1,1),∴所求的切线方程为:y﹣1=e(x﹣1),化简得ex﹣y﹣e+1=0,故选B.点评:本题主要考查了利用导数研究曲线上某点切线方程,奇函数性质的利用,以及函数解析式,求函数在某范围内的解析式,一般先将自变量设在该范围内,再想法转化到已知范围上去,考查了转化思想.19.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()A.B.C.D.【答案】B【解析】根据点B是点A(1,2,3)在坐标平面yOz内的正投影,得到点B与点A的纵标和竖标相同,而横标为0,写出点B的坐标,根据两点之间的距离公式,得到结果.解:∵点B是点A(1,2,3)在坐标平面yOz内的正投影,∴点B与点A的纵标和竖标相同,而横标为0,∴B的坐标是(0,2,3)∴|OB|==,故选B.点评:本题考查空间两点之间的距离公式,考查点的正投影,是一个基础题,注意在运算过程中不要出错,本题若出现是一个送分题目.20.直角坐标平面上连结点(﹣2,5)和点M的线段中点是(1,0),那么点M坐标为()A.(﹣4,5)B.(4,﹣5)C.(4,5)D.(﹣4,﹣5)【答案】B【解析】设点M的坐标为(a,b),根据题意利用中点公式可得,解得a、b的值,即可得到点M坐标.解:设点M的坐标为(a,b),根据直角坐标平面上连结点(﹣2,5)和点M的线段中点是(1,0),由中点公式可得,解得,∴点M坐标为(4,﹣5),故选B.点评:本题主要考查线段的中点公式的应用,属于中档题.。
新课标高中数学同步测试题含答案
新课标高二数学期末同步测试题说明:本试卷分第一卷和第二卷两部分,第一卷50分,第二卷100分,共150分;答题时间120分钟。
第Ⅰ卷(选择题共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.设a >0, b >0,则以下不等式中不恒成立....的是 ( )A .)11)((b a b a ++≥4B .33b a +≥22abC .222++b a ≥b a 22+D .b a -≥b a -2.△ABC 中,BC=1,B A ∠=∠2,则AC 的长度的取值范围为 ( )A .(1,21) B .(23,1)C .[1,21] D .[23,1] 3.下列四个结论中正确的个数有( )①y = sin|x |的图象关于原点对称;②y = sin(|x |+2)的图象是把y = sin|x |的图象向左平移2个单位而得; ③y = sin(x +2)的图象是把y = sin x 的图象向左平移2个单位而得;④y = sin(|x |+2)的图象是由y = sin(x +2)( x ≥0)的图象及y = -sin(x -2) ( x <0)的图象 组成的.A .1个B .2个C .3个D .4个 4.已知sin θ-cos θ=21, 则sin 3θ- cos 3θ的值为 ( )A .167 B .-1611 C .1611D .-1675.平面直角坐标系中, O 为坐标原点, 已知两点A(3, 1), B(-1, 3), 若点C 满足OC =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为( )A .3x +2y -11=0B .(x -1)2+(y -2)2=5C .2x -y=0D .x +2y -5=06.已知钝角三角形的三边分别是a,a+1,a+2,其最大内角不超过120°,则a 的取值范围是( )A .23≥a B .30<<aC .323<<a D .323<≤a 7.已知f(x )=b x +1为x 的一次函数, b 为不等于1的常数, 且g (n)=⎩⎨⎧≥-=)1()]1([)0(1n n g f n ,设a n = g (n)- g (n -1) (n ∈N ※), 则数列{a n }是( )A .等差数列B .等比数列C .递增数列D .递减数列8.定义()3nn N *∈为完全立方数,删去正整数数列1,2,3……中的所有完全立方数,得到一个新数列,这个数列的第2005项是( )A .2017B .2018C .2019D .20209.已知θ为第二象限角,且2cos2sin θθ<,那么2cos2sinθθ+的取值范围是 ( )A .(-1,0)B .)2,1(C .(-1,1)D .)1,2(--10.若对任意实数a ,函数y =5sin(312+k π,x -6π)(k ∈N)在区间[a ,a +3]上的值45出现不少于4次且不多于8次,则k 的值是( )A .2B .4C .3或4D .2或3第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.10cos 310sin 1-的值为 . 12.已知等差数列{a n }的公差d ≠0, 且a 1, a 3, a 9成等比数列, 则1042931a a a a a a ++++的值是 .13.已知向量),sin ,(cos θθ=a 向量)1,3(-=b , 则b a -2的最大值是 . 14.已知α、β是实数, 给出四个论断:①|α+β|=|α|+|β|; ②|α-β|≤|α+β|; ③|α|>22,|β|>22; ④|α+β|>5. 以其中的两个论断作为条件, 其余论断作为结论, 写出正确的一个 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)。
高二数学高中数学新课标人教A版试题答案及解析
高二数学高中数学新课标人教A版试题答案及解析1.做变速直线运动的物体的速度满足,该物体在内经过的路程为9,则的值为( ) A.1B.2C.3D.4【答案】C【解析】将区间均分成个小区间,记第个区间为,此区间长为,用小矩形面积近似代替相应的小曲边梯形的面积,则近似地等于速度曲线与直线t=0,t=a,t轴围成的曲边梯形的面积.依题意得,∴解得a=3.【考点】定积分的概念.2.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种B.30种C.40种D.60种【答案】A【解析】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=6种安排方法,甲在星期三有A22=2种安排方法,总共有12+6+2=20种;故选A.3.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.4.已知复数,则()A.B.z的实部为1C.z的虚部为﹣1D.z的共轭复数为1+i【答案】C【解析】由题意可得,所以A错;C,D均错。
所以选B5.设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值.【答案】(1) (2) 最大值是,最小值是.【解析】(1)利用函数为奇函数,建立恒等式⋯①,切线与已知直线垂直得⋯②导函数的最小值得⋯③.解得的值;(2)通过导函数求单调区间及最大值,最小值.试题解析:(1)因为为奇函数,所以即,所以, 2分因为的最小值为,所以, 4分又直线的斜率为,因此,,∴. 6分(2)单调递增区间是和. 9分在上的最大值是,最小值是. 12分【考点】奇函数的性质,求函数的导数,及通过导数研究函数的单调区间及最值.6.用反证法证明命题“如果,那么”时,假设的内容应是 ( )A.B.C.且D.或【答案】C【解析】略7.用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A.方程至多有一个实根B.方程至少有一个实根C.方程至多有两个实根D.方程恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.8.已知与之间的一组数据:则与的线性回归方程为必过点()A.B.C.D.【答案】D【解析】回归直线必过点(),而,,所以回归直线过点,故选D.【考点】线性回归直线方程9.若不等式对任意的恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】∵,∴,∴,∴,而为减函数,∴当时,函数取得最小值,最小值为1,∴.【考点】1.恒成立问题;2.函数的单调性;3.对数式.10.已知,函数,若.(1)求的值并求曲线在点处的切线方程;(2)设,求在上的最大值与最小值.【答案】(1)(2)在上有最大值1,有最小值.【解析】解:(1) ,由得,所以;当时,, ,又,所以曲线在处的切线方程为,即; 6分(2)由(1)得,又, , ,∴在上有最大值1,有最小值.- 12分【考点】导数的运用点评:主要是根据导数的几何意义求解切线方程以及函数的最值,属于中档题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课程标准考试数学试题
一、填空题(本大题共10道小题,每小题3分,共30分)
1、数学是研究(空间形式和数量关系)的科学,是刻画自然规
律和社会规律的科学语言和有效工具。
2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。
3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。
4、高中数学课程应注重提高学生的数学(思维)能力。
5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。
6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。
7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。
8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。
·
9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、
几何与(三角函数)的一种工具。
10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。
二、判断题(本大题共5道小题,每小题2分,共10分)
1、高中数学课程每个模块1学分,每个专题2学分。
(错)改:高中数学课程每个模块2学分,每个专题1学分。
2、函数关系和相关关系都是确定性关系。
(错)
改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
(对)
4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。
(对)
5、教师应成为学生进行数学探究的领导者。
(错)
(
改:教师应成为学生进行数学探究的组织者、指导者和合作者。
三、简答题(本大题共4道小题,每小题7分,共28分)
1、高中数学课程的总目标是什么
使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
2、高中数学新课程设置的原则是什么
必修课内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备;
选修课内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。
3、评价学生在数学建模中的表现时,评价内容应关注哪几个方面评价内容应关注以下几个方面:
创新性——问题的提出和解决的方案有新意。
|
现实性——问题来源于学生的现实。
真实性——确实是学生本人参与制作的,数据是真实的。
合理性——建模过程中使用的数学方法得当,求解过程合乎常理。
有效性——建模的结果有一定的实际意义。
4、请简述《必修三》中《算法初步》一章的内容与要求。
:
四、论述题(本大题共2道小题,第一小题12分,第二小题20分)
1、请完成《等差数列前n项和》第一课时的教学设计。
!
}
2、请您结合自己的教学经验,从理论和实践两个方面谈谈如何改善课堂教学中的教与
学的方式,能使学生更主动地学习
%
答案
新课程标准考试数学试题答案
一、填空题
1、空间形式和数量关系
2、基本技能
3、选择性
4、思维
5、推理与证明
6、数学建模
7、人文、社会科学
8、情感、态度、价值观
9、三角函数10、探究性课题
#
二、判断题
1、错,改:高中数学课程每个模块2学分,每个专题1学分。
2、错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
3、对。
4、对。
5、错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。
三、简答题
1、答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要
的数学素养,以满足个人发展与社会进步的需要。
2、答:必修课内容确定的原则是:满足未来公民的基本数学需求,
为学生进一步的学
!
习提供必要的数学准备;
选修课内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。
3、答:评价内容应关注以下几个方面:
创新性——问题的提出和解决的方案有新意。
现实性——问题来源于学生的现实。
真实性——确实是学生本人参与制作的,数据是真实的。
合理性——建模过程中使用的数学方法得当,求解过程合乎常理。
有效性——建模的结果有一定的实际意义。
)。