2016高中数学人教A版必修5课时作业11 等差数列

合集下载

高中数学人教A版必修5《等差数列》PPT课件

高中数学人教A版必修5《等差数列》PPT课件
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)

人教A版高中数学必修五课件《2.2.2等差数列的性质及其应用45分钟课时作业》.pptx

人教A版高中数学必修五课件《2.2.2等差数列的性质及其应用45分钟课时作业》.pptx
A.1个 B.2个 C.3个 D.4个
答案:D
解析:由等差数列的性质知①、③、④、⑤仍为等差数列.
二、填空题
6.已知等差数列an中, a3、a15是方程x2 6x 1 0的两
根,则a7 a8 a9 a10 a11 ________________ .
答案:15
解析:∵a3、a15是方程x2-6x-1=0的两根, ∴a3+a15=6=2a9,∴a9=3. ∴a7+a8+a9+a10+a11=5a9=15.
4. 15
a 75
a60
75
60 d
20
15 4 15
24.
三、解答题
9.在等差数列an中, 若a3 a8 a13 12, a3a8a13 28, 求 a n 的通项公式.
解析 :Q a3 a13 2a8, 又a3 a8 a13 12,a8 4.
由已知得
a3 a3
a13 8, a13 7,
答案:24
解析:方法一:∵{an}为等差数列, ∴a15,a30,a45,a60,a75也成等差数列,设其公差为d,则a15为首
项,a60为第4项. ∴a60=a15+3d.∴20=8+3d,解得d=4. 故a75=a60+d=20+4=24.
方法二 : a60
a15
60
15 d,d
20 8 60 15
7.等差数列an中,若a2 a6 a10 1,
则a3 a9 ________________ .
答案 : 2 3
解析 : 根据等差数列的性质a2 a10 a3 a9 2a6.由a 2Fra biblioteka6a10
1,得3a6

数学人教A版高中必修5数列专题 : 等差、等比数列的基本量计算复习(学生版)

数学人教A版高中必修5数列专题 : 等差、等比数列的基本量计算复习(学生版)

1
1 1 1 ;
n(n 1) n n 1
升级: 1 1 (1 1 )
n(n k) k n n k
变式:
n
1 2-
(n 1
2)=
1= n2 3n 2
1
(2n 1)(2n 1)
专题:数列
微专题 1:等差、等比数列的基本量计算
立足于两数列的概念,设出相应基本量:
an 等差: a1, d , n, an, Sn
bn 等比: b1, q, n,bn, Sn (方程思想)
1、已知公差不为 0 的等差数列{an}的前 n 项和为 Sn,S1+1,S3,S4 成等差数列, 且 a1,a2,a5 成等比数列。 (1)求数列{an}的通项公式; (2)若 S4,S6,Sn 成等比数列,求 n 及此等比数列的公比。
an
a1
(n 1)(3 2
2n
1)
=n 2
1, Q
a1
1 an
n2
练习:已知数列an满足 a1 2 ,且 an an1 2n (n 2, n N ) ,求数列 an
的通项公式。
4、累乘法( 形如
an f (n) an1

例:已知数列 an满足 a1
2 ,且
an an1
1
1 n
N)
,求数列 an 的通项
公式。
6、构造法
方向 1:构造成等差数列( 形如
an1
pan p qan

解法:
(取倒法)两边取倒数 1 p qan 1 1 q ,构造成等差数列。
an1
pan
an1 an p
(同除法)分式变成整式
pan1 qanan1
pan

新人教A版必修5高中数学2.2等差数列(1)学案(二)

新人教A版必修5高中数学2.2等差数列(1)学案(二)

高中数学 2.2等差数列(1)学案新人教A 版必修5学习目标1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定项.学习重难点1.重点: 等差数列的通项公式2.难点: 灵活运用通项公式求等差数列的首项、公差、项数、指定项一、课前准备 (预习教材P 36 ~ P 39 ,找出疑惑之处)复习1:什么是数列? 复习2:数列有几种表示方法?分别是哪几种方法?二、试一试问题一:等差数列的概念1:请同学们仔细观察,看看以下四个数列有什么共同特征?① 0,5,10,15,20,25,… ② 48,53,58,63③ 18,15.5,13,10.5,8,5.5 ④ 10072,10144,10216,10288,10366 新知:1.等差数列:一般地,如果一个数列从第 项起,每一项与它 一项的 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示.2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A =问题二:等差数列的通项公式2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+ ……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .※ 学习探究探究1 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?变式:(1)求等差数列3,7,11,……的第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数. 探究 2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数. ※ 模仿练习练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.三、总结提升 ※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).※ 知识拓展1. 等差数列通项公式为1(1)n a a n d =+-或()n m a a n m d =+-. 分析等差数列的通项公式,可知其为一次函数,图象上表现为直线1(1)y a x d =+-上的一些间隔均匀的孤立点.2. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++.当堂检测1. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ). A. 2 B. 3 C. 4 D. 64. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .课后作业1. 在等差数列{}n a 中,⑴已知12a =,d =3,n =10,求n a ; ⑵已知13a =,21n a =,d =2,求n ;⑶已知112a=,627a=,求d;⑷已知d=-13,78a=,求1a.2. 一个木制梯形架的上下底边分别为33cm,75cm,把梯形的两腰各6等分,用平行木条连接各分点,构成梯形架的各级,试计算梯形架中间各级的宽度.课后反思。

人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)

人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
证明.在求{an}通项公式时,要用到{an-2}是等差数列,先求 1
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.

新课标人教A版数学必修5全部课件:等差数列与等比数列

新课标人教A版数学必修5全部课件:等差数列与等比数列
5 1 2
B.
5 1 2
C.
1 2
5
D.
5 1 2

5 1 2
9 4.等比数列{an}中,a4+a6=3,则a5(a3+2a5+a7)=_________
5.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12 的 值为( C ) A.20 B.22 C.24 D.28
4.重要性质: m+n=p+q am+an=ap+aq(等差数列) (m、n、p、q∈N*) am·n=ap·q(等比数列) a a
特别地 m+n=2p am+an=2ap(等差数列)
am·n=a2p(等比数列) a
返回
课前热身
1.观察数列:30,37,32,35,34,33,36,( 31 点,在括号内适当的一个数是_____. ),38的特
返回
能力·思维·方法
1.四个正数成等差数列,若顺次加上2,4,8,15后成等比 数列,求原数列的四个数.
【解题回顾】本题是利用等差数列、等比数列的条件设未 知数,充分分析题设条件中量与量的关系,从而确定运用 哪些条件设未知数,哪些条件列方程是解这类问题的关键 所在.
2.{an}是等差数列,且a1-a4-a8-a12+a15=2,求a3+a13的值.
①写出{cn}的前5项.
②证明{cn}是等比数列.
【解题回顾】依定义或通项公式,判定一个数列为等差或等 比数列,这是数列中的基本问题之一.
返回
误解分析
1.在用性质m+n=p+q则am+an=ap+aq时,如果看不清下标关 系,常会出现错误.

人教版高中数学必修5《数列》练习题(有答案)

人教版高中数学必修5《数列》练习题(有答案)

必修5 数列2.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .173.等差数列{}n a 中,12910S S a =>,,则前 项的和最大.解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>,,又4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为 .解:∵ ,,,,,1001102030102010S S S S S S S ---成等差数列,公差为D 其首项为10010=S ,6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由. 解:①)(6)(610312112a aa a S +=+=36(27)0a d =+>②12671377666()013000S a a S a a a S =+>=<∴<>∴, 最大。

1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于( ) A .15 B .30 C .31 D .64794121215a a a a a +=+∴= A2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .543. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则 . 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+=111020193012305021019502n a d a a a a n a d d +==⎧⎧==∴∴=+⎨⎨+==⎩⎩,解方程组5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由.12122(1)(1)()2n n n n n n n a n a a a a a ++++∴+=++∴=+ ∴数列{}n a 为等差数列.②1)1(311-+==+n n a n na a ,{}212121522n a a a a a ∴=-=∴-=即等差数列的公差为1(1)3(1)221n a a n d n n ∴=+-=+-⋅=+121n +++,要使得T n n 都成立,三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c 的等比中项,且ac b ac b =±=2,注:是成等比数列的必要而不充分条件. 4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a q q a q na S n n n5. 等比数列的基本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列.④若项数为()*2n n N ∈,则S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等比数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列. 7. 等比数列的判定法 ①定义法:⇒=+(常数)q a a nn 1{}n a 为等比数列; ②中项法:⇒≠⋅=++)0(221n n n n a a a a {}n a 为等比数列;③通项公式法:⇒⋅=为常数)q k q k a nn ,({}n a 为等比数列; ④前n 项和法:⇒-=为常数)(q k q k S nn ,)1({}n a 为等比数列. 性质运用1.103107422222)(++++++=n n f 设()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....D2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则, .3.⑴在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .⑵在等比数列{}n a 中,若015=a ,则有等式n n a a a a a a -+++=+++292121)29(*∈<N n n ,成立,类比上述性质,相应的在等比数列{}n b 中,若119=b ,则有等式成立.解:⑴①由等比数列的性质可知:16341616163233321a a a a a a a a a a ⋅=⋅=+=>==又,解得,②由等比数列的性质可知,{}n a lg 是等差数列,因为⑵由题设可知,如果0=m a 在等差数列中有n m n a a a a a a --+++=+++122121)12(*∈-<N n m n ,成立,我们知道,如果q p n m a a a a q p n m +=++=+,则若,而对于等比数列{}n b ,则有q p n m a a a a q p n m ⋅=⋅+=+,则若所以可以得出结论,若n m n m b b b b b b b --==1221211 ,则有)12(*∈-<N n m n ,成立,在本题中 n n b b b b b b -=372121 则有)37(*∈<N n n ,1.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4 B .3C .2D .12.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( ) A .216 B .-216 C .217 D .-2173.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( )A .1B .-21 C .1或-1 D .-1或214.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .25.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=06.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4 aB .1.1 5 aC .1.1 6 aD .(1+1.1 5)a7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100等于 ( ) A .89abB .(ab )9C .910abD .(ab )108.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为( )A .32B .313C .12D .159.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ( ) A .11n B .11n C .112-n D .111-n10.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅等于 ( )A .102 B .202 C .162 D .15211.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ( )A .全体实数B .-1C .1D .312.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6]一、选择题: BDCAD BACDB BC13.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_____ ____,a n =____ ____.14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =___ ___.15.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10= .16.数列{n a }中,31=a 且n a a n n (21=+是正整数),则数列的通项公式=n a .二、填空题:13.2, 3·2n -2. 14.251+.15.512 .16.123-n . 17.已知数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式. (1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n-1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n -118.在等比数列{a n }中,已知对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.解析: 由a 1+a 2+…+a n =2n -1 ① n ∈N *,知a 1=1且a 1+a 2+…+a n -1=2n -1-1 ②由①-②得a n =2n -1,n ≥2 又a 1=1,∴a n =2n -1,n ∈N *212221)2()2(-+=n n nn a a =4 即{a n 2}为公比为4的等比数列 ∴a 12+a 22+…+a n 2=)14(3141)41(21-=--nn a 19.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .解析一: ∵S 2n ≠2S n ,∴q ≠1 根据已知条件121(1)481(1)601n na q qa q q ⎧-=⎪-⎪⎨-=⎪⎪-⎩①②②÷①得:1+q n =45即q n =41 ③ ③代入①得q a -11=64 ④解析二:∵{a n}为等比数列∴(S2n-S n)2=S n(S3n-S2n)20.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).解析:当x=1时,S n=1+3+5+…+(2n-1)=n2当x≠1时,∵S n=1+3x+5x2+7x3+…+(2n-1)x n-1,①等式两边同乘以x得:xS n=x+3x2+5x3+7x4+…+(2n-1)x n.②21.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.解析:∵a1a n=a2a n-1=128,又a1+a n=66,∴a1、a n是方程x2-66x+128=0的两根,解方程得x1=2,x2=64,∴a1=2,a n=64或a1=64,a n=2,显然q≠1.22.某城市1990年底人口为50万,人均住房面积为16 m2,如果该市每年人口平均增长率为1%,每年平均新增住房面积为30万m2,求2000年底该市人均住房的面积数.(已知1.015≈1.05,精确到0.01 m2)解析:依题意,每年年底的人口数组成一个等比数列{a n}:a1=50,q=1+1%=1.01,n=11 则a11=50×1.0110=50×(1.015)2≈55.125(万),又每年年底的住房面积数组成一个等差数列{b n}:b1=16×50=800,d=30,n=11∴b11=800+10×30=1100(万米2)因此2000年底人均住房面积为:1100÷55.125≈19.95(m2)。

状元之路高中数学新课标A版必修5课时作业:2-2-10《等差数列的概念与通项公式》

状元之路高中数学新课标A版必修5课时作业:2-2-10《等差数列的概念与通项公式》

第14页
返回首页
第二章 2.2 课时作业(10)
状元之路 新课标A版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
8.已知 a,b,c 成等差数列,那么二次函数 y=ax2+2bx+c 的图像与 x 轴的公共点的个数是__________.
第15页
返回首页
第二章 2.2 课时作业(10)
状元之路 新课标A版·高中数学·必修5
答案:D
第8页
返回首页
第二章 2.2 课时作业(10)
状元之路 新课标A版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
4.在等差数列{an}中,a1=13,a2+a5=4,an=33,则 n 是(
)
A.48
B.49
C.50
D.51
第9页
返回首页
第二章 2.2 课时作业(10)
状元之路 新课标A版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
9.(2012·永安高一检测)已知等差数列{an}中,a1<a2<…< an,且 a3,a6 为 x2-10x+16=0 的两个实根,则此数列的通项公 式是__________.
第17页
返回首页
第二章 2.2 课时作业(10)
状元之路 新课标A版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
第20页
返回首页
第二章 2.2 课时作业(10)
状元之路 新课标A版·高中数学·必修5
传播课堂正能量 唱响课堂好声音
11.已知数列{an}满足 a1=1,an1+1= a1n2+2,an>0,求 an.
第21页
返回首页
第二章 2.2 课时作业(10)
状元之路 新课标A版·高中数学·必修5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考调研】2015年高中数学课时作业11 等差数列(第3课时)
新人教版必修5
1、在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()
A、40
B、42
C、43
D、45
答案 B
解析∵a2+a3=13,∴2a1+3d=13、∵a1=2,∴d=3、
而a4+a5+a6=3a5=3(a1+4d)=42、
2、在等差数列-5,-3错误!,-2,-错误!,…中,每相邻两项之间插入一个数,使之组成一个新的等差数列,则新数列的通项公式为()
A、an=错误!n-错误!
B、an=-5-错误!(n-1)
C、an=-5-错误!(n-1)
D、an=错误!n2-3n
答案 A
解析首项为-5,公差为错误!=错误!,
∴an=-5+(n-1)·错误!=错误!n-错误!、
3、若a,b,c成等差数列,则二次函数y=ax2+2bx+c的图像与x轴交点的个数就是()
A、0
B、1
C、2
D、1或2
答案 D
解析∵a、b、c成等差,∴2b=a+c、
∴Δ=(2b)2-4ac=(a+c)2-4ac=(a-c)2≥0、
4、数列{an}中,a1=15,3an+1=3an-2,那么该数列中相邻两项的乘积为负数的就是( )
A、a21与a22
B、a22与a23
C、a23与a24
D、a24与a25
答案 C
解析由3an+1=3an-2可知{an}为等差数列,又a1=15,
∴an=15+(n-1)·(-2
3
)=-错误!n+错误!=错误!、
令an·an+1〈0,即错误!·错误!<0、
可得错误!<n〈错误!、又n∈N*,
∴n=23、(或由a n>0,得n≤23,∴a23>0,a24<0)
5、(2013·辽宁)下面就是关于公差d〉0的等差数列{a n}的四个命题:
p1:数列{a n}就是递增数列;
p2:数列{na n}就是递增数列;
p3:数列{错误!}就是递增数列;
p4:数列{a n+3nd}就是递增数列、
其中的真命题为( )
A、p1,p2
B、p3,p4
C、p2,p3
D、p1,p4
答案 D
解析如数列为{-2,-1,0,1,…},则1×a1=2×a2,故p2就是假命题;如数列为{1,2,3,…},则错误!=1,故p3就是假命题,故选D项、
6、(2013·广东)在等差数列{a n}中,已知a3+a8=10,则3a5+a7=________、
答案20
解析因为数列{a n}为等差数列,
所以由等差数列的性质,得a3+a8=a5+a6=a4+a7=10、
所以3a5+a7=a5+2a5+a7=a5+a4+a6+a7=2×10=20、
7、(2012·广东)已知递增的等差数列{a n}满足a1=1,a3=a错误!-4,则a n=________、
答案2n-1
解析设等差数列{a n}的公差为d(d>0)、
由a3=a错误!-4,得a1+2d=(a1+d)2-4,即1+2d=(1+d)2-4,d2=4、又{a n}就是递增数列,∴d=2、
∴a n=a1+(n-1)d=1+(n-1)·2=2n-1、
8、在200到600之间,被5除余2的整数有______个、
答案80
解析由200≤5n+2≤600,得39、6≤n≤119、6、
∴(119-40)+1=80、
9、已知数列{an}中,a3=2,a7=1,又数列{错误!}为等差数列,则an=________、
答案19-n n+5
解析∵错误!=错误!+4d,∴d=错误!、

1
a n+1

1
a3+1
+(n-3)d=错误!,∴a n=错误!、
10、将等差数列2,7,12,17,22,…中的数按顺序抄写在本子上,见下表,若每行可写12个数,每页共15行,则数1 997应抄在第________页第________行第________个位置上、
解析an=5n-3,由5n-3=1 997,得n=400、
每页共12×15=180个数,360<400<540、
又400-360=40=3×12+4,
∴1 997应抄在第3页,第4行第4个位置上、
11、数列{an}满足a2n+1=a2n+4,且a1=1,an>0,则an=____________、
答案4n-3
12、在等差数列{a n}中,a3+a4+a5=84,a9=73、求数列{a n}的通项公式、
解析因为{a n}就是一个等差数列,
所以a3+a4+a5=3a4=84,a4=28、
设数列{a n}的公差为d,
则5d=a9-a4=73-28=45,故d=9、
由a4=a1+3d,得28=a1+3×9,即a1=1、
所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*)、
13、设数列{an}就是公差不为零的等差数列,且a20=22,|a11|=|a51|,求an、解析设公差为d,∵a20=22,|a11|=|a51|,
∴|22-9d|=|22+31d|、
∵d≠0,∴22-9d=-22-31d、
∴d=-2,∴a1=22-19×(-2)=60、
∴an=-2n+62、
14、已知函数f(x)=错误!,数列{x n}的通项由x n=f(x n-1)(n≥2,且n∈N*)确定、(1)求证:{错误!}就是等差数列;
(2)当x1=错误!时,求x100、
解析(1)x n=f(x n-1)=错误!(n≥2,n∈N*),
所以错误!=错误!=错误!+错误!,
错误!-错误!=错误!(n≥2,n∈N*)、
所以{错误!}就是等差数列、
(2)由(1)知{错误!}的公差为错误!、又因为x1=错误!,
所以错误!=错误!+(n-1)×错误!,错误!=2+(100-1)×错误!=35、所以x100
=1 35、
15、已知数列{a n }满足a 1=4,a n =4-错误!(n >1),记b n =错误!、 (1)求证:数列{b n }就是等差数列; (2)求数列{a n }的通项公式、
解析 (1)证明 ∵b n +1-b n =错误!-错误! =错误!-错误!=错误!-错误! =错误!=错误!, 又∵b 1=错误!=错误!,
∴数列{b n }就是首项为错误!,公差为错误!的等差数列、 (2)由(1)知b n =1
2+(n -1)×错误!=错误!n ,
∵b n =错误!,∴a n =错误!+2=错误!+2、。

相关文档
最新文档